
Tunable Suboptimal Heuristic Search

Stephen Wissow1, Fanhao Yu2, Wheeler Ruml1

1 University of New Hampshire, Durham, NH, USA
2 Nashua High School South, Nashua, NH, USA

sjw@cs.unh.edu, yufanhao12@gmail.com, ruml@cs.unh.edu

Abstract

Finding optimal solutions to state-space search problems of-
ten takes too long, even when using A* with a heuristic func-
tion. Instead, practitioners often use a tunable approach, such
as weighted A*, that allows them to adjust a trade-off between
search time and solution cost until the search is sufficiently
fast for the intended application. In this paper, we study algo-
rithms for this problem setting, which we call ‘tunable subop-
timal search’. We introduce a simple baseline, called Speed*,
that uses distance-to-go information to speed up search. Ex-
perimental results on standard search benchmarks suggest
that 1) bounded-suboptimal searches suffer overhead due to
enforcing a suboptimality bound, 2) beam searches can per-
form well, but fare poorly in domains with dead-ends, and 3)
Speed* provides robust overall performance.

Introduction
A wide variety of intractable planning problems can be for-
mulated as state-space search problems, so it is no surprise
that many search problems take too long to solve optimally,
even when using an optimally efficient algorithm such as A*
(Hart, Nilsson, and Raphael 1968; Dechter and Pearl 1988).
A* is a best-first search that orders its search frontier on in-
creasing f(n) = g(n) + h(n), where g(n) represents the
cost of the path to node n from the root search node, corre-
sponding to the problem’s initial state, and h(n) represents
a heuristic estimate of the remaining cost-to-go from n to a
node corresponding to a state satisfying the problem’s goal
predicate goal(s). While optimal solutions are of course al-
ways preferred, when they are infeasible to compute many
practitioners use methods that relax A*’s solution optimal-
ity guarantee in favor of reduced computation time, methods
that we refer to broadly as suboptimal. At the opposite ex-
treme from A* is the agile (also referred to as satisficing
or pure suboptimal) search algorithm, whose objective is to
find any solution at all as fast as possible. However, what is
often desired is a tunable suboptimal algorithm, which al-
lows the practitioner to adjust the trade-off between solution
cost and search time, ideally spanning from optimal to as-
fast-as-possible.

Weighted A* (wA*) is a popular best-first search that
orders its search frontier on increasing f ′(n) = g(n) +

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

w · h(n) : w ≥ 1 (Pohl 1970). (In the implementation
tested below, we break ties in favor of low h.) wA* is a
bounded suboptimal algorithm, because it guarantees that
the solution it returns will have a cost that is within a fac-
tor w of the cost C∗ of an optimal solution. Several other
bounded suboptimal algorithms have been proposed, includ-
ing A∗

ϵ (Pearl and Kim 1982), Explicit Estimation Search
(Thayer and Ruml 2011, EES), Dynamic Potential Search
(Gilon, Felner, and Stern 2016, DPS), and Round-Robin-d
(Fickert, Gu, and Ruml 2022a, RR-d). Researchers have also
proposed bounded cost search algorithms, such as Potential
Search (Stern, Puzis, and Felner 2011), that guarantee re-
turning a solution whose cost is less than a provided budget
or failing if no such solution exists.

However, using bounded algorithms for tunable subopti-
mal search, where we don’t really care about guaranteed cost
but just want the best empirical performance, raises two is-
sues. The first is that many bounded search algorithms, such
as wA* and DPS, focus on g(n) cost-so-far and h(n) cost-
to-go to guide their search, and they converge in the limit
of large bounds to Greedy Search (also known as Greedy
Best-First Search, GBFS) (Michie and Ross 1969), which
is a best-first search that orders its search frontier on in-
creasing h(n), breaking ties on low g(n). It is well-known
that, for problems that feature actions with different costs
(also known as ‘non-unit costs’), guiding search on d(n)
distance-to-go (in terms of number of state-space transitions,
or equivalently number of action applications or number of
arcs in the state-space graph) can be much faster (Thayer,
Ruml, and Kreis 2009). While some bounded-suboptimal al-
gorithms, such as EES and RR-d, use d(n) in concert with
h(n) to guide their search and do converge in the limit of
large bounds to Speedy Search, a best-first search on increas-
ing d(n) that breaks ties on low h (Ruml and Do 2007), they
often have high overheads from maintaining multiple order-
ings of the open list and coordinating between them in or-
der to enforce the suboptimality bound. We are not aware of
a previously-proposed simple, low-overhead tunable algo-
rithm that can span the spectrum between A* and Speedy.

Second, while the bounded suboptimal and bounded-cost
search settings have received attention, recent work has not
explicitly addressed the problem setting of tunable subop-
timal search—even though, in practice, this is the problem
setting to which algorithms like wA* are often applied. It



is unclear whether methods might exist that find solutions
of similar (or lower) cost in similar (or less) time if they
do not need to enforce bounds. In other words, previous
work has not evaluated ‘the price of bounded suboptimality’
in heuristic search. Do these guarantees come with perfor-
mance overheads than can be avoided when the guarantees
are not needed in practice? How might they fare empirically
against approaches like beam search (Bisiani 1987) that do
not guarantee bounds?

In this paper, we explicitly study algorithms for the tun-
able suboptimal search setting. We present a simple and
complete tunable suboptimal algorithm, Speed*, that offers
performance trade-offs spanning from A* to Speedy. We
find through experimental evaluation that Speed* often out-
performs not just wA* but also RR-d, the state-of-the-art
bounded suboptimal algorithm. We also see that Speed* is
robust to domains with dead-ends, unlike beam-based search
approaches such as Bead (Lemons et al. 2022) and Rectan-
gle search (Lemons et al. 2024). This work is the first to eval-
uate RR-d and Rectangle in the tunable suboptimal setting.
The results suggest that Bead search offers the best trade-off
between cost vs. time for domains without dead-ends and
that Speed* is the preferred approach where robustness to
dead-ends is required. We hope this work draws researchers’
attention to the tunable suboptimal search setting, since it of-
ten seems to be what practitioners really want.

Previous Work
Greedy and Speedy are agile heuristic search algorithms
designed to find any (unboundedly suboptimal) solution as
quickly as possible. Greedy search can be seen as the lim-
iting case of wA* as w is increased. Speedy search often
finds solutions more quickly than Greedy in non-unit-cost
settings.

Many bounded suboptimal methods have been proposed,
starting with wA*, and including EES and DPS. The cur-
rent state-of-the-art is RR-d (Fickert, Gu, and Ruml 2022b).
In addition to a ‘cleanup’ list that orders the entire search
frontier on increasing f(n), RR-d maintains two additional
queues, ‘open’ ordered on increasing f̂(n), and ‘focal’ or-
dered on increasing d(n), that contain a subset of nodes from
the cleanup list: {n : f(n) ≤ w · fmin} ⊆ cleanup, where
fmin is the f -value of the node at the front of the cleanup
list. f̂ is a potentially inadmissible ‘best estimate’ of f∗.
In the implementation tested below, f̂ is computed from f
using online error correction and a global error model, fol-
lowing Thayer, Dionne, and Ruml (2011). To select the next
node to expand, RR-d alternates among its three queues in a
round-robin fashion. With an admissible heuristic, and since
g increases over the course of the search, fmin will never
exceed the optimal solution cost, thus guaranteeing a goal
selected from any of the three queues will always have a cost
within the suboptimality bound. The intuition behind the dif-
ferent orderings of the three queues is that (1) a node expan-
sion from the cleanup (f -ordered) list raises fmin, admitting
additional nodes to the other queues, (2) a node expansion
from the open (f̂ -ordered) list makes progress toward low-
cost solutions (and enqueues them), and (3) a node expan-

sion from the focal (d-ordered) list pursues nearby solutions
that can be found quickly. In their empirical evaluation, RR-
d performed better than other queue alternation schemes that
Fickert, Gu, and Ruml (2022a) tested, so we do not compare
against them.

Beam search is a tunable search that does not offer a
bound. It can be understood as a variant of breadth-first
search that also proceeds by depth layer. Instead of expand-
ing every node at each depth like bread-first search, beam
search selects for expansion only a constant number of nodes
k at each depth layer; k is referred to as the beam’s ‘width’.
Any nodes not selected for expansion at a given depth are
pruned, making beam search incomplete. Nodes at a given
depth layer are evaluated based on some given static eval-
uator function, and the k best are selected for expansion.
Their successors at the next depth layer of the search tree
are evaluated and their k best selected for expansion, and so
on. Bead search (Lemons et al. 2022, Bead) is beam search
that selects nodes preferring low d(n). It was found to find
lower-cost solutions faster than beam search using f or h.

Hill-climbing is a very simple heuristic search algorithm
that commits to a single successor from each node that is ex-
panded. According to a given state evaluation function, Hill-
climbing selects and commits to the most promising succes-
sor s of the initial state si, then to the most promising suc-
cessor s′ of s, then the most promising successor s′′ of s′,
and so on. Hill-climbing can thus be seen as the limiting case
of any beam search with a beam width of k = 1, and it is
also not complete. The implementation tested below uses a
closed list to avoid cycles, and drops duplicate states.

Rectangle is a state-of-the-art anytime algorithm based on
beam search (Lemons et al. 2024). Rectangle can be thought
of as a beam search whose width increases as the search
tree depth increases, according to an ‘aspect ratio’ specified
at runtime. Unlike beam search, Rectangle does not perma-
nently prunes nodes that are not selected for expansion, but
maintains them in a collection of queues, one for each depth
reached so far. As the search progresses deeper and the beam
grows wider, Rectangle returns to each previous (shallower)
depth layer to select additional nodes for expansion, ensur-
ing that the same number of nodes has been expanded at
every depth so far. For example, with an aspect ratio of 1,
Rectangle at depth d will expand d nodes, as well as 1 ad-
ditional node at each previous (shallower) depth. Rectangle
is complete and converges to optimal in the limit of run-
ning time. To convert Rectangle from an anytime algorithm
to a tunable suboptimal algorithm, we terminate the anytime
search either (a) when Rectangle finds its jth anytime so-
lution, where j ∈ Z+ is specified at runtime, or (b) when
rectangle only finds i : 0 < i < j solutions but subsequently
also empties all the depth-based queues (pruned based on the
incumbent solution), in which case the algorithm has proved
the optimality of the ith solution.

The Speed* Search Algorithm
Speed* is a best-first search that considers cost-so-far, cost-
to-go, and weighted distance-to-go information in ordering
its search frontier. It is extremely simple to implement. It
is designed to interpolate between A* and Speedy searches



depending on the value of its speed parameter s ∈ [1, inf).
Speed* does not guarantee monotonic change in the cost
vs. time relationship throughout this interpolation, but wA*
shares this behavior (Wilt and Ruml 2012). Given the well-
known improvement both in cost and running time of search-
ing on d instead of on h in agile search, it is surprising that
Speed* has never been tried before for tunable suboptimal
search.

In explaining Speed*’s state evaluation function, f†,
we begin with a simpler version of the algorithm,
called Speed*5000, which orders its search frontier on
f†5000(n) = g(n) + h(n) + s · d(n) : s ∈ R≥0, with ties
broken in favor of low h. Note that in unit cost domains
Speed*5000 with s = 0.1 implies search behavior similar
to that of wA* with w = 1.1, so the first modification in
Speed* is to require s ∈ [1, inf) and to subtract 1 from it,
so that Speed* and wA* behave similarly for w = s > 1
on unit cost domains, with differences in behavior resulting
solely from their goal detection policies (discussed below).
Note also that the effect of s in Speed*5000 depends on the
relative magnitudes of h and d in each specific domain, un-
like the effect of w in wA* which benefits from g and h
being in the same units. To mitigate this at least somewhat,
Speed*’s state evaluation function f† scales s− 1 by h(ni)

d(ni)
,

where ni is the initial state. This gives us Speed*’s state eval-
uation function:

f†(n) = g(n) + h(n) + s′ · d(n) : s′ = (s− 1) · h(ni)

d(ni)

where s ∈ [1, inf). Note that s′ is fully determined once
h(ni) and d(ni) are computed and is held constant for the re-
mainder of the search. Finally, with no suboptimality bound
to guarantee, Speed* immediately returns the first solution
generated when s > 1, rather than following wA*’s ap-
proach of enqueuing all generated solutions onto the open
list and waiting for one to be selected for expansion. When
s = 1, we special case goal detection in Speed* to occur at
expansion instead of generation, in order to behave identi-
cally to A*.

There is only a single open list, so we expect overhead
to be no greater than wA*’s. In the implementation tested
below, Speed* was implemented with a single basic binary
heap for the open list and a hash table for the closed list.

The Behavior of Speed*
Speed* is complete in both finite and, with admissible
h and under reasonable assumptions, also infinite state
spaces. In particular, we assume that: (A1) h is admissible;
(A2) d is bounded; (A3) both h and d are goal-aware, i.e.,
h(s) = d(s) = 0 iff s is a goal state; (A4) s is finite;
(A5) edge costs are finite; (A6) the state space is ‘locally

finite’, meaning every node has a finite number of neighbors,
thus implying that a single expansion takes a finite amount
of time; and (A7) edge costs are bounded away from zero by
some finite ϵ > 0.

Lemma 1 If a solution path exists, then ∃n ∈ OPEN : n
lies on a solution path.

Proof. We proceed by induction.
initialization: if there exists a solution path p(ni, ng) from

the initial state ni to a goal state ng , then ni is on path p and
is inserted into OPEN when Speed* begins execution.

maintenance: ∃n ∈ p → ∃n′ ∈ succ(n) : n′ ∈ p. If
and when n is extracted from OPEN and expanded, n′ will
be generated and, because Speed* does not prune, n′ will be
inserted into OPEN.

Lemma 2 If a solution p of finite cost C exists, s′ = (s −
1) · h(ni)

d(ni)
is finite.

Proof. Because the initial state ni must be on p, and by
(A1), h(ni) ≤ C. By (A2) and (A3), we then have that h(ni)

d(ni)

is finite. By (A4) we then have that s′ is finite.

Theorem 1 Speed* is complete: if a finite solution exists,
Speed* will find it and terminate.

Proof. If a solution path p of finite cost C exists, then by
Lemma 1 at any time ∃np ∈ OPEN : np ∈ p. By (A1),
(A2), (A4), (A5), and Lemma 2, we have that f†(np) is finite
and bounded:

f†(np) = g(np) + h(np) + s′ · d(np)

≤ C + s′ · d(np)

Let k denote the length of p. At any time, finite j ≤ k
expansions along p are required to reach p’s goal. Let X
represent the finite set of all states on OPEN that are not
part of any path that leads to a goal within k steps, and let
Xfront :=

{
n : n ∈ X ∧ f†(n) ≤ f†(np)

}
be the subset of

X that is ordered before np on OPEN. If Xfront = ∅, then np

is selected for expansion and j decrements. If Xfront ̸= ∅,
then some nX ∈ Xfront : f†(nX) ≤ f†(np) is selected for
expansion. By (A6) nX will have a finite number of succes-
sor states, and the effect on Xfront is as follows:

1. if nX has no successors, then the cardinality of Xfront

decrements;
2. otherwise, by (A7) we have that g(n′

X) ≥ ϵ +
g(nX)∀n′

X ∈ succ(nX) for some fixed finite ϵ > 0.

In particular, for any path x that does not reach a goal
within k steps from ni, only a maximum of inp

:=⌊
f†(np)

ϵ

⌋
+ 1 expansions from any nx along x are possi-

ble before g(n′
x) > f†(np) for some n′

x ∈ x ∪ Tnx
, where

Tnx
denotes the subtree under nx.

The overall number of expansions that may occur prior to
np being selected for expansion is therefore bounded from
above by finite Inp

:

Inp =
∑

nX∈Xfront

inp .

Since only a finite number of expansions may occur prior
to any particular np being selected for expansion, and since
finite k many np must be expanded before generating ng ,
Speed* will run for a finite length of time before generating
a solution and terminating.



Even though Speed* does not adhere to an a priori sub-
optimality bound, it can nonetheless provide one post hoc.
Let C be the cost of the solution returned by Speed*, with
OPEN retaining its state at the moment of termination. Note
that fmin := min

n∈OPEN
f(n) is a lower bound on the unknown

cost C∗ of an optimal solution. Then we have the post hoc
suboptimality bound

b :=
C

fmin
≥ C

C∗ .

Experimental Evaluation
We compared a variety of popular and state-of-the-art tun-
able suboptimal algorithms, both bounded and unbounded,
both complete and incomplete, and with both priority-
queue-based and beam-based (breadth-based) search fron-
tiers: wA*, RR-d, Bead, Rectangle, and Speed*. We also
include Greedy, Speedy, and Hill-climbing, as they are use-
ful limiting cases. We used five standard search benchmarks:
15-puzzle, traffic, racetrack, blocks world, and pancake. On
the 15-puzzle and pancake, we used both unit- and non-unit
cost models, and traffic and racetrack enabled us to examine
the algorithms’ behavior in state spaces with dead-ends.

Tunable algorithms were run with a range of parameter
values. We also compared whether dropping vs. reopening
duplicate nodes affected performance for wA* and Speed*.

All algorithms were implemented in Rust and run on ma-
chines with Intel Core i3-12100 4.3 GHz processors and 64
GB RAM. Only one algorithm run was performed at a time
on each machine to minimize cache and memory bus in-
terference from other processes. All algorithms were given
a 60 second limit and a 62 GB memory limit (which was
never reached by any of the suboptimal algorithms). All
CPU times were verified to be within 1% of their corre-
sponding wall times as a post hoc guarantee of no significant
preemption by other tasks on the system.

15-puzzle
The 15-puzzle is a sliding tile puzzle with a 4x4 grid. We
use Korf’s 100 instances (Korf 1985) and three cost mod-
els: unit-cost, heavy tiles where the cost to move each tile is
equal to its number (e.g., the cost to move tile number 15 is
15), and inverse tiles, where the cost to move each tile is the
multiplicative inverse of its number (e.g., the cost to move
tile number 15 is 1

15 ).
Results are shown in Figure 1, comparing each tunable

algorithm’s cost vs. time trade-off over its range of parame-
ter values. Data are averaged over a set of commonly solved
instances that were solved by every algorithm (and, if tun-
able, at every parameter value) that is included in the plot.
The legends include the different parameter values that were
used to sweep out each performance envelope: each point
corresponds to a different beam width (Bead), solution num-
ber (Rectangle), w (RR-d and wA*), or s (Speed*), averaged
across the commonly solved problem instances. We list the
‘aspect’ parameter of Rectangle as a part of the name (‘Rect-
angle’ = 1, ‘Rectangle500’ = 500). The suffixes ‘-d’ vs. ‘-
r’ denote the duplicate handling policies used for wA* and

10 2 10 1 100 101

average CPU time (sec)

102

6 × 101

2 × 102

av
er

ag
e 

so
lu

tio
n 

co
st

tile unit, 85/100 commonly solved instances
bead 100000, 30000, 10000, 3000, 1000, 300, 100, 30, 10
Greedy
Rectangle 5, 4, 3, 2, 1
RR-d 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-d 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-d 1.1, 1.5, 2, 3, 5, 10, 100

10 2 10 1 100 101

average CPU time (sec)

103

4 × 102

6 × 102

2 × 103

3 × 103

av
er

ag
e 

so
lu

tio
n 

co
st

tile heavy, 65/100 commonly solved instances

10 3 10 2 10 1 100 101

average CPU time (sec)

2 × 101

3 × 101

4 × 101

av
er

ag
e 

so
lu

tio
n 

co
st

tile inverse, 54/100 commonly solved instances

Figure 1: Cost vs. time on 15-puzzle with unit- (top), heavy-
(middle), and inverse-cost (bottom) models.

Speed* (dropping or reopening). To induce a set of com-
monly solved problem instances with coverage greater than
40% in a given domain, we incrementally excluded the sin-
gle algorithm (and, if applicable, only at the single parame-
ter value) that had the lowest coverage in that domain. The
resulting number of commonly solved problem instances is



displayed in each plot’s title. The algorithms’ glyphs and
colors are constant across all plots.

Bead matches or outperforms every other algorithm
against which we compared on all three tiles cost models.
Rectangle(1) nearly matches Bead in all three cost mod-
els, while Rectangle(500) returns much higher cost solutions
(and so is omitted to better visualize the better perform-
ing algorithms). This is consistent with Figures 66 (a,b) and
67 (b) of Lemons et al. (2023). As expected given Thayer,
Ruml, and Kreis (2009), Speed* and wA* are indistinguish-
able on unit tiles while Speed* solves problems faster and
at lower cost than wA* on heavy and inverse tiles. On unit
and inverse tiles, RR-d is outperformed by Speed*, while
on heavy tiles they crisscross, neither clearly dominates the
other.

We note that wA*’s dominance of RR-d on unit tiles in the
tunable suboptimal setting is not inconsistent with Fickert,
Gu, and Ruml (2022a)’s determination of RR-d’s dominance
over wA* in the bounded suboptimal setting. For a given
suboptimality bound, RR-d runs faster but returns a higher
cost solution than wA*, so it is not clear that RR-d should
be expected to dominate wA* in terms of cost vs. time in the
tunable suboptimal setting.

While Bead performs very well on the 15-puzzle, Hill-
climbing fails to solve more than a single instance on any of
the three cost models. Hill-climbing is equivalent to beam
search with a beam width of 1, so this highlights the brittle-
ness of a beam search’s aggressive commitment.

We shall see that results in the other domains without
dead-ends generally follow the patterns observed in the 15-
puzzle results.

Blocks world
In blocks world, a table supports one or more towers of
uniquely numbered but otherwise identical blocks (Slaney
and Thiébaux 2001). A block is clear if there is no block
stacked on top of it. A goal state is a complete specification
of which block is stacked on which other block, or directly
on the table. We use the ‘shallow’ action model wherein an
applicable action consists of picking up a clear block and
placing it either onto another clear block or onto the table (as
opposed to the model introduced by Lelis, Zilles, and Holte
(2013) that separates picking and placing into different ac-
tions and leads to deeper solutions). We randomly generated
instances with 15, 20, and 50 blocks using the same method
as Lemons et al. (2022), where the start and goal states are
each a random assortment of towers.

Results on 20-blacks are shown in Figure 2; these results
are representative of 15-blocks, and 50-blocks results are
omitted due to low coverage under the 60 sec experimental
time limit. As on the 15-puzzle, Bead again performs best
overall, finding solutions before any other algorithm tested
and almost always finding lower cost solutions. Speed* does
not perform as well as Bead, but is also not dominated by
any other algorithm. Rectangle(1) does manage to find a first
(least optimal) solution with even lower cost, but fails to
find sufficiently cheaper subsequent solutions to match the
performance of any other algorithm at greater computation
times, yielding a poor cost vs. time trade-off. Rectangle(500)

10 2 10 1 100 101

average CPU time (sec)

3 × 101

4 × 101

5 × 101

av
er

ag
e 

so
lu

tio
n 

co
st

blocks20 shallow, 61/100 commonly solved instances
bead 100000, 30000, 10000, 3000, 1000, 300, 100, 30, 10
Greedy
Rectangle 5, 4, 3, 2, 1
RR-d 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-d 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-d 1.1, 1.5, 2, 3, 5, 10, 100

Figure 2: Cost vs. time on 20-blocks world.

is off the top of the plot with the most expensive solutions,
running a bit slower than Rectangle. Again RR-d suffers,
taking longer to find solutions, and usually at higher cost.

As on non-unit-cost tiles, we can observe the pathological
behavior of wA*, which very closely matches (and is plotted
behind) that of Speed*. This non-monotonic relationship be-
tween running time and suboptimality bound was previously
noted by Wilt and Ruml (2012). However, while Speed* can
suffer from this as well, it may not always do so in each do-
main that wA* does (see non-unit cost tiles, Figure 1, middle
and bottom). Hill-climbing again performed poorly, solving
no more than 5 instances out of 100 on each problem size.

Pancake
In the pancake domain (Helmert 2010), a single stack of dif-
ferent sized pancakes must be rearranged such that no pan-
cake lies on top of a smaller pancake. An action consists of
inserting the spatula in between two adjacent pancakes of the
stack, and flipping the sub-stack of pancakes above the spat-
ula, reversing their order. We use two cost models: unit-cost
and heavy-cost (Hatem and Ruml 2014), where the cost to
make a flip is equal to the size of the pancake above the spat-
ula (at the bottom of the sub-stack prior to its being flipped).
We use instances with 50, 70, and 100 pancakes. We use the
gap heuristic (Helmert 2010) for unit-cost and adapt it for
heavy-cost.

Results on 70-pancake are shown in Figure 3 and are
representative of results on 50-pancake and 100-pancake.
Whereas on the 15-puzzle and blocks world Bead was often
first to find solutions, Bead takes longer to start finding so-
lutions on pancake relative to most of the other algorithms.
However, once it does start finding solutions, Bead returns
the lowest cost solutions on average, nearly matched only by
Rectangle(1). In contrast to almost all other domains tested,
Hill-climbing achieved complete coverage on pancake, re-
turning relatively high cost solutions very quickly. While
wA* and Speed* found solutions the soonest on unit pan-
cake, and wA* and Rectangle(500) on heavy pancake, wA*
and Speed* returned solutions of higher cost than Bead by at



10 2 10 1 100 101

average CPU time (sec)

102

7 × 101

8 × 101

9 × 101

av
er

ag
e 

so
lu

tio
n 

co
st

pancake70 unit, 85/100 commonly solved instances
bead 10000, 3000, 1000, 300, 100, 30, 10
Greedy
HC
Rectangle 4, 3, 2, 1
Rectangle500 5, 4, 3, 2, 1
RR-d 2, 3, 5, 10, 100
Speed*-d 1.1, 1.5, 2, 2.5, 3, 5, 10, 100
Speedy
wA*-d 1.1, 1.5, 2, 2.5, 3, 5, 10, 100

10 2 10 1 100 101

average CPU time (sec)

2.4 × 103

2.6 × 103

2.8 × 103

3 × 103

3.2 × 103

av
er

ag
e 

so
lu

tio
n 

co
st

pancake70 heavy, 66/100 commonly solved instances
bead 10000, 3000, 1000, 300, 100, 30, 10
Greedy
HC
Rectangle 5, 4, 3, 2, 1
Rectangle500 5, 4, 3, 2, 1
RR-d 2, 3, 5, 10, 100
Speed*-d 2, 2.5, 3, 5, 10, 100
Speedy
wA*-d 3, 5, 10, 100

Figure 3: Cost vs. time on 70-pancake with unit- (left) and heavy-cost (right) models.

least one order of magnitude on heavy pancake. Under both
cost models RR-d again suffers, and Rectangle(500) fails to
achieve costs as low as any of the other algorithms until its
fifth solution.

On the non-dead-end domains of the 15-puzzle, blocks
world, and pancake, Bead always found the lowest cost solu-
tions and usually was the first algorithm to find any solutions
at all. Rectangle(1) usually matched Bead in cost but took
longer to start finding solutions. Speed* usually dominated
RR-d and excelled in non-unit-cost models in comparison to
wA*.

Traffic
Traffic takes place on a grid with discrete time steps (Kiesel,
Burns, and Ruml 2015). The agent’s goal is to move from
its start location to a goal location elsewhere on the grid
without colliding with any dynamic obstacles. Dynamic ob-
stacles have random initial starting locations and horizontal
and vertical velocities dx, dy ∈ [−1, 0, 1], and upon col-
lision with the grid border reverse direction in the dimen-
sion perpendicular to the border’s edge. At each time step,
the dynamic obstacles’ positions are updated and the agent
takes an action by either moving to an adjacent cell via 4-
way movement or remaining in its current cell until the next
time step (no-op). We consider unit cost actions, including
no-op. While dynamic obstacles pass through each other, the
agent may not occupy a cell that contains any dynamic ob-
stacles, so an applicable action in the current time step is one
that moves the agent to, or holds the agent in, a cell where no
dynamic obstacles will be located at the next time step. In-
stances are 100x100, with 5k, 7.5k, 8.5k, or 9.5k obstacles,
with the agent’s start location in the upper-left corner and
goal location in the lower-right, and are guaranteed solvable.
With these densities of obstacles, we can expect the domain
to exhibit dead-end states that have no successors.

Results with 7.5k obstacles are shown in Figure 4 and are
representative of performance on 8.5k and 9.5k obstacles.
Speed* and wA* dominate the other algorithms in terms of

10 1 100 101

average CPU time (sec)

3.4 × 102

3.6 × 102

3.8 × 102

4 × 102

4.2 × 102

4.4 × 102
av

er
ag

e 
so

lu
tio

n 
co

st

traffic75 unit, 45/100 commonly solved instances
bead 100000, 30000, 10000, 3000, 1000, 300, 100, 30, 10
Greedy
Rectangle 2, 1
Rectangle500 3, 2, 1
RR-d 1.01, 1.03, 1.1, 1.2, 1.5, 2, 3
Speed*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-r 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100

10 2 10 1 100 101

average cpu time (seconds)

0.0

0.2

0.4

0.6

0.8

fra
ct

io
n 

so
lv

ed

traffic75 unit

bead 100000, 30000, 10000, 3000, 1000, 300, 100, 30, 10, 5, 2
Greedy
HC
Rectangle 5, 4, 3, 2, 1
Rectangle500 5, 4, 3, 2, 1
RR-d 1.01, 1.03, 1.1, 1.2, 1.5, 2, 3
Speed*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-r 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100

Figure 4: Cost vs. time (left) and coverage vs. time (right)
on traffic with 7.5k obstacles.



cost vs. time (top panel). As expected, Bead is not robust
in this domain with dead-ends. While Bead did find some
solutions at a width of 2, the coverage was so low (bottom
panel) that this point was omitted from the cost vs. time plot.
To achieve near-complete coverage at a width of 5, Bead
took longer than Speed* and wA* did to achieve complete
coverage about half an order of magnitude earlier. Again we
see RR-d suffers, both in terms of relative delay until first
finding solutions and also in returning much higher cost so-
lutions per computation time than Speed*, wA*, or Bead.
Even though complete, Rectangle(1) and Rectangle(500)
also appear to have difficulty handling traffic’s dead-ends,
with the better Rectangle taking the longest to find any so-
lution at all compared to the other algorithms. Hill-climbing
failed utterly at ≥7.5k obstacles with zero coverage, termi-
nating well before the 60 sec time limit.

Racetrack
In racetrack, the agent moves in a grid by applying 1, 0, or
-1 acceleration horizontally and vertically at every time step
(Gardner 1973; Barto, Bradtke, and Singh 1995). The ob-
jective is to reach a goal state on the finish line as quickly
as possible. Like Gardner and unlike Barto, Bradtke, and
Singh, we use the formulation where successor states are
not generated if they fall on blocked grid cells or beyond the
map’s borders, thus causing dead-end states with no succes-
sors. We call this variant New Hampshire Racetrack.1 We
use two heuristics. The Euclidean heuristic admissibly esti-
mates the time to reach the finish line as the the Euclidean
distance from the agent’s location to the nearest point on
the finish line divided by the greater of the maximum ve-
locity achievable in each dimension. The Dijkstra heuris-
tic accounts for obstacles created by the shape of the track
by calculating the shortest path from the agent’s location to
the nearest point on the finish line using 4-way movement.
The horizontal and vertical components of the path length
are stored separately, and each is divided by the maximum
velocity achievable in the respective dimension. The maxi-
mum of the two resulting values is returned as an admissi-
ble estimate of the time to reach a goal state. Heuristic pre-
computation occurs before the search algorithm begins and
so is excluded from the CPU time measurement.

We use the Barto map (Barto, Bradtke, and Singh 1995) at
two scales, as well as the Uniform map at two scales and the
Hansen-Barto combined map (Cserna et al. 2018, a longer
form of the Barto map), with 25 random start locations that
are at least 95% of the way back from the finish line for each
map-scale.

Results are shown in Figures 5–6. The coverage vs. time
plots (bottom of each of Figures 5–6) show that, while Bead
is able to start solving some problems sooner than the other
tunable algorithms, it takes Bead more than an order of mag-
nitude longer than Speed* and wA* to achieve full cover-
age. Bead also cannot boast lower solution costs when the
Dijkstra heuristic is used and with the less informative Eu-
clidean heuristic Bead returns significantly higher cost so-
lutions than Speed* and wA* (cost vs. time plots, top of

1See the state’s official motto.

10 2

average CPU time (sec)

2.1 × 101

2.2 × 101

2.3 × 101

2.4 × 101

2.5 × 101

2.6 × 101

2.7 × 101

2.8 × 101

av
er

ag
e 

so
lu

tio
n 

co
st

racetrack unit euclidean, 81/125 commonly solved instances

10 4 10 3 10 2 10 1 100 101

average cpu time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

so
lv

ed

racetrack unit euclidean

bead 100000, 30000, 10000, 3000, 1000, 300, 100, 30, 10, 5, 2
Greedy
HC
Rectangle 5, 4, 3, 2, 1
Rectangle500 5, 4, 3, 2, 1
RR-d 1.01, 1.03, 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-r 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
wA*-r 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100

Figure 5: Cost vs. time (top) and coverage vs. time (bottom)
on racetrack with the Euclidean heuristic.

each of Figures 5–6). With both heuristics Speed* finds
solutions faster and at lower cost than RR-d, which again
suffers. Rectangle(1) and Rectangle(500) are again slower
and return higher cost solutions than the other tunable algo-
rithms, so much so under the Euclidean heuristic that they
are omitted from that plot (they would appear above and to
the right). Hill-climbing performed extremely poorly, solv-
ing fewer than 5 instances under each heuristic.

Discussion
In domains without dead-ends, Bead appears to return lower
cost solutions more quickly than the other algorithms con-
sidered here. In domains with dead-ends, Speed* was ro-
bust, finding solutions sooner than Bead and at lower cost,
and in non-unit-cost domains Speed* dominates wA*. In-
terestingly, Hill-climbing almost always utterly fails, even
though it is equivalent to beam search with a width of 1.

We limited problem instance size in order to be able to
compare many algorithms across many domains. However,
there are no obvious reasons why our conclusions would not
hold as problem difficulty scales up. Our work extends pre-
vious studies that have compared suboptimal search algo-



10 3 10 2 10 1 100

average CPU time (sec)

2 × 101

3 × 101

av
er

ag
e 

so
lu

tio
n 

co
st

racetrack unit dijkstra, 70/125 commonly solved instances
bead 100000, 30000, 10000, 3000, 1000, 300
Greedy
Rectangle 5, 4, 3, 2, 1
Rectangle500 5, 4, 3, 2, 1
RR-d 1.01, 1.03, 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100

10 4 10 3 10 2 10 1 100 101

average cpu time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

so
lv

ed

racetrack unit dijkstra

bead 100000, 30000, 10000, 3000, 1000, 300, 100, 30, 10, 5, 2
Greedy
HC
Rectangle 5, 4, 3, 2, 1
Rectangle500 5, 4, 3, 2, 1
RR-d 1.01, 1.03, 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-r 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100
wA*-r 1.001, 1.01, 1.1, 1.5, 2, 3, 5, 10, 100

Figure 6: Cost vs. time (top) and coverage vs. time (bottom)
on racetrack with the Dijkstra heuristic.

rithms (Wilt, Thayer, and Ruml 2010), but our evaluation is
the first to consider the state-of-the-art methods Rectangle
and RR-d in the tunable suboptimal problem setting and the
first to include a leading anytime algorithm.

As with other best-first searches and any search that keeps
a closed list, Speed* stores every generated node, regardless
of how poor its evaluation is, so its memory use is propor-
tional to its runtime. If memory consumption is a concern,
s can be increased to encourage the algorithm to find so-
lutions more quickly and hence use less memory. It would
be an interesting direction for future research to integrate
Speed* with bounded-memory algorithms such as A*+IDA*
(Bu and Korf 2019).

Conclusions
We present a study of the tunable suboptimal setting, in
which the user adjusts an algorithm-specific parameter to
achieve an informal trade-off between running time and so-
lution cost, without concern for guaranteeing a specific sub-
optimality bound. We found experimentally that algorithms
that guarantee a bound do often fare worse in cost vs. time
performance than algorithms that do not. We evaluated both

traditional wA* and state-of-the-art RR-d bounded subopti-
mal algorithms, and presented a simple, new tunable sub-
optimal algorithm based on best-first search, Speed*. We
also compared against Bead (beam-search on d), and found
that Bead is overall the best algorithm for tunable subopti-
mal search in domains without dead-ends, but that Speed* is
preferred otherwise: it is robust to dead-ends, is often faster
than wA* under non-unit-cost models, and is almost always
(with the exception of on the heavy-cost 15-puzzle) faster
than state-of-the-art bounded suboptimal RR-d under both
unit- and non-unit cost models.

More generally, we hope this work draws further research
attention to the tunable suboptimal setting.

Acknowledgments
We gratefully acknowledge support for this work from the
NSF-BSF program via NSF grant 2008594.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learning
to Act using Real-Time Dynamic Programming. Artificial
Intelligence, 72(1): 81–138.
Bisiani, R. 1987. Beam Search. In Shapiro, S., ed., Encyclo-
pedia of Artificial Intelligence, 56–58. John Wiley and Sons.
Bu, Z.; and Korf, R. E. 2019. A*+IDA*: A Simple Hy-
brid Search Algorithm. In Kraus, S., ed., Proceedings of the
Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, 1206–1212. ijcai.org.
Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W.
2018. Avoiding Dead Ends in Real-time Heuristic Search.
In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18).
Dechter, R.; and Pearl, J. 1988. The Optimality of A*. In
Kanal, L.; and Kumar, V., eds., Search in Artificial Intelli-
gence, 166–199. Springer-Verlag.
Fickert, M.; Gu, T.; and Ruml, W. 2022a. New Results in
Bounded-Suboptimal Search. In Thirty-Sixth AAAI Confer-
ence on Artificial Intelligence, AAAI 2022, February 22 -
March 1, 2022, 10166–10173. AAAI Press.
Fickert, M.; Gu, T.; and Ruml, W. 2022b. New Results in
Bounded-Suboptimal Search. In Proceedings of the Thirty-
sixth AAAI Conference on Artificial Intelligence (AAAI-22).
Gardner, M. 1973. Mathematical Games. Scientific Ameri-
can, 228(5): 102–107.
Gilon, D.; Felner, A.; and Stern, R. 2016. Dynamic Poten-
tial Search - A New Bounded Suboptimal Search. In Pro-
ceedings of the Ninth Annual Symposium on Combinatorial
Search, SOCS 2016, 36–44. AAAI Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions of Systems Science and Cybernet-
ics, SSC-4(2): 100–107.
Hatem, M.; and Ruml, W. 2014. Bounded Suboptimal
Search in Linear Space: New Results. In Proceedings of
the Seventh Annual Symposium on Combinatorial Search
(SoCS-14).



Helmert, M. 2010. Landmark Heuristics for the Pancake
Problem. In Felner, A.; and Sturtevant, N. R., eds., Pro-
ceedings of the Third Annual Symposium on Combinato-
rial Search, SOCS 2010, Stone Mountain, Atlanta, Georgia,
USA, July 8-10, 2010, 109–110. AAAI Press.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: experimental results in video
games. Journal of Artificial Intelligence Research, 54: 123–
158.
Korf, R. E. 1985. Iterative-Deepening-A*: An Optimal Ad-
missible Tree Search. In Proceedings of IJCAI-85, 1034–
1036.
Lelis, L. H. S.; Zilles, S.; and Holte, R. C. 2013. Stratified
tree search: a novel suboptimal heuristic search algorithm.
In Gini, M. L.; Shehory, O.; Ito, T.; and Jonker, C. M., eds.,
International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’13, 555–562.
Lemons, S.; Linares López, C.; Holte, R. C.; and Ruml, W.
2022. Beam Search: Faster and Monotonic. In Proceedings
of the Thirty-second International Conference on Automated
Planning and Scheduling (ICAPS-22).
Lemons, S.; Ruml, W.; Holte, R. C.; and Linares López, C.
2023. Rectangle Search: An Anytime Beam Search (Ex-
tended Version). arXiv:2312.12554.
Lemons, S.; Ruml, W.; Holte, R. C.; and Linares López, C.
2024. Rectangle Search: An Anytime Beam Search. In Pro-
ceedings of AAAI-24. AAAI Press.
Michie, D.; and Ross, R. 1969. Experiments with the Adap-
tive Graph Traverser. In Machine Intelligence 5, 301–318.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-4(4): 391–399.
Pohl, I. 1970. Heuristic Search Viewed as Path Finding in a
Graph. Artificial Intelligence, 1: 193–204.
Ruml, W.; and Do, M. B. 2007. Best-first Utility-guided
Search. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI-07), 2378–2384.
Slaney, J. K.; and Thiébaux, S. 2001. Blocks World revis-
ited. Artif. Intell., 125(1-2): 119–153.
Stern, R.; Puzis, R.; and Felner, A. 2011. Potential Search:
A Bounded-Cost Search Algorithm. In Proceedings of the
Twenty-first International Conference on Automated Plan-
ning and Scheduling (ICAPS-11).
Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning In-
admissible Heuristics During Search. In Proceedings of the
Twenty-first International Conference on Automated Plan-
ning and Scheduling (ICAPS-11).
Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In Proceedings of the Twenty-second International Joint
Conference on Artificial Intelligence (IJCAI-11).
Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using Distance
Estimates in Heuristic Search: A Re-evaluation. In Proceed-
ings of the Symposium on Combinatorial Search (SoCS-09).
Wilt, C.; and Ruml, W. 2012. When Does Weighted A* Fail?
In Proceedings of SoCS.

Wilt, C.; Thayer, J.; and Ruml, W. 2010. A Comparison of
Greedy Search Algorithms. In Proceedings of the Sympo-
sium on Combinatorial Search (SoCS-10).


