
Using Distance Estimates in Heuristic Search: A Re-evaluation

Jordan T. Thayer and Wheeler Ruml and Jeff Kreis
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

jtd7, ruml, jhg22 atcs.unh.edu

Abstract

Traditionally, heuristic search algorithms have relied on an
estimate of the cost-to-go to speed up problem-solving. In
many domains, operators have different costs and estimated
cost-to-go is not the same as estimated search-distance-to-
go. We investigate further accelerating search by using a
distance-to-go function. We evaluate two previous propos-
als: Dynamically weighted A∗ and A∗

ǫ
. We present a re-

vision to dynamically weighted A∗ which improves its per-
formance substantially in domains where solutions are not at
fixed depths. We show how to incorporate search distance to
go estimates into weighted A∗ in order to improve its perfor-
mance in pathfinding problems. We present a proof showing
that weighted A∗ can ignore duplicate states, leading to large
improvements in performance for pathfinding problems.

Introduction
Heuristic search is used to solve a wide variety of problems.
If sufficient resources are available, optimal solutions can be
found using A∗ search with an admissible heuristic (Hart,
Nilsson, and Raphael 1968). In practical settings we are
willing to accept suboptimal solutions in order to reduce the
computation required to find an answer. We consider the set-
ting in which one wants the fastest possible search where the
solution is guaranteed to be within a bounded factor of the
optimal solution. For a given factorw, we call an algorithm
w-admissible if it is guaranteed to return a solution that is no
more thanw times more expensive than an optimal solution.

The purpose of bounded suboptimal search is not to find
a solution whose cost is within a given bound of the opti-
mal, but rather, given a desired quality bound produce an
acceptable solution as quickly as possible. The hope is that
as requirements on solution quality are relaxed, the algo-
rithm will find solutions faster. Many bounded suboptimal
algorithms behave more like a greedy search on a cost-to-go
heuristic as the bound is loosened. When the heuristics is
reasonably accurate, greedy searches find solutions of rea-
sonable but unbounded quality in few expansions. Bounded
suboptimal algorithms attempt to make a controlled transi-
tion between performing like A∗ when the bound is near op-
timal, and greedy search where the bound is lax.

In some benchmark domains all actions have the same
cost, and so becoming greedy with respect to the cost of
a solution is equivalent to becoming greedy with respect

N
o

d
es

 G
en

er
at

ed

1,500,000

1,200,000

900,000

600,000

300,000

Problem Size

2,0001,6001,200800400

A*
Greedy on h
Greedy on d

Figure 1: Greedy Search ond vs. Greedy Search onh

to the length of a solution. This is not always the case.
Searches that consider both the estimated cost-to-go, given
by a heuristic evaluation functionh, as well as the search-
distance-to-go, given by the evaluation functiond, can per-
form better in domains whereh andd differ. In these do-
mains, a search that is greedy with respect to solution cost
may take longer than a search that focuses on finding the
nearest solution, especially when the suboptimality boundis
generous. Figure 1 demonstrates the extreme case, where
no bound is placed on the quality of the returned solution.
We see that not only do we find solutions faster when greed-
ily searching ond than when we do onh, but that the per-
formance gap between these two approaches increases with
problem size. Although it may not be obvious at first glance,
domains whereh andd differ are numerous and include tem-
poral planning, the traveling salesman problem, and many
variations of pathfinding.

We evaluate two previous approaches to incorporating
search-distance-to-go information into searches, A∗

ǫ and dy-
namically weighted A∗, and find that neither algorithm per-
forms particularly well. We show how to improve the per-
formance of dynamically weighted A∗ with a small revision
to the algorithm. We extend weighted A∗ to include distance
to go information and show that this extension can signifi-
cantly improve the performance of the algorithm.



A∗

ǫ

A∗

ǫ (Pearl and Kim 1982) considers the distance of a node
from a goal when deciding which to expand next. It prefers
to expand nodes that are as close to a solution as possible
while still guaranteeingw-admissibility. To do this, it main-
tains two ordered lists. The first is identical to that used by
A∗, where nodes are ordered according to the cost function
fA∗(n) = g(n) + h(n). g is the cost of travelling to a node
from the root of the search, andh in the estimated cost to
go. All nodes are sorted in this fashion, forming the open
list. At the front of the open list is the node with minimum
fA∗ , fmin. In order to select nodes which are close to a goal,
A∗

ǫ must maintain a list of nodes sorted ond, called the focal
list. The node at the front of focal is the node with minimum
d, dmin. dmin is the node which appears to be closest to the
goal. To find a solution, it is expanded, and its children are
placed into open untildmin is a solution.

To ensure that the solution returned by A∗

ǫ is w-
admissible, A∗ǫ only places those nodes that havefA∗ values
that are within a factorw of fmin onto the focal list. This
means thatfA∗(dmin) ≤ w · fA∗(fmin), given by the con-
struction of the focal list. Since we are using an admissible
heuristich, we know thatfA∗(fmin) ≤ fA∗(opt) whereopt
is a solution with optimal cost. Together, we can infer that
fA∗(dmin) ≤ w · fA∗(opt). This property holds for every
dmin, anddmin is the only node ever expanded. Eventually
it will be the solution , if one exists, and the quality will be
bounded.

An Efficient Implementation
Open and focal are separate lists, at least conceptually.
There are several ways in which to build them, but an in-
efficient implementation will harm the performance of the
algorithm. One might consider only maintaining the open
list, and iterating through the first handful of nodes on every
expansion to selectdmin. Unfortunately when the bound is
loose such an algorithm would be examining every node in
open at every expansion. Alternatively, we might keep both
open and a list of all nodes ordered ond in memory, iterat-
ing back on thisd-list until a node near enough tofmin is
discovered, but again, this is inefficient.

To make A∗ǫ a practical algorithm, we use a more sophis-
ticated data structure. Nodes in the open list are stored in
a balanced binary tree totally ordered byf . In our imple-
mentation, we used a red-black tree following Cormen et
al., 2001. The subset of nodes withinǫ of the node with
minimumf is also stored in a heap ordered ond. We used a
binary heap stored in an array, following Sedgewick, 1992.
This this arrangement, it takes constant time to identify the
node to expand, logarithmic time to remove it from the heap
and tree, and logarithmic time to insert each child resulting
from the expansion. However, if the node with minimumf
changes, then nodes may need to be added or removed from
the heap. (All nodes are stored in the tree.) While it is easy
to find the nodes whosef values wall betweenw times the
old minimumf andw times the new one (because the tree
is ordered onf ), there might be many such nodes that need
to be added or removed from the heap. Removal is easy be-
cause we maintain, in each node, its index in the heap array.

Grid Unit Four-way 35% Obstacles

T
o

ta
l 

N
o

d
es

 G
en

er
at

ed
 (

R
el

at
iv

e 
to

 A
*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound

54321

A* eps
wA* dd

Figure 2: A∗ǫ has Poor Performance

Figure 3: Open and Focal Interact Destructively

Using this more sophisticated data structure speeds up A∗

ǫ in
practice by an enormous factor which increases as problem
become more difficult.

Flaws

Even with efficient data structures, the performance of
A∗

ǫ leaves something to be desired. It also works well for
loose bounds, where the algorithm searches greedily ond,
but fails to find solutions otherwise.

The reason A∗ǫ performs poorly in practice is easy to un-
derstand. When using an admissibleh function, thef values
of nodes cannot decrease, and typically increase, as one de-
scends from the root. Along a path to a goal,d will usually
decrease. Thus, nodes with lowd will often have relatively
high f values. An illustration of this during grid pathfind-
ing can be seen in Figure 3. The scatter plot shows, for each
node in A∗ǫ ’s focal list, its position in both the focal and open
lists. There is a clear trend from lowd and highh to highd
and lowf . This creates a phenomenon in which almost all
nodes on focal are expanded in sequence, with none of their
children making it on to focal, until at last the node with
minimum f is expanded and focal is refilled. During each
of these phases, little progress is made toward the goal.



Blastedlands

N
o

d
es

 G
en

er
at

ed
 (

N
o

rm
al

iz
ed

 t
o

 A
*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound

54321

dwA*
revised dwA*

Figure 4: Improving Upon Dynamically Weighted A∗

Dynamically Weighted A∗

Dynamically weighted A∗ searches nodes in a best first or-
der as determined by the node evaluation functionfdwA∗ . It
applies a weighting factorw to the heuristic evaluation func-
tion h to encourage the search to behave greedily. Further
it decreases the size of this factor as the search progresses.
More concretely, letDn be the depth of a node andDgoal

be the depth of solutions, givingfdwA∗ = g(n) + w · (1 −
Dn

Dgoal
) · h(n). This reduces the weight applied to the cost-

to-go estimate as the search progresses. The depth of goals
isn’t always known a priori, and in these situations,Dgoal

can be approximated by looking using the search-distance-
to-go heuristicd at the root.

Dynamically weighted A∗ prefers expanding nodes which
are nearer to a solution for two reasons. First, the weighting
makes it prefer nodes which have lowerh values, and these
nodes tend to be closer to a solution. Second, dynamically
weighted A∗ explicitly rewards progress. By decreasing the
weights used as the nodes become deeper, nodes deep in the
search space become far more attractive than those at the
root.

Revising Dynamically Weighted A∗

Although dynamically weighted A∗ works well as it was
originally proposed in domains where solutions are at a
fixed, known depth, it performs poorly in domains with-
out a fixed depth, as figure 4 shows. Decreasing the
weight by which the heuristic evaluation function is mul-
tiplied as depth increase encourages progress in any direc-
tion. Changing the node evaluation function tof ′

dwA∗ =

g(n) + max(1, w d(n)
d(root) ) · h(n) rewards progress towards

a solution. This revision makes the algorithm prefer nodes
with low d, which are exactly the nodes that appear to be
close to a solution. This alteration, denoted revised dwA*
in the plots, dramatically improves the performance of the
algorithms.

It should be noted that in figure 4, revised dynamically
weighted A∗ is generating fewer nodes than A∗ does when
finding the optimal solution. Dechter and Pearl (1988) show

that among all algorithms with access to the sameh func-
tion, no algorithm can expand fewer nodes than A∗; how-
ever, this result does not hold when considering additional
sources of information such asd. In this case, simply break-
ing ties ond allowed revised dynamically weighted A∗ to
solve the problem in a third of the time A∗ using justh would
have taken.

Incorporating d into Weighted A∗

Weighted A∗ is an elegant solution to bounded suboptimal
search where traditional node evaluation function of A∗,
fA∗ = g(n) + h(n) is changed to increase the cost to go
by a factorw, as infwA∗ = g(n) + w · h(n). This empha-
sis on the heuristic evaluation function causes weighted A∗

to behave more like a greedy search onh. While this is an
effective strategy where heuristics are accurate andh andd
are identical, figure 1 shows that better performance can be
obtained by focusing solely ond when bounds are loose.

One of the easiest, and effective, ways to incorporate this
information into the search is simply to used to break ties.
When two nodes have identicalfwA∗ values, order them
based ond, the search-distance-to-go estimate. Whereh and
d are identical, this will have no impact on the search order.
When they are different, in can significantly speed up the
algorithm, as shown in figure 6.

Ignoring Duplicate States
In pathfinding as well as other domains, it is possible to
reach the same problem state by multiple paths. While not
affecting the completeness or suboptimality guarantees of
search algorithms, these redundant paths can significantly
impact performance. Likhachev, Gordon, and Thrun (2003)
showed that ignoring search states that have already been
expanded can significantly improve the performance of their
algorithm, Anytime Repairing A∗, without losing its subop-
timality guarantee.

We prove an analogous result that applies to weighted A∗

search wheref(n) = g(n) + w · h(n). We show that it can
drop duplicate nodes that have already been expanded and
still return aw-admissible solution. We will rely on the con-
sistency (and thus admissibility) ofh, which states that for
any pair of nodesa and b, h(a) ≤ c∗(a, b) + h(b) (Pearl
1984). Our proof is quite different than that of Likhachev,
Gordon, and Thrun (2003). First, note that there always ex-
ists an optimal solution path.

Theorem 1 There always exists a nodep along the optimal
solution path that is on open and hasg(p) ≤ w · g∗(p).

Proof: The proof is by induction over iterations of search.
In the base case, consider the first expansion, that of the root.
One of its children is clearly along the optimal path and has
its optimalg value. For the induction step, assume there is
a w-admissible statepi−1 on the path and consider its fate
during an iteration of search. It can only be removed from
open by being expanded. If its childpi that lies along the
optimal solution path is inserted in open,g(pi) = g(pi−1)+
c∗(pi−1, pi) ≤ w · g∗(pi−1)+ c∗(pi−1, pi) ≤ w · g∗(pi) and
the theorem holds. Ifpi is discarded, it can only be because



Grid Life Four-way 30% Obstacles

T
o

ta
l 

N
o

d
es

 G
en

er
at

ed
 (

R
el

at
iv

e 
to

 A
*)

2

1

0

Suboptimality Bound

54321

wA*
wA* dd

Figure 5: Ignoring Duplicates Helps

it is already on closed after having been generated along an-
other path and subsequently expanded. Ifpi is expanded be-
fore whicheverw-admissible ancestorpi−j was on the open
list at that time, this means thatf ′(pi) ≤ f ′(pi−j). But then:

f ′(pi) ≤ f ′(pi−j)
g(pi) + wh(pi) ≤ g(pi−j) + wh(pi−j)

by consistency ofh:
≤ g(pi−j) + w(c∗(pi−j , pi) + h(pi))
≤ g(pi−j) + wc∗(pi−j , pi) + wh(pi)
due to the optimal path:
≤ w(g(pi−j) + c∗(pi−j , pi)) + wh(pi)
≤ wg∗(pi) + wh(pi)

g(pi) ≤ wg∗(pi)

2

The remaining steps are analogous to the proof of weighted
A*’s admissibility (Pearl 1984).

Theorem 2 The solutions returned hasg(s) ≤ w · g∗(opt).

Proof: If s is selected from open beforep, then:
g(s) = f ′(s) ≤ f ′(p) ≤ g(p) + w · h(p)

≤ w · g∗(p) + w · h(p)
≤ w · (g∗(p) + h(p))
≤ w · g∗(opt) by admissibility ofh

2

The ability to drop duplicates significantly improves the
algorithms performance for large grid worlds. Figure 5
shows the difference on one type of pathfinding instance,
though similar savings are present in all pathfinding prob-
lems of significant size.

Performance
To gain a better understanding of the performance of algo-
rithm using a search-distance-to-go heuristic we tested them
on several challenging benchmark problems including grid-
world pathfinding, the travelling salesman problem, and the
sliding tile puzzle. All algorithms were implemented in Ob-
jective Caml, compiled to 64-bit native code executables,
and run on a collection of Intel Linux systems. We compare
the following algorithms:

weighted A∗ (wA*) using the desired suboptimality bound
as a weight. Weighted A* ignores nodes that are al-
ready in the closed list. We found that this improves
performance dramatically without sacrificing admissibil-
ity (although see Hansen and Zhou, 2007, for another
view). Such an approach is only possible with a consis-
tent heuristic. When this feature is on, the algorithm is
labeled wA*, dd.

weighted A∗ with d tie-breaking (wA*, d-tie) using the
desired suboptimality bound as a weight. When ignor-
ing duplicate nodes the algorithm is labeled wA*, d-tie,
dd.

revised dynamically weighted A* (revised dwA*) Dy-
namically weighted A∗, revised to use search-distance-
to-go estimates instead ofd to decrease the weight used
as search progresses. The proof of admissibility for du-
plicate dropping relies on the fact thatw never changes.
As such, it does not hold for dynamically weighted A∗ or
its revised implementation.

We sampled all the algorithms at the following subopti-
mality bounds: 1, 1.005, 1.001, 1.01, 1.05, 1.1, 1.15, 1.2,
1.3, 1.5, 1.75, 2, 2.5 and 3. All of the plots follow the same
layout. The suboptimality bound of the algorithms is on
the x-axis. A suboptimality bound of 1 means that the al-
gorithms produced an optimal solution, and a bound of 3
means that the solution returned has cost within a factor of
3 of the optimal solution. The y-axis shows the total amount
of CPU time consumed, normalized across machines, and is
normalized to the CPU time consumed by A∗.

Grid-world Pathfinding
We tested on a variety of grid world finding problems. We
ran on boards with uniformly blocked cells, boards where
the obstacles took the form of straight lines laid across the
board, and several boards from a popular real time strategy
game. We show 95% confidence intervals, averaged over
100 instances for game boards, and 20 instances otherwise.

Uniform Distribution We consider 12 varieties of simple
path planning problems on a 2000 by 1200 grid, using four-
way or eight-way movement, three different probabilities of
blocked cells, and two different cost functions. The start
state is in the lower left corner and the goal state is in the
lower right corner. In addition to the standard unit cost func-
tion we tested on ’life’, a graduated cost function in which
moves along the upper row are free and the cost goes up by
one for each lower row. In eight-way movement, diagonal
moves cost

√
2 times as much as cardinal directions. Un-

der both cost functions, simple analytical lower bounds are
available for the costh and search-distanced to the cheapest
goal. Our results are averaged over 20 instances.

Figure 6 shows the results. In 4-way worlds, whereh
and d are identical, the performance of weighted A∗ and
weighted A∗ with tie-breaking ond are nearly identical. Re-
vised dynamically weighted A∗ does not perform as well as
these two algorithms due to its inability to drop duplicates.
In 8-way movement, breaking ties ond improves the per-
formance of weighted A∗ dramatically for tight bounds, but



Grid Life Four-way 35% Obstacles

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e 

(R
el

at
iv

e 
to

 A
*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound

321

revised dwA*
wA*, d-tie, dd

wA* dd

Grid Unit Four-way 35% Obstacles

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e 

(R
el

at
iv

e 
to

 A
*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound

54321

revised dwA*
wA*, d-tie, dd

wA* dd

Grid Unit Eight-way 45% Obstacles

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e 

(R
el

at
iv

e 
to

 A
*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound

1.41.21.0

revised dwA*
wA* dd

wA*, d-tie, dd

Figure 6: Performance on Grid-world Pathfinding with Uniform Obstacles

it does not improve the greedy behavior of the algorithm.
Despite the significant difference inh andd in life boards,
weighted A∗ with tie breaking ond doesn’t significantly out
perform weighted A∗. This is because there are very few
nodes with identical values in this domain because of the
graduated cost function.

Lines We considered 6 varieties of path planning prob-
lems in 2000 by 1200 grids which use lines for obstacles
instead of uniform obstacle distribution. The lines used were
of lengths ranging between 5% and 25% of the board’s di-
agonal. We ran on boards with 25, 50, and 75 such lines
scattered across them. The starting state was in the middle
of the left-hand side, and the goal state was in the middle of
the right hand side. The lines introduce error into the heuris-
tic functions, but this error is non-uniform.

Figure 7 shows us that in the 4-way movement boards
we suffer slightly for breaking ties ond. There is no ef-
fect on the node ordering, as ties onfwA∗ are being broken
on low h, which is identical to thed tie-breaking rule for
this movement model and domain. It is because of the cost
of calculating two heuristics for every node. Were we to just
replicateh and call itd, the algorithms would have identical
performance, but this would obscure the overhead of calcu-
lating two heuristics. On the 8-way boards, breaking ties on
d improves the performance for tight bounds and harms it
slightly for higher bounds. Revised dynamically weighted
A∗ failed to solve any of these problems, and is not pictured
in the plots.

Game Boards Following Bulitko et al. (2007), we tested
on several pathfinding problems from a popular real-time
strategy game. The boards allowed for eight-way move-
ment, and start and goal locations were selected at random.
Instances were then further grouped by the length of their
optimal solution. We show results for the most challenging
instances we ran against, which have an optimal solution
length somewhere between 160 and 190 steps.

These problems are significantly smaller than the other
grid world problems which we experimented on. Although
taking special care to efficiently handle duplicate paths

Grid Unit Four-way 75 Lines

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e(

N
o

rm
al

iz
ed

 t
o

 A
*)

0.9

0.6

0.3

0.0

Suboptimality Bound

1.81.51.2

wA*, d-tie, dd
wA* dd

Grid Unit Eight-way 75 Lines

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e 

(R
el

at
iv

e 
to

 A
*)

0.9

0.6

0.3

0.0

Suboptimality Bound

1.81.51.2

wA* dd
wA*, d-tie, dd

Figure 7: Performance on grid-world path-finding problems
with lines



Battleground

T
o

ta
l 

N
o

rm
al

iz
ed

 C
P

U
 T

im
e 

(R
el

at
iv

e 
to

 A
*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound

1.81.51.2

wA* dd
revised dwA*
wA*, d-tie, dd

Darkforest

T
o

ta
l 

N
o

rm
al

iz
ed

 C
P

U
 T

im
e 

(R
el

at
iv

e 
to

 A
*)

1.2

0.9

0.6

0.3

0.0

Suboptimality Bound

1.81.51.2

wA* dd
revised dwA*
wA*, d-tie, dd

Figure 8: Performance on grid-world path-finding problems
for games

Korf’s 15-Puzzle Instances

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e 

(R
el

at
iv

e 
to

 I
D

A
*)

0.3

0.2

0.1

0.0

Suboptimality Bound

2.01.81.61.41.2

revised dwA*
wA*

wA*, d-tie

Figure 9: Performance on the 15-Puzzle

through the state is key for larger boards, here it isn’t
as important important, as evidenced by the performance
of revised dynamically weighted A∗, shown in figure 8.
Even without duplicate dropping, it significantly outper-
forms weighted A∗. Whend tie-breaking is added, weighted
A∗ with duplicate dropping performs better.

Sliding Tile Puzzle
We examined algorithm performance on the 15-puzzle, us-
ing the instances from the original paper on iterative deep-
ening A∗ (Korf 1985). We use Manhattan distance forh and
d. Since A∗ fails to solve these instances within a reason-
able memory bound, we normalize our data against itera-
tive deepening A∗. All the algorithms we tested ran into the
same memory limitation as A∗, so we show results only for
weights of 1.2 and above. We show results averaged over all
100 instances.

As d andh are identical in this domain, there is little dif-
ference in the performance of weighted A∗ with and without
tie-breaking. Revised dynamically weighted A∗ performs
surprisingly well in this domain, considering the number of
duplicate nodes it must encounter during a search. Its perfor-
mance is still significantly worse than that of either weighted
A∗.

Travelling Salesman Problem
Following Pearl and Kim (1982), we test on a straightfor-
ward encoding of the traveling salesman problem. Each
node represents a partial tour with each action representing
the choice of which city to visit next. We used the minimum
spanning tree heuristic forh and the exact depth remaining
in the tree ford. We test on two types of instances, 19 cities
placed uniformly in a unit square and 12 cities with distance
chosen uniformly at random between 0.75 and 1.25 (‘Pearl
and Kim Hard’). Both types of problems are symmetric. We
average our results over 40 instances in this domain. The
confidence intervals are so tight as to not be visible in our
results.

Figure 10 shows the performance of the algorithms on
this domain. For sake of comparison with the original re-



Unit Square 19 Cities

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e 

(R
el

at
iv

e 
to

 A
*)

0.9

0.6

0.3

0.0

Suboptimality Bound

1.41.21.0

A* eps
dwA*

wA*
wA*, d-tie

Pearl & Kim Hard 12 Cities

T
o

ta
l 

N
o

rm
al

iz
ed

 C
p

u
 T

im
e 

(N
o

rm
al

iz
ed

 t
o

 A
*)

0.9

0.6

0.3

0.0

Suboptimality Bound

1.21.11.0

A* eps
dwA*

wA*, d-tie
wA*

Figure 10: Performance on Travelling Salesman

sults, A∗ǫ is also included in the plot. Both weighted A∗ and
weighted A∗ with tie-breaking ond perform better than dy-
namically weighted A∗, which is identical to the revised im-
plementation for this domain. Tie-breaking is of little benefit
to weighted A∗ in this domain, despite the fact thath andd
are different. This is due to the fact that there are very few
nodes with the samefwA∗ value, and so the tie breaking rule
is rarely, if ever, used.

Discussion
The revision of dynamically weighted A∗ significantly im-
proves its performance for domains where goals do not exist
at a fixed depth. Unfortunately, this was not enough to make
the algorithm competitive with the current state of the art.Its
inability to discard duplicate states makes it a poor choice
for large pathfinding problems. Hopefully it will demon-
strate good performance on large problems without a large
number of duplicate states.

Weighted A∗ with tie-breaking ond is only effective when
there are a number of ties to be broken. This is obviously
the case in grid-world pathfinding, given the domain and
the performance of the algorithm in it. Whenever there
are real valued edge costs, tie-breaking ond isn’t going to
help because there aren’t going to be very many ties. The
performance gains we saw from tie breaking should trans-

fer to algorithms which rely on weighted A∗, such as any-
time heuristic search, anytime repairing A∗, and optimistic
search.

Conclusions
Including a distance-to-go-estimated can significantly im-
prove the performance of bounded suboptimal heuristic
search. When used to guide dynamically weighted A∗, it
improves the performance of that algorithm considerably in
domains without a fixed goal depth. Simply using it for tie-
breaking can lead to large performance gains for weighted
A∗, causing it to find optimal solutions much faster than an
algorithm only relying onh. When these improvements do
not improve performance, they also do not seem to substan-
tially harm it. We proved that weighted A∗ is allowed to
ignore duplicate states, and that this significantly improves
its performance.

Acknowledgments
We gratefully acknowledge support from NSF grant IIS-
0812141.

Many thanks to Minh B. Do for the temporal planner used
in these experiments and to Richard Korf for publishing his
sliding tile instances.

References
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search.JAIR30:51–100.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001.
Introduction to Algorithms. Cambridge, MA: MIT Press.
Dechter, R., and Pearl, J. 1988. The optimality of A*. In
Kanal, L., and Kumar, V., eds.,Search in Artificial Intelli-
gence. Springer-Verlag. 166–199.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic
search.JAIR28:267–297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cyber-
neticsSSC-4(2):100–107.
Korf, R. E. 1985. Iterative-deepening-A*: An optimal
admissible tree search. InProceedings of IJCAI-85, 1034–
1036.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Formal analysis. Technical Report CMU-CS-03-148,
Carnegie Mellon University School of Computer Science.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics.IEEE Transactions on Pattern Analysis and Ma-
chine IntelligencePAMI-4(4):391–399.
Pearl, J. 1984.Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Sedgewick, R. 1992.Algorithms in C. Boston, MA:
Addison-Wesley Professional.


