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» CPU time instead of node evaluations; reimplement in Fast Downward
(Helmert JAIR-06) instead of Pyperplan (Alkhazraji et al. 2016).
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P non-unit cost setting
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More on S&K

» empirical: only improved over GBFS with preferred operators (PO),
deferred heuristic evaluation (DE)

> regret bounds: GUCT-Normal2’s polynomial regret bound expected to be
better than GUCT-01's logarithmic regret bound in practice in context of
deterministic, discrete, finite-state space search like planning, where
estimated variance can approach or equal true variance.
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Full Coverage Results

h= hFF padd pmax hGC hFF4+PO hF¥+DE hFFLDE+PO

c= 05 1 05 1 0.5 1 0.5 1 0.5 1 05 1 05 1
GUCT 4132 396.4 4058 373.8 2248 2222 296 278 4392 4118 4186 3546 450 393.2
* 508.8 440.8 4962 453.8 239.4 2342 3062 303 5424 448 4418 3868 477 422
-01 369.6 354.8 3452 312.8 2422 227.6 307 2952 4032 387 355.6 344.8 406.4 404.4
*.01 3036 372 373 3436 2362 2264 3062 289.8 4302 4012 377.6 363 4262 4212
v 3208 3072 325 297.6 215 200 2648 2438 383.8 3484 3344 310 3844 3774
-Normal - 278 - 2614 - 2092 - 2318 - 3316 - 2692 - 3426
*_Normal - 3116 - 2048 - 2122 - 244 - 3382 - 2852 - 3438
-Normal2 - 563.8 - 519.2 - 301 - 3746 - 5964 - 4968 - 5508
*Normal2 - 5512 - 5162 - 2582 - 3386 - 5938 - 4906 - 5434
GBFS - 524 - 5016 - 2214 - 3512 - - - 474 - -

10k node evaluation limit, average of 5 runs, no results for configurations
unsupported by Pyperplan, subset of IPC benchmarks compatible with PDDL
extensions supported by Pyperplan.
Terminated experiments when grounding exceeded 5 min., removing 751
problem instances across 24 domains.
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» UCB1-Normal (Auer et al. ML-02)
» scale-adaptive, but relies on conjectures that are not guaranteed to hold
» UCBI1-Tuned (Auer et al. ML-02):
» assumes bounded reward distribution
» lacks regret bound
» UCB-V (Audibert et al. 2009):
» proven regret bound, but assumes bounded reward distribution
» needs initialization pulls
» Bayes-UCT2 (Tesauro et al. 2010):

» lacks regret bound
» convergence proved only for bounded reward distributions
» only tested on synthetic trees of fixed depth, width, and rewards

Weaknesses of previous
MABs
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