Scale-Adaptive Balancing of Exploration and Exploitation in Classical Planning

Stephen Wissow and Masataro Asai

MIT-IBM Watson AI Lab Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

> Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

Conclusion

This work was supported through DTIC contract FA8075-18-D-0008, Task Order FA807520F0060, Task 4 - Autonomous Defensive Cyber Operations (DCO) Research & Development (R&D).

> agile search: minimize planning time, ignore solution cost

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

- > agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

GUCT-01

Our Contribution GUCT-Normal2

Result

- ▶ agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?
- need distributional belief about distance-to-go

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

GUCT-01

Our Contribution GUCT-Normal2

Result

- ▶ agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?
- need distributional belief about distance-to-go
- previous work has considered distributional heuristics but without complete statistical analysis:

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

GUCT-01 Our Contribution GUCT-Normal2 Results

- ▶ agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?
- need distributional belief about distance-to-go
- previous work has considered distributional heuristics but without complete statistical analysis:
 - Ethan Burns (diss., UNH 2013), O'Ceallaigh & Ruml (SoCS-15), Mitchell et al. (AAAI-19), Fickert, Gu, & Ruml (IJCAI-21)

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

GUCT-01 GUCT-01 GUCT-Normal2

Results

- ▶ agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?
- need distributional belief about distance-to-go
- previous work has considered distributional heuristics but without complete statistical analysis:
 - Ethan Burns (diss., UNH 2013), O'Ceallaigh & Ruml (SoCS-15), Mitchell et al. (AAAI-19), Fickert, Gu, & Ruml (IJCAI-21)

this work:

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

GUCT-01 GUCT-Normal2

Results

- ▶ agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?
- need distributional belief about distance-to-go
- previous work has considered distributional heuristics but without complete statistical analysis:
 - Ethan Burns (diss., UNH 2013), O'Ceallaigh & Ruml (SoCS-15), Mitchell et al. (AAAI-19), Fickert, Gu, & Ruml (IJCAI-21)
- this work:
 - first principled adaptation of Monte Carlo Tree Search (MCTS) for forward state space search

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01 Our Contribution GUCT-Normal2 Results

- ▶ agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?
- need distributional belief about distance-to-go
- previous work has considered distributional heuristics but without complete statistical analysis:
 - Ethan Burns (diss., UNH 2013), O'Ceallaigh & Ruml (SoCS-15), Mitchell et al. (AAAI-19), Fickert, Gu, & Ruml (IJCAI-21)
- this work:
 - first principled adaptation of Monte Carlo Tree Search (MCTS) for forward state space search
 - can readily extend to non-unit cost

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01 Our Contribution GUCT-Normal2 Results

- ▶ agile search: minimize planning time, ignore solution cost
- "best-first": always an estimate—when to trust it?
- need distributional belief about distance-to-go
- previous work has considered distributional heuristics but without complete statistical analysis:
 - Ethan Burns (diss., UNH 2013), O'Ceallaigh & Ruml (SoCS-15), Mitchell et al. (AAAI-19), Fickert, Gu, & Ruml (IJCAI-21)
- this work:
 - first principled adaptation of Monte Carlo Tree Search (MCTS) for forward state space search
 - can readily extend to non-unit cost
 - empirically better than GBFS without ad hoc tweaks

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01 Our Contribution GUCT-Normal2 Results

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background

THTS/MCTS

Previous Work

Our Contribution

Results

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

in each iteration:

- 1. selection
- 2. expansion
- 3. evaluation
- 4. backup

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background

THTS/MCTS

Previous Work

Our Contribution GUCT-Normal2

Result

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

in each iteration:

1. selection

2. expansion

3. evaluation

4. backup

partial tree, mid-search:

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background

THTS/MCTS

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

in each iteration: partial tree, mid-search:
1. selection
2. expansion
3. evaluation

4. backup

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background

THTS/MCTS MAB

Previous Work guct-01

Our Contribution GUCT-Normal2

Results

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

in each iteration. partial tree, mid-search: 1 selection 2. expansion 3 evaluation 4. backup

Stephen Wissow (UNH)

Scale-Adaptive

Exploration and Exploitation Stephen Wissow

THTS/MCTS

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

in each iteration. partial tree, mid-search: 1 selection 2. expansion 3 evaluation 4. backup

Stephen Wissow (UNH)

Scale-Adaptive

Exploration and Exploitation Stephen Wissow

THTS/MCTS

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

1. selection

in each iteration:

2. expansion

3. evaluation

4. backup

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background

MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

THTS (Schulte & Keller SoCS-14) first applied MCTS to planning

Scale-Adaptive

Exploration and Exploitation Stephen Wissow

MAB for selection determines MCTS behavior

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

GUCT-Normal2

Result

- MAB for selection determines MCTS behavior
- **b** balance exploration and exploitation

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

GUCT-Normal2

Result

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Result

MAB for selection determines MCTS behavior

- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Result

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)
 - used with MCTS for games: UCT (Kocsis and Szepesvári ECML-06)

Scale-Adaptive Exploration and Exploitation

- Problem Setting
- Background THTS/MCTS MAB
- Previous Work GUCT-01
- Our Contribution GUCT-Normal2
- Results
- Conclusion

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)
 - used with MCTS for games: UCT (Kocsis and Szepesvári ECML-06)
 - \blacktriangleright rewards $\{0,1\}$ or $\{-1,1\}$

Scale-Adaptive Exploration and Exploitation

- Problem Setting
- Background THTS/MCTS MAB
- Previous Work GUCT-01
- Our Contribution GUCT-Normal2
- Results
- Conclusion

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)
 - used with MCTS for games: UCT (Kocsis and Szepesvári ECML-06)
 - \blacktriangleright rewards $\{0,1\}$ or $\{-1,1\}$
 - average win rate: Bernoulli distribution

Scale-Adaptive Exploration and Exploitation

- Problem Setting
- Background THTS/MCTS MAB
- Previous Work GUCT-01
- GUCT-Normal2
- Results
- Conclusion

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)
 - used with MCTS for games: UCT (Kocsis and Szepesvári ECML-06)
 - \blacktriangleright rewards $\{0,1\}$ or $\{-1,1\}$
 - average win rate: Bernoulli distribution
- but heuristics lack a priori known upper bounds

Scale-Adaptive Exploration and Exploitation

- Problem Setting
- Background THTS/MCTS MAB
- Previous Work GUCT-01 Our Contributio
- GUCT-Normal2
- Results
- Conclusion

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)
 - used with MCTS for games: UCT (Kocsis and Szepesvári ECML-06)
 - $\blacktriangleright \text{ rewards } \{0,1\} \text{ or } \{-1,1\}$
 - average win rate: Bernoulli distribution
- but heuristics lack a priori known upper bounds
- need unbounded distribution, e.g. Gaussian

Scale-Adaptive Exploration and Exploitation

- Problem Setting
- Background THTS/MCTS MAB
- Previous Work GUCT-01 Our Contributio
- GUCT-Normal2
- Results
- Conclusion

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)
 - used with MCTS for games: UCT (Kocsis and Szepesvári ECML-06)
 - $\blacktriangleright \text{ rewards } \{0,1\} \text{ or } \{-1,1\}$
 - average win rate: Bernoulli distribution
- but heuristics lack a priori known upper bounds
- need unbounded distribution, e.g. Gaussian
- \blacktriangleright to measure uncertainty: consider variance σ^2 , not just mean μ

Scale-Adaptive Exploration and Exploitation

- Problem Setting
- Background THTS/MCTS MAB
- Previous Work GUCT-01 Our Contributio
- Results
- Conclusion

- MAB for selection determines MCTS behavior
- balance exploration and exploitation
- theoretically rigorous
- UCB1 (Auer et al. ML-02)
 - used with MCTS for games: UCT (Kocsis and Szepesvári ECML-06)
 - $\blacktriangleright \text{ rewards } \{0,1\} \text{ or } \{-1,1\}$
 - average win rate: Bernoulli distribution
- but heuristics lack a priori known upper bounds
- need unbounded distribution, e.g. Gaussian
- \blacktriangleright to measure uncertainty: consider variance σ^2 , not just mean μ
- \blacktriangleright some existing MABs use μ,σ^2 , but with drawbacks

Scale-Adaptive Exploration and Exploitation

- Problem Setting
- Background THTS/MCTS MAB
- Previous Work GUCT-01 Our Contributio
- GUC I-Normal
- Conclusion

GUCT-01¹ (Schulte & Keller SoCS-14)

• GUCT-01 adapts UCB1 by normalizing siblings to [0,1]

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work

Our Contribution GUCT-Normal2

Results

Conclusion

¹(renamed from original Greedy-UCT)

Stephen Wissow (UNH)

Scale-Adaptive Exploration and Exploitation

$GUCT-01^1$ (Schulte & Keller SoCS-14)

GUCT-01 adapts UCB1 by normalizing siblings to [0, 1]

n

 $M = \max_{n' \in S(p)} h(n')$ $m = \min_{n' \in S(p)} h(n')$

exploitation exploration

 \boldsymbol{p} parent of nS(p) successors of p T visitation counter at p c exploration coefficient t visitation counter at n

 $f_{\rm GUCT-01}(n) = \frac{h(n) - m}{M - m} - \frac{c}{\sqrt{(2\log T)/t}}$

¹(renamed from original Greedy-UCT)

Stephen Wissow (UNH)

Scale-Adaptive Exploration and Exploitation

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

GUCT-01

GUCT-01¹ (Schulte & Keller SoCS-14)

• GUCT-01 adapts UCB1 by normalizing siblings to [0,1]

 $M = \max_{n' \in S(p)} h(n')$

$$m = \min_{n' \in S(p)} h(n')$$

T visitation counter at p = c exploration coefficient

 $f_{\rm GUCT-01}(n) = \frac{h(n) - m}{M - m} - \frac{c}{\sqrt{(2\log T)/t}}$

exploitation exploration

p parent of n T visitation counter at pS(p) successors of p t visitation counter at n

UCB1 assumes all arms share same bounded reward distribution

n

Stephen Wissow (UNH)

Scale-Adaptive Exploration and Exploitation

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

GUCT-01

Our Contribution GUCT-Normal2

Results

¹(renamed from original Greedy-UCT)

$GUCT-01^1$ (Schulte & Keller SoCS-14)

GUCT-01 adapts UCB1 by normalizing siblings to [0, 1]

$$m = \min_{n' \in S(p)} h(n')$$

exploitation exploration

 \boldsymbol{p} parent of n

T visitation counter at p = c exploration coefficient S(p) successors of p = t visitation counter at n

 $f_{\text{GUCT}-01}(n) = \frac{h(n) - m}{M - m} - \frac{c}{\sqrt{(2\log T)/t}}$

UCB1 assumes all arms share same bounded reward distribution

but h range varies per subtree!

n

Stephen Wissow (UNH)

Scale-Adaptive Exploration and Exploitation

5/9

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

GUCT-01

¹(renamed from original Greedy-UCT)

M-m

Factor out normalization:

preserve node ordering

n

demonstrate outsize impact on exploration term: will explore too much

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2 Results

Conclusion

 $\begin{array}{ll} \mbox{exploitation} & \mbox{exploration} \\ f_{\rm GUCT-01}(n) = \frac{h(n)-m}{M-m} & -c\sqrt{(2\log T)/t} \\ m + (M-m)f_{\rm GUCT-01}(n) = h(n) & -c(M-m)\sqrt{(2\log T)/t} \end{array}$

(differences in red)

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution

GUCT-Normal2

Results

exploitation exploration

$$f_{\text{GUCT}-01}(n) = \frac{h(n) - m}{M - m}$$
 $-c\sqrt{(2\log T)/t}$
 $f_{\text{GUCT}-\text{Normal2}}(n) = h(n)$ $-\hat{\sigma}_n \sqrt{2\log T/1}$

(differences in red)

GUCT-Normal2:

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution

GUCT-Normal2

Results

exploitation exploration
$$f_{\text{GUCT}-01}(n) = \frac{h(n) - m}{M - m}$$
 $-c\sqrt{(2\log T)/t}$
 $f_{\text{GUCT}-\text{Normal2}}(n) = h(n)$ $-\hat{\sigma}_n \sqrt{2\log T/1}$

(differences in red)

GUCT-Normal2:

▶ no longer normalize h(n) to artificial bound

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution

Results

$$\begin{array}{ll} \text{exploitation} & \text{exploration} \\ f_{\text{GUCT}-01}(n) = & \frac{h(n) - m}{M - m} & -c\sqrt{(2\log T)/t} \\ f_{\text{GUCT-Normal2}}(n) = & h(n) & -\hat{\sigma}_n \sqrt{2\log T/1} \end{array}$$

(differences in red)

GUCT-Normal2:

- no longer normalize h(n) to artificial bound
- exploration coefficient $\hat{\sigma}_n$ learned online

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution

Results

$$\begin{array}{ll} \text{exploitation} & \text{exploration} \\ f_{\text{GUCT}-01}(n) = & \frac{h(n) - m}{M - m} & -c\sqrt{(2\log T)/t} \\ f_{\text{GUCT-Normal2}}(n) = & h(n) & -\hat{\sigma}_n\sqrt{2\log T/1} \end{array}$$

(differences in red)

GUCT-Normal2:

- no longer normalize h(n) to artificial bound
- exploration coefficient $\hat{\sigma}_n$ learned online
 - data: h in leaf nodes

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution

Results

$$\begin{array}{ll} \text{exploitation} & \text{exploration} \\ f_{\text{GUCT}-01}(n) = & \frac{h(n) - m}{M - m} & -c\sqrt{(2\log T)/t} \\ f_{\text{GUCT-Normal2}}(n) = & h(n) & -\hat{\sigma}_n\sqrt{2\log T/1} \end{array}$$

(differences in red)

GUCT-Normal2:

- no longer normalize h(n) to artificial bound
- exploration coefficient $\hat{\sigma}_n$ learned online
 - data: h in leaf nodes
- $\hat{\sigma}_n$ specific to n

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution

Results

$$\begin{array}{ll} \text{exploitation} & \text{exploration} \\ f_{\text{GUCT}-01}(n) = & \frac{h(n) - m}{M - m} & -c\sqrt{(2\log T)/t} \\ f_{\text{GUCT}-\text{Normal2}}(n) = & h(n) & -\hat{\sigma}_n\sqrt{2\log T/1} \end{array}$$

(differences in red)

GUCT-Normal2:

- no longer normalize h(n) to artificial bound
- exploration coefficient $\hat{\sigma}_n$ learned online
 - \blacktriangleright data: h in leaf nodes
- $\hat{\sigma}_n$ specific to n
 - won't explore too much (compared to M m)

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution

Results

$$\begin{array}{ll} \text{exploitation} & \text{exploration} \\ f_{\text{GUCT}-01}(n) = & \frac{h(n) - m}{M - m} & -c\sqrt{(2\log T)/t} \\ f_{\text{GUCT-Normal2}}(n) = & h(n) & -\hat{\sigma}_n\sqrt{2\log T/1} \end{array}$$

(differences in red)

GUCT-Normal2:

- no longer normalize h(n) to artificial bound
- exploration coefficient $\hat{\sigma}_n$ learned online
 - \blacktriangleright data: h in leaf nodes
- $\hat{\sigma}_n$ specific to n
 - won't explore too much (compared to M m)
 - adapts exploration to each child's subtree

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

- Background THTS/MCTS MAB
- Previous Work GUCT-01

Our Contribution

D 1

Better IPC coverage under 10k node evaluationshGBFSGBFSGUCT-01 (c)GUCT-Normal2	Scale-Adaptive Exploration and Exploitation Stephen Wissow
$h^{ m FF}$	
h^{add}	Background THTS/MCTS MAB
Lmax	Previous Work GUCT-01
$V_{1,\dots,n}$	Our Contribution GUCT-Normal2
$h^{ m GC}$ (for Atari)	Results Conclusion

Better IPC coverage under 10k node evaluations							
h	GBFS	GUCT-01 (<i>c</i>)	GUCT-Normal2		Stephen Wissov		
$h^{ m FF}$	522.4						
h^{add}	501.6				Background THTS/MCTS MAB		
h^{\max}	221 4				Previous Work GUCT-01		
	051.0				GUCT-Normal2		
h^{GO} (for Atari)	351.2						

Better IPC cov	erage	under 10k no	de evaluations	Scale-Adaptive Exploration and Exploitation
h	GBFS	GUCT-01 (<i>c</i>)	GUCT-Normal2	Stephen Wissow
$h^{ m FF}$	522.4	369.6 (0.5) 354.8 (1.0)		
h^{add}	501.6	345.2 (0.5) 312.8 (1.0)		THTS/MCTS MAB Previous Work
h^{\max}	221.4	242.2 (0.5) 227.6 (1.0)		GUCT-01 Our Contribution GUCT-Normal2
$h^{ m GC}$ (for Atari)	351.2	307.0 (0.5) 295.2 (1.0)		Results Conclusion

30	etter IPC cov	erage	under 10k no	de evaluations	Scale-Adaptive Exploration and
	h	GBFS	GUCT-01 (c)	GUCT-Normal2	Stephen Wissow
	$h^{ m FF}$	522.4	369.6 (0.5) 354.8 (1.0)	563.8	
	$h^{ m add}$	501.6	345.2 (0.5) 312.8 (1.0)	519.2	тнтя/мстя мав Previous Work
	h^{\max}	221.4	242.2 (0.5) 227.6 (1.0)	301.0	GUCT-01 Our Contribution GUCT-Normal2
	$h^{ m GC}$ (for Atari)	351.2	307.0 (0.5) 295.2 (1.0)	374.6	Results Conclusion

Better IPC coverage under 10k node evaluations							
h	GBFS	GUCT-01 (c)	GUCT-Normal2		Stephen Wissow		
$h^{ m FF}$	522.4	369.6 (0.5) 354.8 (1.0)	563.8				
h^{add}	501.6	345.2 (0.5) 312.8 (1.0)	519.2		THTS/MCTS MAB Previous Work		
h^{\max}	221.4	242.2 (0.5) 227.6 (1.0)	301.0		GUCT-01 Our Contribution GUCT-Normal2		
$h^{ m GC}$ (for Atari)	351.2	307.0 (0.5) 295.2 (1.0)	374.6		Results Conclusion		

 $h^{\rm FF}{+}{\rm PO}$

 $h^{\rm FF} + {\sf DE}$

 $h^{\rm FF}+{\sf DE}+{\sf PO}$

Stephen Wissow (UNH)

Better IPC coverage under 10k node evaluations						
h	GBFS	GUCT-01 (c)	GUCT-Normal2		Stephen Wissow	
h^{FF}	522.4	369.6 (0.5) 354.8 (1.0)	563.8			
h^{add}	501.6	345.2 (0.5) 312.8 (1.0)	519.2		тнтs/мстs мав Previous Work	
h^{\max}	221.4	242.2 (0.5) 227.6 (1.0)	301.0		GUCT-01 Our Contribution GUCT-Normal2	
$h^{ m GC}$ (for Atari)	351.2	307.0 (0.5) 295.2 (1.0)	374.6		Results Conclusion	
$h^{\mathrm{FF}}+PO$	-					
$h^{ m FF}+{\sf DE}$	474.0					
$h^{\rm FF}+{\sf DE}+{\sf PO}$	-					

Stephen Wissow (UNH)

Better IPC coverage under 10k node evaluations							
h	GBFS	GUCT-01 (c)	GUCT-Normal2	Stephen Wissow			
h^{FF}	522.4	369.6 (0.5) 354.8 (1.0)	563.8				
h^{add}	501.6	345.2 (0.5) 312.8 (1.0)	519.2	тнтs/мстs мав Previous Work			
h^{\max}	221.4	242.2 (0.5) 227.6 (1.0)	301.0	GUCT-01 Our Contribution GUCT-Normal2			
$h^{ m GC}$ (for Atari)	351.2	307.0 (0.5) 295.2 (1.0)	374.6	Results Conclusion			
$h^{\mathrm{FF}}+PO$	-	403.2 (0.5) 387.0 (1.0)					
$h^{\mathrm{FF}}+DE$	474.0	355.6 (0.5) 344.8 (1.0)					
$h^{\mathrm{FF}} + DE + PO$	-	406.4 (0.5) 404.4 (1.0)					

Stephen Wissow (UNH)

E

Better IPC coverage under 10k node evaluations							
h	GBFS	GUCT-01 (c)	GUCT-Normal2	Stephen Wissow			
h^{FF}	522.4	369.6 (0.5) 354.8 (1.0)	563.8				
h^{add}	501.6	345.2 (0.5) 312.8 (1.0)	519.2	thts/mcts mab Previous Work			
h^{\max}	221.4	242.2 (0.5) 227.6 (1.0)	301.0	GUCT-01 Our Contribution GUCT-Normal2			
$h^{ m GC}$ (for Atari)	351.2	307.0 (0.5) 295.2 (1.0)	374.6	Results Conclusion			
$h^{\mathrm{FF}}+PO$	-	403.2 (0.5) 387.0 (1.0)	596.4				
$h^{\mathrm{FF}}+DE$	474.0	355.6 (0.5) 344.8 (1.0)	496.8				
$h^{\rm FF}$ +DE+PO	-	406.4 (0.5) 404.4 (1.0)	550.8				

Stephen Wissow (UNH)

Scale-Adaptive Exploration and Exploitation

GUCT-Normal2 is the first to check all the boxes:

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

1. reason explicitly about balancing exploration and exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!
- 4. empirical success on wide variety of domains

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!
- 4. empirical success on wide variety of domains
- 5. performs well with or without ad hoc enhancements

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!
- 4. empirical success on wide variety of domains
- 5. performs well with or without ad hoc enhancements

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!
- 4. empirical success on wide variety of domains
- 5. performs well with or without ad hoc enhancements

Future work:

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!
- 4. empirical success on wide variety of domains
- 5. performs well with or without ad hoc enhancements

Future work:

 CPU time instead of node evaluations; reimplement in Fast Downward (Helmert JAIR-06) instead of Pyperplan (Alkhazraji et al. 2016).

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!
- 4. empirical success on wide variety of domains
- 5. performs well with or without ad hoc enhancements

Future work:

- CPU time instead of node evaluations; reimplement in Fast Downward (Helmert JAIR-06) instead of Pyperplan (Alkhazraji et al. 2016).
- consider distributions other than Gaussian, with yet greater fidelity to heuristic search setting

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Work GUCT-01

Our Contribution GUCT-Normal2

Results

GUCT-Normal2 is the first to check all the boxes:

- 1. reason explicitly about balancing exploration and exploitation
- 2. statistically sound
- 3. we prove its regret bound: read our paper!
- 4. empirical success on wide variety of domains
- 5. performs well with or without ad hoc enhancements

Future work:

- CPU time instead of node evaluations; reimplement in Fast Downward (Helmert JAIR-06) instead of Pyperplan (Alkhazraji et al. 2016).
- consider distributions other than Gaussian, with yet greater fidelity to heuristic search setting
- non-unit cost setting

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Problem Setting

Background THTS/MCTS MAB

Previous Worl

Our Contribution GUCT-Normal2

Results

- empirical: only improved over GBFS with preferred operators (PO), deferred heuristic evaluation (DE)
- regret bounds: GUCT-Normal2's polynomial regret bound expected to be better than GUCT-01's logarithmic regret bound in practice in context of deterministic, discrete, finite-state space search like planning, where estimated variance can approach or equal true variance.

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Appendi

More on S&K

Full Coverage Results Weaknesses of previous MABs

Scale-Adaptive Exploration and Exploitation

Stephen Wissow

Append

More on S&K

Full Coverage Results

Weaknesses of previous MABs

h =	h^{I}	γF	h^{a}	dd	h^{m}	ax	h^{0}	GC	$h^{\rm FF}$	+PO	$h^{\rm FF}$	+DE	$h^{\rm FF} + \Box$	DE+PO
c =	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1
GUCT	413.2	396.4	405.8	373.8	224.8	222.2	296	278	439.2	411.8	418.6	354.6	450	393.2
*	508.8	440.8	496.2	453.8	239.4	234.2	306.2	303	542.4	448	441.8	386.8	477	422
<u>-01</u>	<u>369.6</u>	<u>354.8</u>	<u>345.2</u>	<u>312.8</u>	<u>242.2</u>	<u>227.6</u>	<u>307</u>	<u>295.2</u>	<u>403.2</u>	<u>387</u>	<u>355.6</u>	<u>344.8</u>	406.4	404.4
*-01	393.6	372	373	343.6	236.2	226.4	306.2	289.8	430.2	401.2	377.6	363	426.2	421.2
-V	329.8	307.2	325	297.6	215	200	264.8	243.8	383.8	348.4	334.4	310	384.4	377.4
-Normal	-	278	-	261.4		209.2	-	231.8	-	331.6	-	269.2	-	342.6
*-Normal	-	311.6	-	294.8	-	212.2	-	244	-	338.2	-	285.2	-	343.8
-Normal2	-	563.8	-	519.2	-	301	-	374.6	-	596.4	-	496.8	-	550.8
*-Normal2	-	551.2	-	516.2	-	258.2	-	338.6	-	593.8	-	490.6	-	543.4
GBFS	-	522.4	-	501.6	-	221.4	-	351.2	-	-	-	474	-	-

10k node evaluation limit, average of 5 runs, no results for configurations unsupported by Pyperplan, subset of IPC benchmarks compatible with PDDL extensions supported by Pyperplan.

Terminated experiments when grounding exceeded 5 min., removing 751 problem instances across 24 domains.

Stephen Wissow (UNH)

Scale-Adaptive Exploration and Exploitation

Weaknesses of previous MABs

- UCB1-Normal (Auer et al. ML-02)
 - scale-adaptive, but relies on conjectures that are not guaranteed to hold
- ▶ UCB1-Tuned (Auer et al. ML-02):
 - assumes bounded reward distribution
 - lacks regret bound
- UCB-V (Audibert et al. 2009):
 - proven regret bound, but assumes bounded reward distribution
 - needs initialization pulls
- ▶ Bayes-UCT2 (Tesauro et al. 2010):
 - lacks regret bound
 - convergence proved only for bounded reward distributions
 - only tested on synthetic trees of fixed depth, width, and rewards

Stephen Wissow

Appendi

More on S&K Full Coverage Results Weaknesses of previous MABs