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Abstract

Bounded suboptimal search algorithms attempt to find a isoliquickly while
guaranteeing that its cost does not exceed optimal by maredtdesired factor. Typ-
ically these algorithms use a single admissible heuristiduation function for both
guiding search and bounding solution quality. In this paperpresent a new approach
to bounded suboptimal search that separates these rohssilitiog inadmissible infor-
mation to determine search order and using admissiblerivdtion to guarantee qual-
ity. Unlike previous proposals, it explicitly estimategexted solution cost and search
distance in an attempt to reach a solution within the submgity bound as quickly as
possible. We show how to construct these estimates durergtseising information
that is readily available yet often overlooked. In an entairievaluation across six
diverse benchmark domains, the new techniques have bgggmlioperformance than
previous approaches, including weighted A* and optimiséarch.



0.1 Introduction

When resources are plentiful or an optimal solution is regjiA* search [1] using
a consistent heuristic will find an optimal solution as fastaay equally informed
search [2]. However, in many practical settings we must gicsgboptimal solutions
in order to reduce the time or memory required for the sedrcthis paper we focus
on bounded suboptimal search, algorithms that find solsiti@nose cost is within a
specified factoiw of optimal. We say such algorithms areadmissible.

As we discuss below, all of the previously proposed algoriththat we are aware
of fail to directly address the problem of finding solutionghin a bound as quickly
as possible. In this paper we introduce explicit estimatiearch (EES), a bounded
suboptimal search algorithm that uses unbiased cost atahdésestimates rather than
lower bounds to find solutions of bounded quality as quicklpassible. We introduce
skeptical search, a simplification of EES that has reducedh@ad and better perfor-
mance in some domains. We then illustrate how to constrgctitibiased estimates
that EES and skeptical search rely on. We conduct a compsfeeampirical analy-
sis of these and other bounded suboptimal algorithms onpgttikifinding, the sliding
tile puzzle, the pancake puzzle, dynamic robot pathfindimg TSP, and vacuum plan-
ning problems. We find that explicit estimation search hasstrongest overall perfor-
mance, surpassing the current state of the art includinghiteil A* [3] and optimistic
search [4].

0.2 Previous Approaches

We now describe three previously proposed algorithms thaashstrate the most com-
mon approaches to bounded suboptimal search, and theig#itssand flaws.
Weighted A* is a simple and effective bounded suboptimal search. InhteiA* the
traditional node evaluation function of A* is modified to ptaadditional emphasis on
the heuristic evaluation functiorf{n) = g(n)+h(n) becomesg’(n) = g(n)+w-h(n).
The weight,w, increases the importance bf(estimated cost of reaching a goal from
n) relative tog (cost of reaching), making the search greedier.

Placing additional emphasis on the heuristic rewards nddgshave lowh. The
higher theh value, the more unattractive weighting makes a node loolewiig the
evaluation function in this way encourages progress tosvardas with lows. If the
heuristic is well informed and admissible, nodes near a gt have relatively lovis
values. We would hope to find solutions quickly by forcing fearch into such areas
of the space. If all actions have the same cost, then we birggtimize the length of a
solution as well. If there are actions with varying cost, wayrail to find the nearest
w-admissible solution, which can increase solving time.

Weighted searches may expand many nodes that, strictlkisgeahey do not
have to expand in order to findwa-admissible solution. We use weighted A* as an
example. Weighted A* will expand all nodes that it generatéth f'(n) < g(s)
wheres is the suboptimal goal returned by the search. This is atre$uihe search
order. However, if we obtain by some method other than best first searchyorwe
would only need to expand those nodes with f(n) < g(s) in order to show that



represents a-admissible solution. It is obvious that fewer nodes satisé inequality
w- f(n) =w- (g(n) + h(n)) < g(s) than dof’(n) = g(n) +w - h(n) < g(s), as
the former scales botfandh while the latter only increases the sizefofWeighted
searches will always be at risk of expanding nodes beyonsktheeded to prove the
bound.

Optimistic search attempts to improve upon weighted A* by addressing the @bl
of potentially expanding more nodes than needed in orderdeepa suboptimality
bound. In optimistic search, weighted A* is run with a weigigher than the desired
suboptimality bound. This weight is determined by scalimgdesired bound up by an
optimism factor which must also be specified by the user. €hagd Ruml use a value
of 2 [4]. The node with the smallegtvalue of all open nodes, callefy,;,,, serves as a
lower bound on the cost of an optimal solution to the probl&in The quality bound
of the incumbent solution can be calculated by dividing @stdy f ( f,,.:, ). Optimistic
search expand§,,;,, until this dynamic bound is at least as tight as the desireshtdo
This stage of the search is called the cleanup phase.

Although the cleanup phase of optimistic search expandstbonke nodes neces-
sary to prove the bound, the initial phase during which tHetgm is found is flawed.
Optimistic search works by increasing the weight used inrfil search, and while
higher weights generally lead to faster weighted A* seascligs is not universally
true. It has been shown that single-minded focus on cost ttagdead to poor search
performance in domains where the lower bound requiremeanisprevent it from ef-
fectively discriminating between nodes [6]. Here, an aediance onh can actually
lead to decreased performance, potentially causing otitcvsearch to perform worse
than weighted A*. These problems can be avoided by incotipgranultiple sources
of information.

Additionally we only suspect that the initial solution wile within the user’s de-
sired bound based on the past performance of weighted A*elibaothing about the
search order that suggests that this solution will be withenhbound, and if we set the
optimism factor too high, it frequently won't be (see [4] figtails regarding this case).
This is especially problematic for new domains where thégperance of weighted A*
is unknown.

0.2.1 Distance-Oriented Searches

Not all bounded suboptimal search algorithms operate bysiog solely on a cost to
go heuristic. A7 [7] maintains two orderings on its nodes, open and focalhénfirst
ordering nodes are sorted in orderfof The node at the front of this list i,,;,,, and
it is used to form the focal list. The focal list contains nedehosef value is within a
factorw of f(f.in) and is sorted ow, an estimate of the distance from a node to the
goal. That is, focal contains those nodes that can curréetishown to be within the
w-admissibility bound, sorted in order of their estimatedlguroximity, d. The node
from the front of focald,,;,, is chosen for expansion.

A} explicitly chases the nearest solution that can be showe twithin the bound
for all problems, something previous approaches did netgit. Other algorithms
focus solely on the cost of a solution. This will map diredttythe nearest solution
for domains with unit cost actions, for example the slidig puzzle, but this will not



work for domains where actions have varying cost. UnfortellyaA? is still relying
on lower bounds to guide the search. Whilaeed not be admissible, the focal list is
formed by consulting,,..., a lower bound on the cost of an optimal solution. The lower
bound is guiding4? to a large extent, and it frequently contradicts the ordggssted
by d. When using an admissiblefunction, thef values of nodes typically increase
as one descends from the root whiléends to decrease. Nodes with léwvill often
have relatively highf values andi,,;,, is often the node with the highegtin focal.
Children ofd,,,;, are thus not likely to be included in focal. This causes a tzons
emptying and refilling of the focal list, which results inribte performance for} in
many domains [8]. We now turn to explicit estimation seakghich addresses these
flaws in previous approaches to bounded suboptimal search.

0.3 Explicit Estimation Search

The objective of bounded suboptimal search is to find satstwithin the given sub-
optimality bound as quickly as possible. This suggestsdhewing search order: For
all nodes that appear to be on a path to-admissible solution, expand the node that
seems closest to a goal. Explicit estimation search (EB®W® this principle as di-
rectly as possible while strictly guaranteeing boundedptimality. In addition to
g(n), h(n), andd(n), EES uses, a potentially inadmissible but more accurate version
of h, andd, a more informed version af. They can be supplied by the user, and we
will discuss one way in which they may be constructed dudmgsearch below. Using
these values, we construct two cost functiqﬁandf. f is the traditional cost function
of A* and provides a lower bound on the cost of an optimal sofuthrough a node.
f(n) = g(n) +ﬁ(n) attempts to be an unbiased estimate of the cost of the beiosol
throughn.

EES selects one of the following nodes to expand:

fmin = argmin f(n)
necopen
besty = argmin f(n)
neopen
best; = argmin d(n)

ne€openAf(n) Su»f(bestf)

As before,f,,.i» is the node with the lowest value among all unexpanded nodes, and
acts as a lower bound on the cost of an optimal solution, a&vwakiwill need to prove
that the final solution lies within the desired suboptinyabibund. best  is the node
with the lowest predicted solution cost. Rather than behmsen from all open nodes
as f,,in andbest 7 are,best 7 is selected from a restricted set of nodes. Specifically, it

must be a member of the set of nodes Whﬁsalue is within a factow of f(bestf).

~

f (bestf) represents our best estimate of the cost of an optimal salusobest ; is
selected from those nodes we suspect leacueaamissible solution. Of thesggst ;



is the node nearest to a goal. At every expansion, EES chéosesmong these three
nodes using the rules:

~

bests if Jf\(bestg) <w- f(fmin)

selectNode = ¢ bestz i f(bestz) < w - f(fimin)
fmin Otherwise

-~

We first considebest 5, as pursuing nearer goals should lead to a goal fastest
is returned if the solution it will lead to can be shown to behivi the suboptimality
bound, seen in the first rule atlect Node. Specifically, we only returiest ; if the

estimated cost of a solution throughft(,bestg), is within a factorw of a lower bound
of the cost of an optimal solutiorf,( f,.in). If best ;is unsuitablepest ~ is examined.
We suspect that this node lies along a path to an optimalisols it has the smallest
fvalue. Pursuing paths of the highest quality is desiraldepraving that they are
within the suboptimality bound is easier. Expanding thidexmay enlarge the set that
best 7 is selected from because it potentially repladest ~ with a node WhOS@? is
larger. We only expandest = if it can be shown to be within the bound. If neither
bestf nor best ; were within the bound, we returf),.;,. Expanding it could raise our
lower bound by enlarging( f.i»), allowing us to consideiest ; or best]? in the next
expansion.

Theorem 1 if ﬁ(n) > h(n) and g(opt) is the cost of an optimal solution, then for
every node: expanded by EES, itis true thétn) < w - g(opt)

Proof: selectNode will always return one obest 3, best For Sfmin. NO matter what
node we select we have

f(n) < w- f(fmin). This is trivial for the third case in selectNode, wheftg;,, is
chosen. For the other two cases, we must rely on the fack that< ﬁ(n). So long as
this is true, wherbest 5 is selected:

f(beStCT) N < w- f(fmm)
g(be‘St[[) + h(be‘gt[f) < w f(fmin)
9(563753) + h(beStE) < w- f(fmin)
f(be‘Stj) < w- f(fmin)
f(best ) < w-g(opt)

Wheneverbest ; is selected for expansion, it value is within a bounded fac-
tor w of the cost of an optimal solution. Hest; is a solution,h(best;) = 0 and
f(best;) = g(bestz), in which case the cost of the solution representeddsy;; is
within a bounded factow of the cost of an optimal solution. Thbestf case is identi-

cal. O

0.3.1 Behavior

Explicit estimation search fixes the problems we have jugtiighted with previous
approaches. It takes both the distance to go estimate agasvitle cost to go estimate



into consideration when deciding what node to expand nekts @llows it to prefer
finding solutions as quickly as possible in all domains iadtef just unit cost domains.
It does this by operating in the same spirit4s using both an open and a focal list.
We will see that the orderings used for EES do not conflict witk another, allowing
EES to perform well across all suboptimality bounds. Liké&rostic search, EES uses
a cleanup list to avoid unnecessary expansions when pravswypoptimality bound.
Rather than doing all of these expansions after having fasalution, EES interleaves
cleanup expansions with those directed towards findingtieal As a result, it can
never run into the problem of having an incumbent solutiaat falls outside of the
desired suboptimality bound. Further, EES relies on umltig&stimates of the cost to
go, rather than the past performance of an underlying dlgaoriwhen determining if
a node is likely to be within the bound. Not only is this a mormgipled approach, it
neatly avoids the problems optimistic search has when ngnoim novel domains.

Much like A} or weighted A*, EES will become greedier as the bound is Inede
Like A} EES becomes a greedy searchdminlike than weighted A* which focuses
almost exclusively on cost estimates. The greedy beha¥iwemhted A* will always
be tempered byf’s inclusion ofg. Searches liked? and EES, on the other hand,
can become even greedier. Wherbecomes sufficiently large, they perform a purely
greedy search on their estimates of distance-to-go.

For tighter suboptimality bounds, EES behaves much moeelkimistic search. It
will frequently expandest ~, pursuing what appears to be the highest quality solution,
and f,,.;, in order to prove the suboptimality bound. This is much likeadation on
optimistic search that interleaves its initial and cleapbpses. EES has the significant
advantage of never being able to find a solution outside ofidsred suboptimality
bound, as per the previous theorem. At a suboptimality badrd it expands nodes
in A* order, breaking ties in favor of lowd.

0.3.2 Implementation

EES is structured like a classic best-first search. We irtkerinitial node intoopen,
and at each step, we select the next node for expansion ssiagNode. To effi-
ciently acceséestf, best, and f,,i,, EES maintains three queues, tenlist, focal
list, andcleanuplist respectively.openandfocal are strongly related to one another.
The openlist contains all generated but unexpanded nodes sortq”?(m)n The node
at the front of theopenlist is bestf. focalis a prefix of theopenlist ordered onl. fo-

cal contains all of those nodes that hafgalues within a factow of f(best ) which
estimates the cost of the optimal solution. The node at tbwet fof focal is best ;.

o~

cleanupcontains all nodes from open, bfitn) instead off (n). The node at the front
of cleanupis f...;», and it provides a lower bound on the cost of an optimal swmfuti

Efficiently performing EES requires fast accesg ., best 7, andbest ;. We need
to be able to select one of these nodes, remove it from allaetedata structures, and
reinsert its children efficiently. To accomplish this we impentcleanupas a binary
heap,openas a red-black tree, aridcal as a heap synchronized with a left prefix of
open This lets us perform all insertions and removals in loganit time (except for
transferring nodes frorapenontofocal).



0.3.3 Simplified approaches

With three queues to manage, EES has significant overheaek atso introduce two
simplified techniques for incorporating inadmissible h&tie information.

Clamping [9] is a simple technique for using an inadmissible cost fiamch to guide
search while maintaining bounded suboptimality. We merelszrictfto never be
larger thamw - f as in foq(n) = min((w - f), f(n)). f.o has several drawbacks: it
cannot incorporate search distance estimates effectitdbils to become greedy at
high weights, and if: is much greater than, the search will devolve into A*, but
without proving optimality. In this casey - f(n) is frequently less thaﬁ(n), causing
the nodes to be sorted and expanded in the same order they b®irl a A* search.
Skeptical Searchattempts to scale gracefully from a searchfoat low suboptimality
bounds to a search dnfor large bounds. This results in a searchﬁ‘)m) =g(n) +

w -ﬁ(n), wherew is the desired suboptimality bound. We call this Skepticdrgh
because it learns to be mistrusting of the overly optimisgaristich. It is likely to
produce very high quality solutions if is accurate, and we expect it to decrease in
solving time asw increases, like weighted A*.

The main advantage of this approach is in reduced overhdadevér needs to
calculated, and it is never concerned withst 7. As a result, it maintains fewer sorted
lists and performs fewer heuristic calculations and thissdignificantly less overhead.
Search orf’ is obviously not going to be guaranteed to returadmissible solutions,
so we implement skeptical search as a more principled veodioptimistic search.

Skeptical search is preferable to optimistic search becthesuser need only sup-
ply one parameter, the desired suboptimality bound. Thienigrn factor required by
optimistic search could be charitably characterized asectingh into 1, which skep-
tical search does explicitly. The major drawback of skepptsearch is that it has poor
performance for low weights. Unlike EES or optimistic séarskeptical search will
not converge to A* performance at a bound of 1, it will insteagband nodes irf
order, which will only mimic A* whenh = h*, the true cost to go.

0.4 Deriving Inadmissible Heuristics

EES uses the unbiased estimatidnand d in addition to lower bounds, but where
do they come from? We may either create them based on insitghthe domain or
derive them automatically. One idea that has been mentionedssing by several
authors[10] [11], but never (to our knowledge) actuallygued, is to learn an inadmis-
sible heuristic function during search using temporalkdéhces.

If h were perfect, then thé value of a parent node would be the same as the lowest
f among its children. However, admissible heuristics uguailderestimate the cost to
the goal andf tends to rise in value along any path. The rise in value froraramt
to its best child is a measurement of the error in the hearigts nodes are expanded
during search, one can calculate the average one step@sror,h. One can estimate
a corrected value dAs(n) = h(n) + ey - d(n). One can also measure one step error in



d, resulting inc?(n) =d(n) +eq - d(n). We can use to improve the estimate df, as

inh = h(n) + epd(n).

When estimating:;, on-line its value is changing over time and so arefthend
f of every node. Resorting the open list after every expansdno costly. Two
possible approximations are 1) to re-sort the open list oolasionally, perhaps at a
geometrically growing interval and 2) to not re-sort at aldehave each node keep
forever thefvalue computed when it was generated. Not resorting the bgtelmas
no affect on thev-admissibility of the solution for any of the proposed algans and
produces slightly better results.

0.5 Empirical Evaluation

In addition to the algorithms discussed above, we implepteand tested against all
other bounded suboptimal searches in the literature, narmel12], AlphA* [13], and
revised dynamically weighted A* [8]. We now describe eaaoathm briefly.

A, is very similar in form toA;. It starts by expanding such that
argming, d(n) : f(n) <w- f(fmin), €xactly the node that} expands every itera-
tion. A. commits to this node, not unlike the way realtime algorithcosnmit to a
node, and repeatedly follows the best child from each expansitil a goal is found
or until the best child could not be shown todeadmissible. If the best child would be
outside of the bound4, must either abandon its commitment, expandinguch that
argming, d(n) : f(n) <w- f(fmin), OF it may instead choose to persevere, expand-
ing fin until the desired child is within the bound, continuing ajathis path once
the lower bound on optimal solution cost has been suffigieaiked. Many different
persevering strategies exist, we choose to press onwardppears the solution is at
least 90% complete.

AlphA* also uses the idea of maintaining multiple orderioger the nodes. Nodes
are stored using one of two cost functions. Either they amedtwith theirf values or
their f/ value. If a node’s parent has anvalue greater than the last node expanded,
it is stored withf,, 4., otherwise it is stored witlf4.. If a node appears to be closer
to the solution than its parent, it receives a favorable r@@duation. However, if the
heuristic appears to be misleading us, or if the node trydyagents a step in the wrong
direction, it receives the worse value.

Revised dynamically weighted A* attempts to extend thisrapph by using two
measures of goal proximityz, andd, the estimated number of steps to the goal. As
nodes progress towards the goal, the weight is steadilyedsed. Revised dynami-
cally weighted A* sorts nodes in order ¢fi,4- = g(n) + maz(1, wdff:o)t))h(n).
Revised dynamically weighted A* is identical to or signifitly better than dynami-
cally weighted A* [14] in all domains.

All algorithms were implemented in Objective Caml and coexbito native bina-
ries on 64-bit Intel Linux systems. All the algorithms weesrgpled at the following
suboptimality bounds: 1, 1.005, 1.001, 1.01, 1.05, 1.15,1112, 1.3, 1.5, 1.75, 2,
2.5, 3, and 5. We show 95% confidence intervals averaged dvastances for each
domain.
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Figure 1: Vacuum Planning

0.5.1 Vacuum World

In this domain, inspired by the first state space depicted3h p robot is charged with
cleaning up a grid world. Movement is in the cardinal direcs, and when the robot
is on top of a pile of dirt, it may remove it. Cleaning and moesrnhave unit cost.
We use the minimum spanning tree of the robot and dirt lonatfmus the number of
piles of dirt as an admissible. Search distance is estimated by finding the length of
a greedy solution on a board with no obstacles. We used iregahat are 500 cells
tall by 500 cells wide, each cell having a 35% probability efrty blocked. We place
twenty piles of dirt randomly in unblocked cells. The rolsattart location is selected
randomly from the unblocked cells. We averaged over 10@itss.

The results are presented in Figure 1. The suboptimalitpthodithe algorithms is
on the x-axis, with a bound of 1 requiring an optimal solutiand a bound of 3 means
that the solution returned has cost within a factor of 3 of@p&mal solution. The
y-axis shows either the total amount of nodes generatedhedirne consumed by the
algorithm. The y-axis is always presented in log scale fadadbility. We display the
best four algorithms per domain for the same reason. Thadkgesorted from worst
to best in terms of nodes generated or cpu time consumed. |gdtithms were run
with a five minute time limit. Not all algorithms solve all gslems across all subop-
timality bounds. If an algorithm failed to solve a problemwas charged for the full
amount of time and for as many nodes as it could generatenatitiait time limit. As
such, the plots represent lower bounds on the actual peafurenof the algorithms. All
of the plots follow this layout. There is a very clear separabetween algorithms that
take advantage of learning and distance heuristics an@ thased around weighted
A*, as we see by the large separation between ESS and SKepdaech and Opti-
mistic Search.A} performed almost as well as these algorithms for high bauimats
failed to solve many instances at weights lower than 2. Alppérformed very poorly.
Clamped search performs poorly at high weights becausatiiotdoecome sufficiently
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greedy.

0.5.2 Dynamic Robot Navigation

This domains follows that used by [16]. The goal is to find thstést path from the
starting location of the robot to some goal location and imead We perform this
search in worlds that are 500 by 500 cells in size. To add ehgdl to these problems,
we scatter 75 lines with random orientations across the donizach line is up to 70
cells in length. Bothh andd are found by searching the problem without dynamics
exhaustively from the root. Fat, we return the shortest distance between that point
and the goal, assuming the robot can stop, start, and turnddme A is similar to
d, but we assume that the robot is constantly moving at maxiwelotity to obtain a
lower bound on the time to arrive at the goal from the curréates

Results for the dynamic robot navigation problem are shawkigure 2. We see
again in the timing results that the three fastest algomsttath exploit inadmissible
heuristics to improve their search order. Skeptical seanthEES are outperforming
all other algorithms until a weight of about 1.5, whetg starts performing very well.
At this point, it performs a greedy search énwhich is very well informed for this
domain. Before weights of 1.5, approaches using inadniésgiformation are orders
of magnitude faster. We suspect EES would be just as fast didv@ot correctd into
d on this domain.

0.5.3 Macro Sliding Tile Puzzle

We examined algorithm performance on the macro 15-puzzlg {sing Korf’s orig-

inal instances [18]. The macro 15-puzzle is identical topthgsical implementation
of the 15-puzzle in the sense that moving multiple tiles tasahe blank requires the
same amount of effort as sliding the blank only one tile ingeglirection. Since the
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blank may move up to three spaces at once, we use manhatiamodislivided by three
for bothh andd. This is the only domain where the learned inadmissibleisgoiwvas
outperformed by the hand crafted one, in this case we usednttigided manhattan
distance.

Results for macro tiles are presented in Figure 3. EES ubingdnd crafted heuris-
tic is called “EES Fixed” in the figures. Skeptical search @mdimistic Search are the
two best algorithms by both metrics in this domain. Optimisioes so well in this
domain because it is accidentally correcting for heuristior. While an optimism of
2 is typically just a very good rule of thumb, for macro tilezzles it is almost exactly
covering for the introduction of the macro moves. This ex@avhy Skeptical search
and optimistic search are nearly identical here.

0.5.4 Grid Pathfinding

Following [4] we tested on grid pathfinding problems using thife” cost function.
We show results over 20 instances of 2000 by 1200 grids, alpfor movement in
each of the cardinal directions. The grids were generatdaddnking 35% of the cells
atrandom. The start is in the lower left of the grid, with tleabappearing in the lower
right.

Figure 4 shows the results for grid pathfinding problems. Weeédiately no-
tice that all of the algorithms, save weighted A* with duplie dropping, are having
extreme difficulty for weights less than 1.5. In this regitime other algorithms are
reopening a large number of states that they have previeisted with a suboptimal
g value. Weighted A* may avoid reopening these nodes becégskduristic for this
domain is consistent [19].

As the weight increases, we see that EES gains an edge in ¢étims number of
nodes generated during the search. When we examine the CEBEB® is no longer
clearly superior to wA* dd. In this domain node expansionxsamely inexpensive.

10
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Thus the increased overhead of EES is more noticeable. Wheske@way the large
difference between andd by running on boards with 8-way movement (not shown)
the results change slightly. Duplicates are no longer aewonand the slight edge that
distance information provided at high suboptimality bosigdes away. Weighted A*
dd becomes the search of choice, although EES is still vampedtitive in both CPU
time and nodes generated.

0.5.5 Traveling Salesman

Following Pearl and Kim[7], we test on a straightforward ediog of the traveling
salesman problem. Each node represents a partial tour adth &tion representing
the choice of which city to visit next. We used the minimumrsgiag tree heuristic for
h and the number of cities remaining férWe test on two types of instances, 100 cities
placed either uniformly in a unit square or with distancesgrouniformly at random
between 0.75 and 1.25 (called “hard” by Pearl & Kim). All pledns are symmetric.
Results are averaged over 40 instances.

Figure 5 shows the results in unit square versions of thelirgysalesman problem.
There was little difference between the algorithms on treedhPearl & Kim instances
so we omit them.

0.5.6 Pancake Puzzle

We also performed experiments on the 10 Heavy Pancake pukzide the original
puzzle [17], the goal is to arrange a permutation of numbrens f1 to N into an as-
cending sequence. Successor states are generated bingedeptefix of the current
sequence and reversing that prefix. Each state in the prdtdsmi-1 successors. Each
pancake has a weight, equal to its index. The cost of a mohe isum of the pancakes
being moved. We liken this to rearranging a stack of freegivisi from a careless pile

11
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Nodes Generated 1st 2nd 3rd 4th > 4th

EES 2 3 1 0 0
Optimistic 0 1 2 3 0
Skeptical 3 0 0 1 2
A 1 1 1 0 3
WA* 1 0 0 2 3
AlphA* 0 0 0 0 6
A, 0 0 0 0 6
Clamped 0 0 1 0 5
A? hhat 0 0 0 0 6
rdwA* 0 0 0 0 6
CPU Time Ist 2nd 3rd 4th > 4th
EES 0 3 3 0 0
Optimistic 0 2 1 3 0
Skeptical 3 0 0 1 2
A 2 1 1 0 3
WA* 1 0 0 2 3
A, 0 0 0 0 6
AlphA* 0 0 0 0 6
Clamped 0 0 1 0 5
A? hhat 0 0 0 0 6
rdwA* 0 0 0 0 6

Table 1: Rank across all benchmarks

into a neat stack, with the largest weight at the base anchtladlest weight at the top.
We used pattern database for batandd. In Figure 6 we see that EES and Skeptical
search are the best search in terms of hodes generated aimg) $ivhe.

0.5.7 Summary of Results

Table 0.5.7 summarizes the number of times each algorithewsd each ranking
across all six benchmark domains when ranked by the numbrerdies generated and
the amount of CPU time consumed. Of all the algorithms wetk$hose incorporating
inadmissible information such asandh were always among the top four performers
in every domain we looked at. EES and Optimistic Search aeotily algorithms
that appear in every plot. This is because they makes veoynt&@d decisions about
expansion order. Both are separating the goal of findingtisolsiand that of proving
their quality, and EES is deciding whether or not to expandderbased on unbiased
estimates of solution cost and length. The price for thiBibtais overhead, resulting
in slightly longer run times than that of Skeptical searclpti@istic search is also a
strong performer, primarily because weighted A* never genis exceptionally poorly
on many of these domains, however it is slower than both EESS#&rptical Search.
Table 0.5.7 provides a different perspective on the resaleggregate than Ta-
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CPU 15 1.75 2. 3. 4, 5.
optimistic | 1.6 15 1.6 2.1 2.4 2.1

WA* 4.1 3.4 2.8 3.7 3.4 2.4
skeptical 2.6 4.7 4.9 5.1 114 139
Ax, 504 448 285 1.8 11 0.6

Clamped 8.3 101 116 670 856 858
AlphA* 126.6 140.1 181.6 282.2 309.3 315.0
rdwA* 3741 3169 2451 101.0 848 128.1

A, 911.4 857.7 683.2 6249 597.4 614.3
Generated 1.5 1.75 2. 3. 4, 5.
optimistic | 3.1 2.4 2.5 3.3 3.4 3.2
WA* 6.6 55 45 55 5.0 4.0
skeptical 3.2 3.0 2.8 3.8 115 154
Ax, 58.4 449 17.9 1.8 1.1 0.8

Clamped 6.8 5.6 7.1 765 959 974
AlphA* 1.2 15 2.2 4.4 5.6 5.7
rdwA* 187.3 1717 150.2 86.3 78.1 163.1
A, 1514 1415 1122 994 918 979

Table 2: CPU time and nodes generated relative to EES

ble 0.5.7. Here, rather than measuring the relative pedona on single domains, we
look at the relative performance of the algorithms at difersuboptimality bounds
across all domains. We present the number of nodes generate@PU time con-
sumed relative to that used by EES, averaged over all dom&insh figures give us
a quantitative sense of the relative performance of theritfgns. We see that, with a
single exception of} run with a bound of 5, explicit estimation search consumss le
time and generates fewer nodes than any other approach.

This may seem surprising, since in our previous evaluatiBBS was infrequently
the best algorithm; it was often in second place. AlthouglsEEquently comes in
second place, it is never extremely outperformed by theralgorithms. The other
bounded suboptimal algorithms, on the other hand, manadgiltspectacularly in
some domains. This drags their average performance dowus &xplicit estimation
search is the superior choice when running on a set of prableth diverse properties
or when running on a problem that we know very little about.

0.6 Discussion

There are two ideas driving these new search algorithmstmiesible sources of in-
formation are readily available and helpful, and of all $iolas within the bound, we
prefer the one we can find the fastest. Combining patterrbdaés [20], using linear
programming to correct for heuristic error [21], or usinflioé regression to find bet-
ter heuristic models are all possible approaches to ccnthtgﬁ andd, but they are
fundamentally different from our current approach in tietytall require training data,
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where as we gather all of our experience during the search.

The results presented in the evaluation clearly show tleméthre some limitations
to EES despite its generally good performance. If the coskpfinding nodes is very
low, a better expansion order may not expedite search beadexplicit estimation’s
overhead. In domains with consistent heuristics and mamjiciies, weighted A*
can avoid re-expanding the duplicate states, and has rabigrgood performance as
a result. Ifh is very inaccurate, EES and skeptical search can performypas we
saw in the macro-tiles domain.

0.7 Conclusions

We showed how additional information can be exploited intatd suboptimal search,
resulting in better search orders and shorter solving tiewess a wide variety of

benchmark domains. Unlike previous approaches, explgtitnation search (EES)

converts the stated goal of bounded subpotimal searchr ditieetly into an expansion

order by taking advantage of inadmissible cost to go andckedistance estimators
that attempt to be unbiased rather than lower bounds. Weshtssed how to generate
these inadmissible estimates during search without rieguiraining data. Skeptical

search makes use of only the cost-to-go estimates to prevegarch order almost as
principled as that of EES with less overhead.
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