
Self-similar Functions and Population Protocols:
A Characterization and a Comparison

Swapnil Bhatia and Radim Bartoš

Department of Computer Science, Univ. of New Hampshire, Durham, NH
{sbhatia,rbartos}@cs.unh.edu

Abstract. Chandy et al. proposed the methodology of “self-similar algorithms”
for distributed computation in dynamic environments. We further characterize the
class of functions computable by such algorithms by showing that self-similarity
induces an additive relationship among the level-sets of such functions. Angluin
et al. introduced the population protocol model for computation in mobile sensor
networks and characterized the class of predicates computable in a standard pop-
ulation. We define and characterize the class of self-similar predicates and show
when they are computable by a population protocol.

1 Introduction

Mobile wireless sensor networks hold tremendous promise as a technology for sampling
a variety of phenomena at unprecendented granularities of time and space. Such net-
works embody a modern-day “macroscope”: an instrument that can potentially revolu-
tionize science by enabling the measurement, understanding—and eventually—control,
of a whole new class of physical, biological, and social processes. The source of poten-
tial of such networks lies in the following four capabilities endowed to each participat-
ing node: the ability to sense environmental data, the ability to compute on such data,
the ability to communicate with peers in the network, and the ability to move in its en-
vironment. A network of autonomous underwater vehicles (AUVs) deployed to patrol a
harbor, to map the locations of underwater mines, to monitor the diffusion of a pollutant
in a river, or to build a bathymetric map are some realistic examples of missions that
mobile sensor networks are charged with today.

While there has been tremendous interest in building such networks in recent years,
most of this work has focused on a proper subset of the four capabilities of mobile
sensor nodes described above. Work on mobile ad hoc networks has focused on mo-
bility and communication [1,2,3] and sensor network research has mostly focused on
sensing and communication [4,5]. More recently, there has been a growing interest in
in-network computation and communication in static sensor networks [6,7]. We believe
that all this previous work paves the way for a more comprehensive model that includes
all four of the above abilities, particularly computation. Such a model would allow us
to frame new questions from the point of view of the computational mission of the
network and provide us insight into the design tradeoffs of such networks for various
classes of missions. This paper represents an intermediate step toward this goal.

In this paper, we focus on two recent papers that deal with distributed computation in
dynamic environments—the first by Chandy et al. [8] and the second by Angluin et al.

V. Garg, R. Wattenhofer, and K. Kothapalli (Eds.): ICDCN 2009, LNCS 5408, pp. 263–274, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 S. Bhatia and R. Bartoš

[9]—and attempt to characterize the relationship between their work. Both papers are
motivated by the need to understand computation in distributed systems that exist in
highly dynamic environments similar to those in which mobile sensor networks are de-
ployed. Using approaches that complement each other, these papers attempt to abstract
the four capabilities of mobile sensor nodes described above to answer new questions
regarding computation in such networks. Chandy et al. propose a methodology for de-
signing algorithms for dynamic distributed systems and identify a class of functions
amenable to their method. They outline a method for systematically designing such al-
gorithms which they call “self-similar algorithms.” (We call the functions computed by
such algorithms self-similar functions.) The approach taken by Angluin et al. comple-
ments that of Chandy et al. in that instead of starting with a class of functions, Angluin
et al. define a computational model called the population protocol model, which ab-
stracts the four capabilities of mobile sensor nodes described above. Their model com-
prises a population of anonymous identical nodes, each with a small constant amount
of memory, that communicate and compute opportunistically during encounters with
each other. In a series of papers [9,10,11], Angluin et al. have characterized the class
of predicates computable in a standard population model. The goal of this paper is to
further characterize the class of functions defined by Chandy et al. and to understand its
relationship to the computational model defined by Angluin et al.

Our contributions are as follows. Restricted to a finite input space (but any number
of sensing nodes), we study the structure of self-similar functions and show how their
definition imposes an additive relationship on the level-sets of such functions, a prop-
erty that is similar to the one known to hold for predicates computable by population
protocols in a standard population. Using these results and known results about popu-
lation protocols, we show that although population protocols and self-similar functions
are identically motivated, these two concepts do not coincide. For a given convention of
representing predicates, we define and characterize the class of self-similar predicates
and those computable by a population protocol. While self-similarity more generally
captures the properties required of a function to be distributedly computable in a dy-
namic environment, the constraints that its definition imposes appear to be stronger than
those imposed by population protocols. On the other hand, the notion of self-similarity
appears to be more general than the notion of opportunistic computation in a popula-
tion protocol. Our work constrasts these two conceptions of computation in dynamic
environments in a mobile sensor network and highlights their particular strengths. We
hope that this increased understanding of existing models will usher in better models of
mobile sensor networks that incorporate the computational mission of such networks.
We also hope that this paper will generate interest in a study of mobile sensor networks
that unifies computation, communication, mobility, and sensing.

2 Self-similar Algorithms

Implicit in the paper by Chandy et al. [8] are the following questions: How can we derive
distributed algorithms that compute correctly in dynamic environments? Which func-
tions are amenable to distributed computation in dynamic environments? To answer the
first question, Chandy et al. begin by enumerating properties that a computation must

Self-similar Functions and Population Protocols 265

possess, if it is to execute correctly in a dynamic distributed environment. They restrict
their investigation to stable and idempotent functions which can be computed by what
they call “self-similar algorithms.” By stability, it is meant that once a computation
achieves its “final” state, it remains in that state forever, thus providing a stable answer.
It follows that a computation in such an environment must be conservative in the sense
that it must always transition to only those states that would not result in an incorrect
computation; all transitions must conserve the correct final answer. That is, if si is the
collective state of the computational agents in the system in the ith step and f is the
function to be computed, then f(si) = f(s0) for all i. Finally, a self-similar algorithm
is one in which any “group behaves like the entire system” [8]. More precisely, suppose
f is a function that is to be computed by a collection of agents. Then, a self-similar
algorithm A for f is one which can be executed by any (nonempty) subset of identical
agents participating in a sequence of arbitrary groupings such that the result of their
“local” computation is compatible with and usually contributes to the “global” com-
putation that is to be executed. Chandy et al. show that the above properties—stability,
idempotence, conservation, and computability by self-similar algorithms—hold exactly
for a class of functions they call superidempotent.

Definition 1. A function f from multisets to multisets is superidempotent if f(X ∪
Y) = f(f(X) ∪ Y) [8].

In this paper, we shall refer to such functions as self-similar functions to emphasize
their computability by a self-similar algorithm.

2.1 General Observations

It is easy to see that the class of self-similar functions excludes some familiar functions.

Proposition 1. Any one-to-one function (except for the identity) is not self-similar, be-
cause it is not idempotent.

On the other hand, self-similar functions include some familiar functions.

Proposition 2. An idempotent homomorphism is self-similar.

Proof. If f is an idempotent homomorphism, then the r.h.s. in the definition of su-
peridempotence f(f(X)∪Y) = f(f(X))∪f(Y) (by homomorphism),= f(X)∪f(Y)
(by idempotence) = f(X ∪Y) (by homomorphism), which is the l.h.s. of the definition
of superidempotence. ��

Corollary 1. Let T be a linear transformation such that T 2 = T . Then, T is self-
similar.

Proof. By its definition, T is idempotent and linearity implies the homomorphism prop-
erty. ��

Thus, all projections (i.e., linear transformations T such that T 2 = T) are self-similarly
computable.

266 S. Bhatia and R. Bartoš

2.2 Finite-Valued Self-similar Functions

While Chandy et al. define self-similar algorithms over infinite input spaces, in order to
compare the class of such functions with a realizable model of computation, we study
self-similar functions over a finite input space (alphabet) in this paper. Let Q be the
finite nonempty set of possible input values for any agent and let |Q| = q be a positive
integer. Consider the q-dimensional space N

q of nonnegative integers.

Lemma 1. Let Q� be the (infinite) set of all finite multisets containing elements from
Q. There exists an isomorphism φ between the monoids (Q�, ∪) and (Nq, +). 1

Thus, the definition of superidempotence can be translated from (Q�, ∪) to (Nq, +)
as follows: a function f : N

q → N
q is superidempotent if and only if f(x + y) =

f(f(x) + y) for all x, y ∈ N
q . In this subsection, f : N

q → N
q is a self-similarly

computable function. From the definition of superidempotence, we know

Fact 1. For any u, v ∈ N
q, f(u+v) = f(f(u)+v) = f(u+f(v)) = f(f(u)+f(v)).

Definition 2. For any v ∈ N
q, denote by

∑
v the integer

∑q
i=1 vi, and by Hq

k the
hyperplane {v ∈ N

q|
∑

v = k}.

We assume that a computational step is agent conserving in that the number of a agents
in a group participating in a computational step does not change during the step. From
this we have

Fact 2. If f : N
q → N

q and v ∈ N
q ,

∑
v =

∑
f(v).

That is, any v ∈ N
q lives in the q − 1-dimensional hyperplane {u :

∑
u =

∑
v} of

N
q and any self-similar f maps v to an f(v) in the same plane. It is useful to know

the number of points in each Hq
k . For each k ∈ N, the number of points in Hq

k is the
number of integral solutions of the equation

∑
v = k Therefore, |Hq

k | =
(
k+q−1

q−1

)
.

Definition 3. The set of all points (multisets) x such that f(x) = y, for some fixed y,
is called a fiber. A fiber is trivial if it contains exactly one point. Any subset of a fiber
of f is called a contour of f . A contour of f containing u that also contains f(u) is
called a complete contour. The value of a contour is f(u) for any u in the contour.

Self-similar computations progress along trajectories that must be contained in fibers;
if not then f cannot be conservative. Fibers play a central role in self-similar functions.
Indeed, self-similarity induces an additive relationship between contours, as we show
below.

Theorem 1 (Direct sum of contours). If U and V are contours, then U ⊕ V = {u +
v|u ∈ U, v ∈ V } is also a contour.

Proof. Since the claim is trivially true if either U or V are empty, we assume that they
are both nonempty. For any w1, w2 ∈ U ⊕ V let w1 = u1 + v1 and w2 = u2 + v2 for
some u1, u2 ∈ U and v1, v2 ∈ V . Now f(w1) = f(u1 + v1) = f(f(u1) + f(v1)) =
f(f(u2) + f(v2)) = f(u2 + v2) = f(w2), where the second and fourth equalities
follow from the definition of superidempotence, and the third from the definition of a
contour. ��

1 We omit this and several other easy proofs below due to lack of space; see [12].

Self-similar Functions and Population Protocols 267

(1,0,0,0)
X Y

Z

(0,0,1,0)

(0,1,0,0)

X Y

(2,0,0,0)

(0,0,2,0)
Z

X Y

Z

W

(0,0,0,2)

(0,0,0,1)

W

Y

Z

(0,0,1,2)

(0,0,0,2)

W

Z

X Y

(0,0,2,1)

X

H4
1

H4
2

H4
3

X Y

Z

(0,0,1,1)

(0,0,2,0)(1,1,0,0)

(0,1,1,0)

(1,0,0,1) (0,1,0,1)

(1,0,1,0)

(1,0,0,2) (0,1,0,2)
(0,0,2,1)(1,1,0,1)(2,0,0,1)

(1,0,1,1) (0,1,1,1)

(1,2,0,0)

(0,0,3,0)

(0,1,2,0)(1,2,0,0)

(1,1,1,0) (0,2,1,0)(2,1,0,0)

(0,3,0,0)(2,1,0,0)(3,0,0,0)

Fig. 1. Relationship between contours of a self-similar function f : N
4 → N

4. (The axes in order
are X, Y, Z, and W.) Points (black disks) included in the same shaded region form a contour.
Notice that H4

2 contains four copies of H4
1 , and H4

3 contains four copies of H4
2 . Contours are

invariant under translation from H4
k to H4

k+1.

Corollary 2 (Translation of a contour). If U is a contour, then for any v ∈ N
q , the

translation U + v = {u + v|u ∈ U} of U is also a contour.

Proof. For any v ∈ N
q , {v} is (trivially) a contour. Then by Theorem 1, U ⊕ {v} is a

contour. ��

Figure 1 illustrates this relationship between contours of a self-similar function f :
N

4 → N
4. Over H4

1 , it is defined as follows: f(0, 1, 0, 0) = f(1, 0, 0, 0) = (1, 0, 0, 0)
and f(0, 0, 0, 1) = f(0, 0, 1, 0) = (0, 0, 1, 0). Thus, there are two fibers (and con-
tours) in H4

1 : {(0, 1, 0, 0), (1, 0, 0, 0)} and {(0, 0, 0, 1), (0, 0, 1, 0)}. (There are only(1+4−1
4−1

)
= 4 points in H4

1 and they are thus partitioned into two fibers.) As per the
above results, any translation of these two contours must also be a contour. Thus,
{(0, 0, 0, 1)+(1, 0, 0, 0), (0, 0, 1, 0)+(1, 0, 0, 0)} = {(1, 0, 0, 1), (1, 0, 1, 0)} for exam-
ple, must be a contour in H4

2 . (There are three more possible translations, one along each
of the axes, all of which must also be contours in H4

2 .) Since points in each contour must
have the same value, the union of intersecting contours must form a single contour. For
example, the intersecting contours {(1, 0, 1, 0), (1, 0, 0, 1)}, {(0, 1, 1, 0), (0, 1, 0, 1)},
{(1, 0, 1, 0), (0, 1, 1, 0)}, and {(1, 0, 0, 1), (0, 1, 0, 1)} of H4

2 together form a single
contour, as shown by the overlapping shaded regions of the figure. Similarly, the con-
tours in H4

2 , when translated along any of the four axes must form contours in H4
3 , as

shown in the figure.
Viewing contours in translation justifies naming such functions as self-similar: con-

tours in Hq
k are the result of translating contours in Hq

k−1 in q ways and are thus copies

268 S. Bhatia and R. Bartoš

of them; those in Hq
k−1 are copies of those in Hq

k−2; and so on. However, while con-
tours are invariant under translation, the value of a contour in Hq

k , in contrast to the
standard notion of self-similarity, need not bear any relationship to the value of a con-
tour in Hq

k−1. For example in Figure 1, the value of any point in H4
2 under f is not

determined by its contour membership: the contour only requires that the value of all
its points be the same.

The results proved above are fundamental in understanding the structure of self-similar
functions. They complement the description given by Chandy et al. that self-similar algo-
rithms are those in which “any group behaves like the entire system” [8]. Our results show
that for finite input spaces, such algorithms compute functions in which self-similarity
manifests itself in the form of an additive relationship between contours: larger contours
are formed by translating smaller contours. This clarifies the notion of self-similarity
proposed by Chandy et al. and makes our understanding of it more precise.

We now state two useful results that immediately follow from the above results.

Definition 4. For any u = (u1, . . . , uq) ∈ N
q and v = (v1, . . . , vq) ∈ N

q, we define
the partial order ≤ as follows: u ≤ v ⇐⇒ ∀i ∈ {1, . . . , q} : ui ≤ vi.

Lemma 2. Let {v1, . . . , vr} be a contour in Hq
k (with k such that 1 ≤ r ≤ |Hq

k |) and
let u ∈ N

q such that u ≤ vi for i = 1, . . . , r. Then the set {u +
∑r

i=1 mi(vi − u) :
mi ∈ N,

∑r
i=1 mi = m} is a contour in Hq

j+m(k−j), where j =
∑

u.

Proof. We prove this by induction on r.

Basis. If r = 1, then we must show that if {v1} is a contour in Hq
k and u ≤ v1, then the

set {u + m1(v1 − u) : m1 ∈ N, m1 = m} is a contour in Hj+m(k−j), where j =
∑

u.
Since v1 ∈ Hq

k , and u ∈ Hq
j , u + m(v1 − u) ∈ Hq

j+m(k−j). For any m1 = m ∈ N the
set in question contains a single vector and is therefore trivially a contour.

Induction hypothesis. Suppose the statement is true for r = n.

Inductive step. For r = n, we are given that the set {u +
∑n

i=1 mi(vi − u) : mi ∈
N,

∑n
i=1 mi = m} is a contour in Hq

j+m(k−j). Let vn+1 ∈ Hq
k . Let Un = {u :

u ≤ vi, i = 1, . . . , n} and Un+1 = {u : u ≤ vi, i = 1, . . . , n + 1}. Then it must
be that Un+1 ⊆ Un because if u ∈ Un+1, then it must necessarily be no larger than
v1, . . . , vn. Moreover, (0, . . . , 0) ∈ Un+1 and hence Un+1 is nonempty. Thus, the in-
duction hypothesis holds for all u ∈ Un+1, since it holds for Un. Let u′ ∈ Un+1 with∑

u′ = j′. Therefore, {u′ +
∑n

i=1 mi(vi −u′) : mi ∈ N,
∑n

i=1 mi = m} is a contour
in Hq

j′+m(k−j′) as per the induction hypothesis.

Now, the set {mn+1(vn+1 −u′)} is a contour in Hq
mn+1(k−j′) for any fixed mn+1 ∈

N because it contains a single point. Therefore, by Theorem 1, {u′ +
∑n

i=1 mi(vi −
u′) : mi ∈ N,

∑n
i=1 mi = m} ⊕ {mn+1(vn+1 − u′)} is a contour in Hq

j′+m′(k−j′),

where m′ = m + mn+1. But {u′ +
∑n

i=1 mi(vi − u′) : mi ∈ N,
∑n

i=1 mi = m} ⊕
{mn+1(vn+1 − u′)} = {u′ +

∑n+1
i=1 mi(vi − u′) : mi ∈ N,

∑n+1
i=1 mi = m′}. Thus,

we have shown that this set is a contour in Hj′+m′(k−j′), where j′ =
∑

u′. ��
The union of the contours described in the above result is called a linear set. Such
sets are closely related to the type of predicates computable in the standard population
protocol model.

Self-similar Functions and Population Protocols 269

We now state a useful special case of the above result. We omit the proof, which
follows directly from the previous result, due to space restrictions.

Corollary 3. Let u, v1, v2, . . . , vq ∈ N
q be such that vi = u + ei where {e1, . . . , eq}

is the standard basis for N
q. If {v1, . . . , vq} is a contour, then f is constant in each Hq

k

for all points w ≥ u.

Lemma 3. Any function f : N
q → N

q that is constant over each Hq
k and maps each

Hq
k to itself is self-similar.

Theorem 2. There exists a function f : N
2 → N

2 that is not computable but is self-
similar.

Proof. Let w = w2, w3, . . . be an infinite sequence of nonnegative integers such that
0 ≤ wk < |H2

k |. Let fw : N
2 → N

2 be a function constant over each H2
k such that

for any (i, k − i) ∈ H2
k , fw(i, k − i) = (wk, k − wk): wk defines the value of the

function in H2
k . If w �= w′ are two sequences as defined above such that wk �= w′

k , then
fw(i, k − i) = (wi, k − wi) �= (w′

i, k − w′
i) = fw′(i, k − i). Thus, every sequence w

defines a distinct function fw that is constant over each H2
k . By Lemma 3, each such fw

is self-similar. However, the set {fw|w = w2, w3, . . . ; 0 ≤ wk < |H2
k |} is uncountable,

whereas the set of Turing machines is countable. ��

3 Population Protocols and Self-similar Functions

In a series of recent papers, Angluin et al. have defined the population protocol model
of distributed computation and characterized its computational power [9]. A population
is a collection of n anonymous computational agents with an undirected population
graph on n vertices. Each agent is modeled as a deterministic finite automaton, with
a finite set of transition rules from pairs of states to pairs of states. In the randomized
variant (see [11] for details), an input symbol from an input alphabet is provided to
each agent, and a fixed input function maps it to the initial state of the agent. A compu-
tation evolves in discrete steps, and at each step, an edge (i, j) of the population graph
is chosen uniformly at random by the “environment”: this models a pairwise random
encounter between agents during which they communicate and compute. During such
an encounter, agents i and j transition from their current states qi and qj to new states
according to the population protocol (i.e., (qi, qj) → (q′i, q

′
j)). The collective state of all

n agents can be completely described by an n-dimensional vector over the states of the
protocol, where the ith component is the current state of the ith agent. Thus, an execu-
tion is an infinite sequence of n-dimensional vectors. At any step, the current output of
the computation can be obtained by mapping the current state of any agent to the output
alphabet using a given fixed output function. A function f is stably computed by a pop-
ulation protocol iff for any input assignment x, the computation eventually converges
to an orbit of n-vectors, all of which map to the unique f(x) under the output function.
We recall some definitions below [9].

Definition 5. A population protocol A is a 6-tuple A = (X, Y, Q, I, O, δ) where: X
is the input alphabet, Y is the output alphabet, Q is a set of states, I : X → Q is the

270 S. Bhatia and R. Bartoš

input function, O : Q → Y is the output function, and δ : Q × Q → Q × Q is the
transition function.

Definition 6. A population P is a set A of n agents with a directed graph over the
elements of A as vertices and edges E ⊆ A × A. The standard population Pn is the
set of n agents An = {a1, . . . , an} with the complete directed graph (without loops)
on An.

Definition 7. A semilinear set is a subset of N
q that is a finite union of linear sets of the

form {u+k1v1+k2v2+· · ·+kmvm} where u is a q-dimensional base vector, v1, . . . , vm

are q-dimensional basis vectors, and k1, . . . , km ∈ N. A semilinear predicate is one
that is true precisely on a semilinear set.

The computational power of population protocols was characterized by Angluin et al.
[10,11].

Theorem 3 (Theorem 6 in [11]). A predicate is computable by a population protocol
in a standard population if and only if the set of points on which it is true is semilinear.

3.1 Self-similar Functions Computed by Population Protocols

Theorem 4. If the population protocol A = (X, X, Q, I, I−1, δ) stably computes a
function f : X� → X� from multisets to multisets over X in the standard population
Pn, then f is self-similar.

Proof sketch. A population protocol A that correctly executes in a standard popula-
tion Pn must also correctly execute in any population P ⊆ Pn because it cannot
distinguish between the two populations. Partition Pn into P and P ′. Let t be larger
than the number of steps required for A to converge when executed in P and P ′. Let
f(P) and f(P ′) denote the output respectively. Now execute A in Pn such that for
the first t steps no inter-partition encounter is allowed, and after t steps all encounters
are allowed. The intermediate output will be f(P) ∪ f(P ′) and the final output will be
f(f(P) ∪ f(P ′)) = f(Pn). ��

3.2 Predicates: Semilinear and Self-similar

Definition 8. A predicate is a function P : N
q → {T, F}. For any predicate P , its

consensus predicate form is a function f : N
q → N

q such that for any v ∈ N
q ,

f(v) = (
∑

v, 0, 0, . . . , 0) iff P (v) = T and f(v) = (0,
∑

v, 0, . . . , 0) iff P (v) = F .
We call the consensus predicate form self-similar if f is self-similar.

The consensus predicate defined above follows the “all-agents output convention” as
defined by Angluin [9] which requires all agents to agree on the truth-value of the
predicate. In the sequel, our results involve only those predicates that are expressible
in this convention because this is one of the conventions used by Angluin et al. and we
are interested in comparing self-similar predicates to population protocol computable
predicates. We postpone the discussion of more robust conventions to future work.

Self-similar Functions and Population Protocols 271

Proposition 3. Not all semilinear consensus predicates are self-similar consensus
predicates.

Proof. Consider the following consensus predicate: f(i, j) = (i + j, 0) if j ≤ i and
f(i, j) = (0, i + j) otherwise. It is easy to show that this predicate is semilinear and
idempotent but not self-similar. ��
If a predicate P is always true or always false, then its consensus form function will be
constant over each Hq

k , and by Lemma 3, will be self-similar. We say that a predicate
is eventually constant if there is a k ∈ N such that the predicate is constant over Hq

k .
(Corollary 3 implies that the predicate is then constant for all k′ ∈ N such that k′ ≥ k.)

Theorem 5. A predicate P : N
q → {T, F} that is not eventually constant has a self-

similar consensus form f : N
q → N

q if f is idempotent and either the set of points on
which P is true or that on which P is false has a standard basis.

Proof. Suppose the set of true points of P has a standard basis T q
1 . Thus, P is true only

on points in span(T q
1) and hence P is false only on points in span(F q

1 ∪ (F q
1 ⊕ T q

1)).
To show that P has a self-similar consensus form f , we must show that ∀v ∈ N

q :
∀u ≤ v : f(v) = f(f(u) + f(v − u)). Suppose P (v) = T , that is v ∈ span(T q

1).
Then ∀u ≤ v : u ∈ span(T q

1) because u must have zeroes in at least those coordinates
in which v has zeroes. Now since P (v) = T , f(v) = (

∑
v, 0, . . . , 0) by definition of

the consensus form. On the other hand, f(f(u) + f(v − u)) = f((
∑

u, 0, . . . , 0) +
(
∑

(v − u), 0, . . . , 0)) = f(
∑

v, 0, . . . , 0). Since f(v) = (
∑

v, 0, . . . , 0), and since
f is idempotent, f(

∑
v, 0, . . . , 0) = (

∑
v, 0, . . . , 0). Thus, we have shown that ∀v ∈

span(T q
1) : ∀u ≤ v : f(v) = f(f(u) + f(v − u)).

Now suppose P (v) = F . Thus v �∈ span(T q
1), that is v ∈ span(F q

1 ∪ (F q
1 ⊕ T q

1)) =
span(F q

1)∪ span(F q
1 ⊕T q

1). If v ∈ span(F q
1), then the same argument as above applies

because ∀u ≤ v : P (u) = F .
If v ∈ span(F q

1 ⊕ T q
1), then v = vF + vT for some vF ∈ span(F q

1) and some vT ∈
span(T q

1). Thus P (vF)=F and P (vT)=T and therefore f(vF) = (0,
∑

vF , 0, . . . , 0)
and f(vT)=(

∑
vT , 0, . . . , 0). Therefore f(f(vF)+f(vT))=f(

∑
vT ,

∑
vF , 0 . . . , 0).

Since P is not eventually constant, (i, 0, . . . , 0) ∈ span(T q
1) and (0, j, 0, . . . , 0) ∈

span(F q
1) for all i, j ∈ N. Hence (

∑
vT , 0, . . . , 0) ∈ span(T q

1) and (0,
∑

vF , . . . , 0) ∈
span(F q

1) and therefore (
∑

vT ,
∑

vF , 0 . . . , 0) ∈ span(T q
1 ⊕F q

1). Therefore, P (
∑

vT ,∑
vF , 0, . . . , 0) = F and hence f(

∑
vT ,

∑
vF , 0 . . . , 0) = (0,

∑
v, 0, . . . , 0). Thus,

we have shown that ∀v ∈ span(F q
1 ∪ (F q

1 ⊕ T q
1)) f is self-similar. ��

Theorem 6. If P : N
q → {T, F} is a predicate with a self-similar consensus form,

then at least one of the following holds: Either the set of points on which P is true or
that on which P is false has a standard basis; or P is eventually constant.

Proof. Consider the q points in Hq
1 . If P is true on all q points or false on all q points,

then P is eventually constant. So, assume otherwise and let the true fiber T q
1 ⊂ Hq

1 and
the false fiber F q

1 ⊂ Hq
1 partition Hq

1 (with e1 ∈ T q
1 and e2 ∈ F q

1 as per the definition
of the consensus form convention).

Now consider Hq
2 and observe that Hq

2 = (T q
1 ⊕ T q

1) ∪ (F q
1 ⊕ F q

1) ∪ (T q
1 ⊕ F q

1). By
Theorem 1, T q

1 ⊕ T q
1 , F q

1 ⊕ F q
1 and T q

1 ⊕ F q
1 are all contours and thus P is constant

over each of these sets in Hq
2 .

272 S. Bhatia and R. Bartoš

For some v ∈ T q
1 ⊕F q

1 , suppose P (v) = F . Then, all points in T q
1 ⊕F q

1 must map to
(0, 2, 0, . . . , 0) since P must be false on all these points. Furthermore, f(0, 2, 0, . . . , 0)
= (0, 2, 0, . . . , 0) since f is self-similar and hence idempotent. But (0, 2, 0, . . . , 0) ∈
F q

1 ⊕ F q
1 and hence P must be false on all the points in F q

1 ⊕ F q
1 . Thus, we can write

the false fiber F q
2 ⊇ (F q

1 ⊕F q
1)∪ (F q

1 ⊕T q
1) = F q

1 ⊕ (F q
1 ∪T q

1) = F q
1 ⊕Hq

1 . (It is easy
to check that ⊕ distributes over ∪.) The only points remaining in Hq

2 are those in the
contour T q

1 ⊕T q
1 . If P is false on any of these points, then P is constant on Hq

2 , and thus
P is eventually constant. So assume that P is true on each point in the contour T q

1 ⊕T q
1 .

Therefore, the set of true points in Hq
2 , i.e., the true fiber in Hq

2 is T q
2 = T q

1 ⊕ T q
1 and

the false fiber F q
2 = F q

1 ⊕ Hq
1 . Thus, Hq

2 is partitioned into two nonemtpy fibers.
Now N

q = span(Hq
1) = span(T q

1) ∪ span(F q
1) ∪ span(F q

1 ⊕ T q
1) = span(T q

1) ∪
span(F q

1 ∪ (F q
1 ⊕ T q

1)) = span(T q
1) ∪ span((F q

1 ∪ F q
1) ⊕ (F q

1 ∪ T q
1)) = span(T q

1) ∪
span(F q

1 ⊕ Hq
1) = span(T q

1) ∪ span(F q
2). Using Corollary 3 and considering F q

2 as
the contour we obtain that the span(F q

2) ∩ Hq
k is a contour in every Hq

k , k ≥ 2. If the
value of this contour in any Hq

k is true, then P is constant over all of that Hq
k and thus

is eventually constant. If the value of this contour is false for all Hq
k , and for some k,

the value of T q
k is also false, then P is constant over all of Hq

k and thus is eventually
constant. If the value of this contour is false for all Hq

k , and the value of T q
k is true for

all Hq
k , then the set of true points has a standard basis T q

1 .
We assumed that for some v ∈ T q

1 ⊕ F q
1 , P (v) = F . If we assume that P (v) = T ,

then we can show that the set of false points has a standard basis F q
1 . ��

From this, and Angluin et al.’s Theorem 3 immediately follows

Theorem 7. If predicate P : N
q → {T, F} is not eventually constant and has a self-

similar consensus form, then P is computable by a population protocol.

Proof. Since P has a self-similar consensus form and is not eventually constant, the set
of points on which either P or its negation is true has a standard basis and is therefore
a linear set. Population protocols are closed under complement. ��

For predicates that are eventually constant, self-similarity imposes no additional con-
straints within each Hq

k . Thus, for any k ∈ N, the predicate may be true on all points
in Hq

k or false on all points in Hq
k . Therefore, the computability of such predicates by a

population protocol is given directly by Theorem 3.

3.3 Self-similar Functions Not Computable by Population Protocols

It is known that all predicates that are computable in the standard population are in the
class NL [9], the set of functions computable by a nondeterministic Turing machine
with access to memory logarithmic in the size of the input.

Theorem 8. There exists a self-similar function that is in NL but whose predicate form
is not computable by any population protocol.

Proof. Let f : N
2 → N

2 be the constant function such that for any (i, k − i) ∈ Hk,
f(i, k − i) = (k − �lg k�, �lg k�). By Lemma 3, f is self-similar. Since f requires

Self-similar Functions and Population Protocols 273

MajorityNL

standard
other

P
op

ul
at

io
n

Majority
function

(k − �lg k�, �lg k�)
f(i, k − i) =

fw

Nonrecursive

OR

Minimum

Identity

Self-similarPopulation protocol

(X
,X

,Q
,I

,I
−

1
,δ

)

Pf

Σv prime

Predicates

Nonconstant

semilinear
Constant and

Fig. 2. Relationship between self-similar functions and functions computable by population pro-
tocols (Bold names differentiate classes from examples. Not all relationships are known).

an addition, the counting of the number of bits of the result, and a subtraction, it is in
L, the set of functions computable with a deterministic Turing machine with access to
memory logarithmic in the size of the input. It is known that L ⊆ NL [13] and thus f
is in NL. Define the predicate Pf (v) over all points v ∈ N

2 such that it is true if and
only if v ∈ H2

k is the image of all u ∈ H2
k under f . From Theorem 3 we can deduce

that the predicate Pf will be computable by a population protocol if and only if the set
of its true points—which are also the fixed points of f—is semilinear. However, the set
of fixed points {(k − �lg k�, �lg k�)|k = 1, 2, . . .} of f is not semilinear. ��

4 Conclusions and Future Work

Starting with the class of self-similar algorithms defined by Chandy et al., we studied
functions from multisets to multisets computed by such algorithms over a (finite) input
alphabet. We showed how the definition of self-similarity of algorithms—a group of
any size behaves identically—results in a self-similar additive relationship among the
contours of the functions computed by such algorithms. We defined self-similar predi-
cates under the consensus convention used by Angluin et al., and showed that all such
predicates that are not eventually constant have a simple structure: the set of points
on which they are true or the set of points on which they are false has a standard ba-
sis. Using known results about population protocols, we thus showed that nonconstant
self-similar predicates are computable by population protocols. We also showed that
the notion of self-similarity is more general than, though quite similar to, the notion
of opportunistic computability inherent in the population protocol model by showing
the existence of a self-similar function not computable by population protocols. Our
results, alongwith other examples, are summarized in Figure 2.

Both models discussed in this paper are motivated by distributed computation in
dynamic mobile sensor network-like environments. However, neither model attempts
to capture in sufficient detail the spatio-temporal nature of the data and its impact on
communication and computation. Thus, one cannot frame questions that involve the
spatial distribution of data or constraints on communication in the context of these

274 S. Bhatia and R. Bartoš

models. If the state space of the population protocol model is endowed with a topology
reflecting the space in which the network exists, then such questions may perhaps be
framed. The population protocol model is intended to model a large number of frugal
sensors. This may not be appropriate for AUV networks where the number of AUVs
is small and each AUV is equipped with sufficient resources. While other models may
allow us to ask these questions, we believe that a unified approach to studying such
networks may be necessary.

Acknowledgments

We thank Prof. Michel Charpentier for reading an early version of this manuscript, the
anonymous referees for their comments, and the Office of Naval Research for support-
ing this work.

References

1. Spyropoulos, T., Psounis, K., Raghavendra, C.: Efficient routing in intermittently connected
mobile networks: The single-copy case. IEEE/ACM Trans. on Networking 16(1) (2008)

2. Grossglauser, M., Tse, D.: Mobility increases the capacity of adhoc wireless networks.
IEEE/ACM Transactions on Networking 10(4), 477–486 (2002)

3. Chatzigiannakis, I.: Design and Analysis of Distributed Algorithms for Basic Communica-
tion in Ad-hoc Mobile Networks. Computer science and engineering, Dept. of Computer
Engineering and Informatics, University of Patras (2003)

4. Gnawali, O., Greenstein, B., Jang, K.Y., Joki, A., Paek, J., Vieira, M., Estrin, D., Govindan,
R., Kohler, E.: The TENET Architecture for Tiered Sensor Networks. In: ACM Conference
on Embedded Networked Sensor Systems (Sensys), Boulder, Colorado (2006)

5. Palchaudhari, S., Wagner, R., Baraniuk, R.G., Johnson, D.B.: COMPASS: An adaptive sen-
sor network architecture for multi-scale communication. IEEE Wireless Communications
(submitted, 2008)

6. Giridhar, A., Kumar, P.R.: Computing and communicating functions over sensor networks.
IEEE Journal on Selected Areas in Communications 23(4), 755–764 (2005)

7. Giridhar, A., Kumar, P.R.: Towards a theory of in-network computation in wireless sensor
networks. IEEE Communications Magazine 44(4), 98–107 (2006)

8. Chandy, K.M., Charpentier, M.: Self-similar algorithms for dynamic distributed systems. In:
27th International Conference on Distributed Computing Systems (ICDCS 2007) (2007)

9. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of
passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)

10. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population
protocols. Distributed Computing 20(4), 279–304 (2007)

11. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European
Association for Theoretical Computer Science 93, 98–117 (2007)

12. Bhatia, S., Bartoš, R.: Self-similar functions and population protocols: a characterization and
a comparison. Technical Report UNH-TR-08-01, University of New Hampshire (2008)

13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

	Introduction
	Self-similar Algorithms
	General Observations
	Finite-Valued Self-similar Functions

	Population Protocols and Self-similar Functions
	Self-similar Functions Computed by Population Protocols
	Predicates: Semilinear and Self-similar
	Self-similar Functions Not Computable by Population Protocols

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

