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■ initial state

■ expand

generates all successor states, implicitly computes g(n)

■ goal test

■ h(n)

estimates cost of reaching a goal

admissibility: non-overestimating

consistency: obeys triangle inequality

■ state: problem data

■ node: state, g, parent pointer
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1. while open has nodes
2. remove n from open with minimum h(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure

same state, different path
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1. while open has nodes
2. remove n from open with minimum h(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure

■ openlist:

heap: handles real costs, large ranges of values, etc

bucket list: more efficient, requires integer values

■ closed list:

hash table: in practice, also includes open nodes
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■ store open nodes in ’closed list’ as well

prevents multiple copies of a state being open at once

■ duplicate checking and delaying or dropping

■ correct tie breaking

varies by search, generally prefer high g

■ goal test on generation

then prune for bounded suboptimal search

■ recursive expansions (to reduce heap operations)
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■ Jordan and I will alternate

■ bibliography at the end

■ the pseudo code

not presented during talk

included for later review

■ not comprehensive due to time constraints

each section covers ’greatest hits’

our personal experience and biases
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■ suboptimal search minimize solving time

greedy best-first search

beam search

LSS-learning real-time Search (LSS-LRTA*)

■ bounded suboptimal search balance time and cost

weighted A*

optimistic search

■ anytime search unknown deadlines

anytime repairing A*

anytime weighted A*

restarting weighted A*
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■ optimal search strategies

■ bounded-depth tree search

■ local search strategies

■ constructing heuristics

■ using disk

■ parallel algorithms

■ anything relying on distance estimates

(come back next session)
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■ greedy best-first search

variant of best-first search

■ beam search: best-first, breadth-first

irrevocable pruning

■ real-time search: LSS-LRTA*

interleaves planning and acting

next session: speedy search, A* on length, beam search on d.
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1. Best-first Search On Cost-to-go Estimate, h(n).
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A*

5 6

8

6 6

6 88

129

with admissible h, f rises resulting in vacillation
in optimal search, h prunes, in greedy it guides
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1. while open has nodes
2. remove n from open with minimum h(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure
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1. while open has nodes
2. remove n from open with minimum h(n)
2a. break ties on h in favor of low g(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure
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1. while open has nodes
2. remove n from open with minimum h(n)
2a. break ties on h in favor of low g(n)
3. if n is a goal then return n

4. otherwise for each child c of n
4a. if c was ever expanded, discard it
4b. if c is in open, keep c with smallest g
4c. otherwise insert c into open
5. return failure
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greedy best-first search: h(n) A*: f(n) = g(n) + h(n)
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greedy best-first search: h(n) A*: f(n) = g(n) + h(n)

basic ⇒ brittle
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Best-First Beam Search

1. run A* with a fixed sized open list
2. filter out nodes with high f(n)

fixed memory (sometimes)

conflates propulsion with pruning
doesn’t work well in practice Wilt et al SoCS-10
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Best-First Beam Search

1. while open has nodes
2. remove n from open with minimum f(n)
3. if n is a goal then return n

4. otherwise for each child c of n
5. insert c into open
6. if open is larger than width
7. discard worst node on open
8. return failure
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Breadth-First Beam Search

1. run breadth-first search with a fixed sized open list
2. filter out nodes with high f(n)
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Breadth-First Beam Search

1. while open has nodes
2. for each n ∈ open
3. if n is a goal, return n

4. otherwise expand n, adding to children
5. open becomes best width nodes in children
5a. best according to f(n) = g(n) + h(n)
6. return failure
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Breadth-First Beam Search

1. while open has nodes
2. for each n ∈ open
3. for each child c of n
4. if c is a goal, return it
5. otherwise add c to children
6. open becomes best width nodes in children
6a. best according to f(n) = g(n) + h(n)
6b. break ties in favor of high g(n)
7. return failure
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for the uninitiated, the 15 puzzle
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no goals

dead ends (left) and many duplicates (right) cause problems
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real-time search: interleave planning and acting
time bound on planning per action

1. run A* for a fixed number of expansions
2. commit to bestf
3. back-up heuristic values using djikstra variant
4. act and repeat
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■ duplicate policy affects solution cost and solving time

■ beam searches

breadth-first generally better than best-first

need closed lists, see Wilt et al SoCS-10

■ topology dictates algorithm choice

greedy if problems are small

beam search if problems too big for greedy

many dead necessitates complete searches

many duplicates necessitates duplicate dropping

■ real-time only if you have real-time constraints
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■ weighted A*

larger w 6= faster search

■ optimistic search

selecting an appropriate optimism

handling duplicates effectively

next tutorial: skeptical search, A∗

ǫ , EES
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1. Best-first Search on f ′(n) = g(n) + w · h(n)

w ≥ 1
placing additional emphasis on h should encourage progress
admissible h ensures bound.
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1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure

placing additional emphasis on h should encourage progress
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1. while open has nodes
2. remove n from open with minimum f ′(n)
2a f ′(n) = g(n) + w · h(n)
2b. break ties on in favor of low f(n)
3. if n is a goal then return n

4. otherwise for each child c of n
4a. if c was ever expanded, discard it
4b. if c is in open, keep c with smallest g
4c. otherwise insert c into open
5. return failure

discarding duplicates greatly improves performance
at the cost of solution quality
only applicable with consistent heuristics
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Dynamic Robot Motion Planning
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f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

■ p is the deepest node on
an optimal path to opt.

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)

w · g(opt)

1. works for any f ′(p) ≤ w · f(p)
2. g(p) + w · h(p) ≪ w(g(p) + h(p))!
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■ run weighted A∗ with a high weight.

■ expand node with lowest f value after a solution is found.

continue until w · bestf ≥ f(sol)

this ’clean up’ guarantees solution quality.
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■ p is the deepest node on
an optimal path to opt.

■ bestf is the node with the
smallest f value.

f(p) ≤ f(opt)
f(bestf ) ≤ f(p)

bestf provides a lower bound on solution cost

Determine bestf via priority queue sorted on f
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1. run weighted A∗ with weight (bound− 1) · 2 + 1

2. expand node with lowest f value after a solution is found.

Continue until w · bestf ≥ f(sol)

this ’clean up’ guarantees solution quality.
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1. run weighted A∗ with a high weight.

2. expand node with lowest f value after a solution is found.

continue until w · bestf ≥ f(sol)

this ’clean up’ guarantees solution quality.
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1. w = (bound− 1) · optimism

2. while open and clean contain nodes
3. if no incumbent has been found
4. remove n from open with minimum f ′(n)
5. remove n from clean
5. if n is a goal, set incumbent to n

6. otherwise expand n, inserting its children into open and clean
7. otherwise remove n from clean with minimum f(n)
8. if bound · f(n) ≤ f(incumbent), return incumbent
9. otherwise expand n, inserting its children into open
10. return failure

In practice, clean isn’t constructed until an incumbent is found.
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Dynamic Robot Motion Planinng
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■ use weighted A* as a first approach to a problem

■ use optimistic search if you know weighted A* works well

■ duplicate handling can be important

wA* can drop, requires consistent heuristic

other algorithms can delay

■ solving problems and showing bounds can be separate steps
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■ anytime repairing A*

■ anytime weighted A*

■ restarting weighted A*

come back next session for d-fenestration, size-cost search
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anytime weighted A*, Hansen and Zhou 1997

1. run weighted A*
2. if you find a goal, keep going.

anytime repairing A*, Likhachev et al, 2003

1. run weighted A*
2. if you find a duplicate, don’t look at it just yet.
3. if you find a goal
4. dump duplicates into open, reduce w, keep going.

restarting weighted A*, Richter et al 2010

1. run weighted A*
2. if you find a goal, start over with a lower weight.
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anytime weighted A*, Hansen and Zhou 1997

1. run weighted A*
2. if you find a goal, keep going.

anytime repairing A*, Likhachev et al, 2003

1. run weighted A*
2. if you find a duplicate, don’t look at it just yet.
3. if you find a goal
4. dump duplicates into open, reduce w, keep going.

restarting weighted A*, Richter et al 2010

1. run weighted A*
2. if you find a goal, start over with a lower weight.
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continued search, Hansen and Zhou 1997

1. run some complete suboptimal search
2. if you find a goal, keep going.

repairing search, Likhachev et al, 2003

1. run some complete parameterized search
2. if you find a duplicate, don’t look at it just yet.
3. if you find a goal
4. dump duplicates into open, change parameter, keep going.

restarting search, Richter et al 2010

1. run some complete parameterized search
2. if you find a goal, start over with a different parameter.
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anytime weighted A*, Hansen and Zhou 1997

1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal set n as incumbent
4. otherwise for each child c of n
5. if f(c) < f(incumbent) insert c into open
6. return incumbent

anytime repairing A*, Likhachev et al, 2003
restarting weighted A*, Richter et al 2010
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anytime weighted A*, Hansen and Zhou 1997
anytime repairing A*, Likhachev et al, 2003

1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal
4. set n as incumbent
5. empty delay into open
6. reduce w

7. otherwise for each child c of n
8. if c was ever expanded, add it to delay
9. otherwise insert c into open
10. return incumbent

restarting weighted A*, Richter et al 2010
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anytime weighted A*, Hansen and Zhou 1997
anytime repairing A*, Likhachev et al, 2003
restarting weighted A*, Richter et al 2010

1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal
4. set n as incumbent
5. reduce w

6. if w < 1, return incumbent
7. otherwise restart the search
8. otherwise for each child c of n
9. if f(c) < f(incumbent) insert c into open
10. return incumbent
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no one best anytime algorithm (or even framework)
generally, try repairing first.
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effort of anytime A*
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effort of anytime repairing A*
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effort of restarting A*
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■ ARA*, AwA*, RwA*

describe general frameworks (wA* not important)

continued – few duplicates, tight lower bound

repairing – many duplicates, high initial bound

restarting – low h bias, cheap expansions

■ great for unknown deadlines

■ for known deadlines, deadline aware search

(Dionne et al, SoCS-11)
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■ suboptimal search minimize solving time

no guarantees on solution quality

so use inadmissible heuristics

and drop duplicate states

■ bounded suboptimal search balance time and cost

bounds on solution quality

drop duplicates when possible

looser bounds 6= always better performance

■ anytime search unknown deadlines

automatically trades time for quality

deadline agnostic

frameworks can be used with any complete algorithm
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