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Abstract

Network Attached Storage and Storage Area Networks are emerging as the technology of
choice for large-scale data storage. A key feature of such storage devices is that they can be
directly accessed by applications without the intervention of file servers. Hence, issues such as
data-sharing and security cannot be handled by file-servers. This paper addresses the issue of
data-sharing by presenting a Reader-Writer locking mechanism that is controlled by the storage
devices. The Reader-Writer synchronization refers to the classical problem of shared reader
access and exclusive writer access to shared data. The proposed mechanism requires a simple
data structure per data-item to be maintained at the devices and client nodes. Since requests
are issued across the network, all locks are based on blocking. The algorithm presented here is
scalable and fault-tolerant.

1 Introduction

Storage systems have evolved from simple disks under the control of file servers to large, independent
disk-array systems connected directly to the network using Network-Attached Storage (NAS) and
Storage Area Network (SAN) technologies. A unique feature of these storage systems is that they
are directly accessible by applications running on independent computers without the intervention
of file servers. A downside, however, is that tasks such as data sharing, data security, and fault
management which are done by host file servers in conventional server controlled storage systems
must now be moved to the storage devices themselves. Currently, several research groups [1] [11]
[4] [7] [12] are working on designing intelligent storage devices capable of handling some of these
tasks. This paper addresses the issue of maintaining the coherence of data shared amongst multiple
independent clients in a distributed environment by presenting a scalable, fault-tolerant algorithm
for shared read locks and exclusive write locks.

The reader-writer synchronization is a classical problem that is inherent to all computer systems.
While readers can share access to common data, writers must obtain an exclusive lock before
accessing the shared data. In conventional storage systems, the reader-writer synchronization is
handled by file-servers which control all access to storage data. In NAS and SAN environments,
the reader-writer synchronization cannot be handled by file servers since clients can directly access
storage. Therefore, we propose a locking mechanism that is directly implemented within the storage
devices itself. However, the locking mechanism presented here is scalable since hundreds of clients
could access a storage device in a NAS or SAN environment. Also, the proposed locking scheme is
fault-tolerant and can recover from single node and multiple non-adjacent node failures.
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The placement of locking mechanisms on storage devices is not a new concept. Currently, device
locks are implemented on SCSI disks [3] and are used by distributed file systems such as the Global
File System (GFS) [11]. The GFS uses device locks (called d-locks) as its mechanism for ensuring
shared file consistency. A GFS user must acquire a d-lock before accessing storage data. The locks
can be acquired either in exclusive write or shared read mode depending on the user’s request type.
When a client sends a read request to the device, it gets the lock immediately if the associated lock
is not set in exclusive write mode. (For write requests, the lock must be free.) If the associated
d-lock is locked, the request is turned down and a list of current holders of the lock is returned to
the client (from the device). The requesting client then sends a ‘call-back’ to the current holder
of the d-lock. When the current holder is done with the d-lock, it flushes its caches to the storage
device and releases the d-lock to the next requester after incrementing the version number of the
d-lock. The version number is used to inform others that their cached data is old and has to
be reread from the device. The d-locks are fine-grained locks which are held for relatively small
periods. This leads to spin-locking which increases the traffic on the network. Another drawback
of d-locks is that they are not scalable since the client lists can grow very long in a distributed
environment. All deadlock detection and avoidance must also be done by the client.

Most existing work on reader-writer locks have been developed in the context of shared memory
systems. Mellor-Crummey and Scott [10] present a list-based reader-writer locking mechanism,
called the MCS scheme, for a shared-memory system. All competing processors spin on a local
memory location without going on the network. Markatos and LeBlanc [9] extend the MCS scheme
by using a doubly linked list. In [2], Anderson presents a spin-lock based locking mechanism where
processors spin on a remote flag which increases the network traffic. Johnson and Harathi [8]
present an algorithm where a queue of requesting processes is maintained by the lock holder. All
requesting processes spin on a local flag while waiting for the lock to be released. In [5], Fu and
Tzeng implement tree of locks with locks at leaf, intermediate, and root levels. Only the holder of
the root lock has access to the data. This algorithm removes the hot spot contention.

Prior work on reader-writer synchronization is largely for shared memory environment where the
number of users trying to access data are typically much smaller than in a distributed environment.
Most of the solutions are based on spin locks since the requests are sent across internal buses and
the wait time is likely to be short. Issues such as scalability, network delay, network traffic, node
failures and backing-off are not critical in such systems. Unlike distributed systems, fault-tolerance
is not a key issue in shared memory environments. Consequently, these approaches are difficult to
map to the NAS and SAN environments where thousands of clients on the network could potentially
access storage data.

In this paper we propose an algorithm to support multiple readers and writers in a distributed
NAS and SAN environments. Since requests are issued across the network, spin-locks are eliminated
and all locks are based on blocking. Locks are assigned to incoming requests based on the order-
of-arrival. All data structures maintained on the device and client nodes are bounded and have to
be maintained on a per-data-unit basis. A data-unit is implementation dependent, but may be of
any granularity from a disk block to a complete file. Hence, the algorithm is flexible and can be
easily incorporated by operating systems.

The rest of the paper is organized as follows: Section 2 presents the proposed locking mechanism.
Section 3 discusses an example to illustrate the working of the algorithm. Finally, Section 4 presents
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the conclusions and future work.

2 The Reader-Writer Locking Scheme

This section presents our reader-writer locking mechanism developed for a distributed environment
where client nodes have direct access to the storage devices. Associated with every “data-unit”
stored on a device, is a lock which can be held in shared-read mode or ezclusive-write mode. A
data-unit is implementation dependent and can be of any granularity from a disk block to an entire
file. The locking mechanism is controlled by the device storing the data-unit. Thus, all clients have
to get a lock from the device before they can access the corresponding storage data. The mechanism
presented here is based on the “writer priority” approach. As soon as a writer requests a lock from
the device, all readers are informed and have to relinquish their shared read lock, at which point
the device gives an exclusive-write lock to the writer. The shared-reader locks are long-term locks
while exclusive-write locks are only given for a specified time duration.

The locking mechanism is implemented by maintaining separate queues for reader nodes and
writer nodes. The queues are not stored at the storage device or at the client nodes. Rather, devices
and client nodes maintain simple data structures associated with every data-unit. Figures 1 and
2 show the data structure maintained on each device and at each client node, respectively. The
data-structures essentially maintain the position of a node in the reader or writer queue. The
device is at the head and tail of both the reader and writer queues and keeps pointers to the first
and second reader, the last and second-to-last reader, the first and second writer, and the last and
second-to-last writer. Each client node maintains pointers to its next, next-to-next, previous, and
previous-to-previous node. An example of a queue is shown in Figure 3. All messages (except
the message granting exclusive-lock to a writer) are forwarded by the sending node to its neighbor
(next or previous) and its neighbor’s neighbor (nezt_to_next or previous_to_previous) depending on
the direction of the propagation). The reason for maintaining these double pointers in each direction
is to protect the locking mechanism from node failures. A queue will only get disconnected if 2
adjacent nodes in the queue go down. Hence, the mechanism is fault-tolerant, a key feature in a
distributed algorithm. Another feature of the mechanism is that the size of the data-structure is
not dependent on the number of readers and writers accessing (or waiting to access) a data-unit
making the algorithm scalable and space efficient.

2.1 The Algorithm

All incoming clients request the device for a read or write lock to the requested data item. A
read lock is granted if there are no writers on-line and a write lock is granted if there are no other
readers and writers on-line. Regardless of whether the lock is granted or not, the device directs
the incoming client to its location in the respective reader or writer queue. This incoming client
then sends a message notifying both the client nodes, previous and previous_to_previous to it in
the queue of its entry into the queue. These clients on receiving the message from this new client
update their data structures. If a lock is not granted to the incoming client, it blocks after joining
the tail of the appropriate queue.
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FIELDS DESCRIPTION

Node id: Device Id The device identification number
READERS Node id: Head First in the reader queue

Node id: Next_to_Head Second in the reader queue

Node id: Second_Last Second last in the reader queue

Node id: Last Last in the reader queue
WRITERS Node id: Head First in the writer queue

Node id: Next_to_Head Second in the writer queue

Node id: Second_Last Second last in the writer queue

Node id: Last Last in the writer queue

Figure 1: Data Structure maintained at the device.

FIELDS DESCRIPTION
Request Type READ / WRITE
Node id: Next Node behind it in the queue
Node id: Next_to_Next Node next to the one behind it in the queue
Node id: Previous Node ahead of it in the queue

Node id: Previous_to_Previous | Node previous to the one ahead of it in the queue
Status For clients requesting write lock, it is either,
|. Token_Granted (if no writers in and no readers are presently reading)

1. Token_Not_Granted (if writer(s) in or reader(s) presently reading)
For clients requesting read lock, it is either,
I. No_Writers (if no writers are presently writing or waiting)
1. Writers_On_Line (if any writer(s) come in while the readers are reading)

Figure 2: Data Structure maintained at every client node.

Since the reader lock is shared, they are long-term locks and a reader can hold on to it till a
writer arrives and requests an exclusive lock. The algorithm gives priority to writers, and all readers
have to give up their lock once a writer requests a lock. As soon as a writer arrives, the device
sends a message to the readers along all its reader links (i.e., Reader.head, Reader.next_to_Head,
Reader.Second_last, Reader.Last) informing them of the writer. The message is propagated by
the readers in the appropriate direction. The node which sees this message from both ends stops
propagating the message any further and sends a message to the device informing it that all readers
return their lock. This bidirectional propagation of the call-back message reduces the time it takes
for the messages to reach all the readers. When the device receives the returned-lock message, it
grants an exclusive lock to the writer. Thus, the proposed scheme implements the “delayed-write
with call-backs” approach. The exclusive write lock is only granted for a specific time period. It is
the responsibility of a writer client to periodically renew its lock before the expiration of this time
period. If the lock is not renewed within the time period, the device grants the lock to the next
writer in the queue. If there are no writers, the lock is granted to the readers.
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Figure 3: Structure of the queues maintained by the algorithm.

‘ Message ‘ Description

Lock_Request(source_node_id, request_type) Node requesting a read/write lock
from the device

Update_link(previous, previous_to_previous, next, next_to_next) | Update link to the other node

Device_Informs(status, direction, lock_duration) Device granting read or write lock
to a node, or calling for the read
lock from the readers

Readers_Return_Lock(source_node_id) Reader informs the device that
read lock is returned

Renew_Lock(source_node_id) Writer renews its lock with the de-
vice before the expiration of lock
time unit

Writer_Done(source_node_id, next, next_to_next) Writer returns the exclusive lock

to the device

Table 1: Messages exchanged in the algorithm.

Thus, all locks in the proposed scheme are based on blocking. All incoming clients request a
lock from the device. The device informs the client of its position in the appropriate queue. After
all the links in the queue are updated, the process in the client node will block if the lock is not
granted. The client process will unblock when it gets the lock from the device. Table 1 enumerates
the messages used in the algorithm. The algorithm assumes that the network is error-free and
messages that are sent will be received. A detailed presentation of the algorithm, including the
messages exchanged between the devices and nodes, is now given.

1. When a reader arrives with a read request

The device notifies the new reader its position in the queue and the status of its lock request.
This new reader updates its data structure and links up to the current tail nodes (previous
and previous_to_previous). The node sends Update_link to its previous and previous_to_previous
nodes. Both the nodes ahead of it in the queue too now update their data structures. The
reader, once in the list, depending upon the status of its request either begins to read (De-
vice_Informs.status = no_writers) or is waiting (Device_Informs.status = writers_on_line) to
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get a lock.

2. When a writer arrives with a write request

The device notifies this new writer its position in the queue and the status of its lock request.
The writer updates its data structure and links up to the current tail nodes (previous and
previous_to_previous). The node sends Update_link to its previous and previous_to_previous
nodes. If the incoming client is the second writer, then the device also updates its own field
(writers.next_to_head) to the node id of the writer. Thus, the device always has an alternative
link in case the head writer goes down.

If the incoming client is the first writer and there are no readers reading, the write lock is
immediately granted for a time period. It is the writers responsibility to periodically renew
the lock before it expires. If there are readers reading, the write lock request is denied.
However, the device, sends a Device_Informs message to the readers (along all its reader
pointers) informing them that a writer is waiting and the lock should be returned. The first
reader to get the Device_Informs message from both its left and right neighbors sends the
Readers_Return_Lock message to the device. The device then grants the exclusive lock to the
writer.

3. When a reader finishes reading, or backs off, or goes down

The reader before leaving sends a message to the nodes ahead (previous and previous_to_previous)
and behind (next and next_to_next) in the queue thereby updating the links. If a reader goes
down, the queue is still maintained due to the presence of the double links in each direction.
However, the reader queue has to be updated every time period to eliminate pointer to the
failed nodes.

4. When a writer finishes writing, or back off, or goes down

The writer returns the writer token to the device and notifies the device of the nodes be-
hind it in the queue (writer.next and writer.next_to_nezt). The device updates its own fields
(writers.head and writers.next_to_head) with these values. The device gives the token to the
next writer (if any) in the writer queue making it the head of the queue. If it was the last
writer, the device informs the readers (if any) that the writers are out (Dewvice_Informs), and
the readers can now continue to read. If a writer goes down while holding the lock, it will
not renew the lock and the device grants the lock to the next node.

Summarizing, the key features of the algorithm are its scalability, fault-tolerance, and blocking
locks, which makes the mechanism suitable for distributed environments. For the pseudo-code of
the algorithm, an interested reader is referred to [6]. An example illustrating the working of the
algorithm is presented in the next section.

3 An Example

The data structures for each data-unit on the device are initially set to the device id, and at each
client node are set to NULL. Now consider a scenario where there are several readers and writers
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wanting to access the data-unit while the first writer is holding the lock as shown in Figure 4.
Writer W1 has the token and is presently accessing the data-unit. The device grants this token
only for a unit of time. W1 periodically renews the lock (Renew_Lock(W1)) before the expiration
of the lock. The other writers wait in the queue for their turn. Figure 5 shows the data structures
at the nodes W1 and R1, respectively.

Node id: Device Id 1D #

READERS | Node id: Head R1
Node id: Next_to_Head R2

Node id: Second_Last R5
Node id: Last R6

WRITERS | Node id: Head W1
Node id: Next_to_Head w2
Node id: Second_Last w2
Node id: Last W3

WRITERS READERS

Figure 4: Writer W1 holds an exclusive lock while the other writers and readers are waiting

Request Type WRITE
Node id: Next w2
Node id: Next_to_Next w3
Node id: Previous Device Id

Node id: Previous_to_Previous Device Id
Status Token Granted

Figure 5: Data structures (i) At the node W1 (ii) At the node R1

When the writer W1 is done, it returns the token and notifies the device of the nodes W2
and W3 behind it in the queue (Writer_Done(W1, W2, W38)). The device updates its data
structure with these values and then grants the token to the next writer W2 in the queue (De-
vice_Informs(token_granted, null, t12)), making it the head of the queue. The new head, W2, now
holds an exclusive lock to the shared data-unit for a time ¢72. Again, W2 periodically renews the
lock (Renew_Lock(W?2)) with the device before the expiration of time period t19 until it gets done.

Now, suppose writer W2 goes down after renewing its lock. The device waits for the lock
duration. Since W2 is down, there will be no further lock renewals nor will the device receive
any message from W2. Hence, the device grants the token to the next writer, W3, in the queue
(Device_Informs(token_granted, null, tr3)).

While the writer W3 holds the lock, reader R4 goes down. Also, after waiting in the queue
for a long time, reader R6 decides to back-off as shown in Figure 6. Before backing off from
the reader list, R6 updates the links of the nodes. Node R6 sends an Update_Link message with
(Update_Link.next = device id) to node R5 and with (Update_Link.next_to_next = device id) to node
R4. Also an Update_Link message with (Update_Link.second_last = R4) and (Update_Link.last =
R5) to the device. The number of active readers now waiting in the queue are reduced to four (R1,
R2, R3, R5).

Now when the writer W3 is done, it returns the token to the device (Writer_Done(W3, null,
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Node id: Device Id ID#

READERS | Node id: Head RL
Next_to_Head R2
Second_Last R4
Last RS

id: Head w3

id: Next_to_Head Device Id
id

id

Second_Last Device Id
Last w3

e
e
e
WRITERS | Node
e
e
e

Device

WRITERS READERS

Figure 6: Writer W3 gets the lock after the W2 goes down. Reader R4 fails while reader R6 decides
to back-off.

null)). The device knows this was the last node in the writer queue. It now sends a message to
the readers R1 & R2 (Device_Informs(no_writers, last)) and R4 & R5 (Device_Informs(no_writers,
head,)), informing that there are no writers in and the read lock is granted. The message is sent to
the start and the tail nodes, and is propagated in either direction by the interim nodes depending
upon direction attribute in the message. This forwarding of message by the intermediate nodes
ceases once it reaches a reader in the list which has already seen the message from the other
direction. Thus, the time taken to inform the readers that the read is granted is reduced.

A similar mechanism is implemented to inform the readers if a writer comes in while they are
reading. When a reader sees the message from both ends it stops forwarding the message and sends
message Readers_Return_Lock(source_node_id to the device notifying that the readers have given up
their locks. On receiving this message from a reader, the device now grants the lock to the new
writer.

4 Concluding Remarks

This paper presents a locking mechanism that addresses the Reader-Writer synchronization problem
for the NAS and SANs technologies. The mechanism is based on the concept of shared read
and exclusive write locks associated with each data-unit on the storage device. The data-units
themselves are implementation dependent and can be of any granularity. The locks are controlled
by the device. Simple data structures maintaining the position of a node in the reader or writer
queue are kept by each node.

The algorithm presented here is scalable and space efficient since the complexity is not dependent
on the number of readers and writers accessing (or wanting to access) the data-unit. The algorithm
can handle multiple nonadjacent node failures due to the queues maintaining double links in both
directions. All locks are based on blocking, so there is no spinning or busy waiting at local or remote
flags. There is no hot spot contention since minimal messages are exchanged with the device. A
drawback of the algorithm is the linked list maintenance. Since reader locks are long-term locks,
the reader queues must be updated after a time period to ensure that failed nodes are removed
from the queue. However, the presence of two pointers in each direction makes this task relatively
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easy. We are currently implementing this algorithm to evaluate its performance.
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