
Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 1 / 28

A Survey of Suboptimal Search Algorithms

Jordan T. Thayer and Wheeler Ruml

jtd7, ruml at cs.unh.edu

slides at: http://www.cs.unh.edu/˜jtd7/papers/



This is Search

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 2 / 28

■ initial state

■ expand

generates all successor states, implicitly computes g(n)

■ goal test

■ h(n)

estimates cost of reaching a goal

admissibility: non-overestimating

consistency: obeys triangle inequality

■ state: problem data

■ node: state, g, parent pointer



What is a duplicate?

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 3 / 28

1. while open has nodes
2. remove n from open with minimum h(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure

same state, different path



Common Data Structures

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 4 / 28

1. while open has nodes
2. remove n from open with minimum h(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure

■ openlist:

heap: handles real costs, large ranges of values, etc

bucket list: more efficient, requires integer values

■ closed list:

hash table: in practice, also includes open nodes



Different Kinds of Search

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 5 / 28

Grid Four-way 35%

width
800400

to
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

160000

80000

A*

greedy

suboptimal search scales better than optimal search



Different Kinds of Search

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 5 / 28

Grid Four-way 35%

width
800400

to
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

160000

80000

A*

greedy

Grid Four-way 35%

width
800400

fi
n

a
l 

so
l 

co
st

 r
e
la

ti
v
e
 t

o
 A

* 1.3

1.2

1.1

1

greedy

A*

it does so at the cost of solution quality



Different Kinds of Search

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 5 / 28

Grid Four-way 35%

Size
800400

to
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

160000

80000

A*

wA*, w = 1.5

greedy

Grid Four-way 35%

Size
800400

fi
n

a
l 

so
l 

co
st

 r
e
la

ti
v
e
 t

o
 A

*

1.4

1.2

1

greedy

wA*, w = 1.5

A*

bounded suboptimal search presents a middle ground



Simple Tips for Efficient Search

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 6 / 28

■ store open nodes in ’closed list’ as well

prevents multiple copies of a state being open at once

■ duplicate checking and delaying or dropping

■ correct tie breaking

varies by search, generally prefer high g

■ goal test on generation

then prune for bounded suboptimal search

■ recursive expansions (to reduce heap operations)



About the Tutorial

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 7 / 28

■ Jordan and I will alternate

■ bibliography at the end

■ the pseudo code

not presented during talk

included for later review

■ not comprehensive due to time constraints

each section covers ’greatest hits’

our personal experience and biases



Things We Will Discuss

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 8 / 28

■ suboptimal search minimize solving time

greedy best-first search

beam search

LSS-learning real-time Search (LSS-LRTA*)

■ bounded suboptimal search balance time and cost

weighted A*

optimistic search

■ anytime search unknown deadlines

anytime repairing A*

anytime weighted A*

restarting weighted A*



Things We Won’t Discuss

Introduction

■ Search

■ duplicates

■ structs

■ Search Types

■ Search Tips

■ Outline

■ Not Discussed

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 9 / 28

■ optimal search strategies

■ bounded-depth tree search

■ local search strategies

■ constructing heuristics

■ using disk

■ parallel algorithms

■ anything relying on distance estimates

(come back next session)



Unboundedly Suboptimal Search

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 10 / 28



Suboptimal Search: Outline

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 11 / 28

■ greedy best-first search

variant of best-first search

■ beam search: best-first, breadth-first

irrevocable pruning

■ real-time search: LSS-LRTA*

interleaves planning and acting

next session: speedy search, A* on length, beam search on d.



Greedy Best-first Search Doran and Michie 1966

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 12 / 28

1. Best-first Search On Cost-to-go Estimate, h(n).

root

A*

5 6

8

6 6

6 88

129

with admissible h, f rises resulting in vacillation
in optimal search, h prunes, in greedy it guides



Greedy Best-first Search Doran and Michie 1966

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 12 / 28

1. while open has nodes
2. remove n from open with minimum h(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure



Greedy Best-first Search Doran and Michie 1966

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 12 / 28

1. while open has nodes
2. remove n from open with minimum h(n)
2a. break ties on h in favor of low g(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure



Greedy Best-first Search Doran and Michie 1966

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 12 / 28

1. while open has nodes
2. remove n from open with minimum h(n)
2a. break ties on h in favor of low g(n)
3. if n is a goal then return n

4. otherwise for each child c of n
4a. if c was ever expanded, discard it
4b. if c is in open, keep c with smallest g
4c. otherwise insert c into open
5. return failure



Greedy Best-first Search Doran and Michie 1966

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 12 / 28

Grid Four-way 35%

width
800400

to
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

20000

10000

expand duplicates

drop duplicates

Grid Four-way 35%

Size
800400

fi
n

a
l 

so
l 

co
st

2000

1000

drop duplicates

expand duplicates

dropping duplicates improves time, harms quality



Greedy Best-first Search Doran and Michie 1966

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 12 / 28

greedy best-first search: h(n) A*: f(n) = g(n) + h(n)



Greedy Best-first Search Doran and Michie 1966

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 12 / 28

greedy best-first search: h(n) A*: f(n) = g(n) + h(n)

basic ⇒ brittle



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

Best-First Beam Search

1. run A* with a fixed sized open list
2. filter out nodes with high f(n)

fixed memory (sometimes)

conflates propulsion with pruning
doesn’t work well in practice Wilt et al SoCS-10



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

Best-First Beam Search

1. while open has nodes
2. remove n from open with minimum f(n)
3. if n is a goal then return n

4. otherwise for each child c of n
5. insert c into open
6. if open is larger than width
7. discard worst node on open
8. return failure



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

Breadth-First Beam Search

1. run breadth-first search with a fixed sized open list
2. filter out nodes with high f(n)



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

Breadth-First Beam Search

1. while open has nodes
2. for each n ∈ open
3. if n is a goal, return n

4. otherwise expand n, adding to children
5. open becomes best width nodes in children
5a. best according to f(n) = g(n) + h(n)
6. return failure



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

Breadth-First Beam Search

1. while open has nodes
2. for each n ∈ open
3. for each child c of n
4. if c is a goal, return it
5. otherwise add c to children
6. open becomes best width nodes in children
6a. best according to f(n) = g(n) + h(n)
6b. break ties in favor of high g(n)
7. return failure



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

for the uninitiated, the 15 puzzle



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

Korf's 100 15 Puzzles

log10 total raw cpu time
0-3

S
o
lu

ti
o
n

 Q
u

a
li

ty
0.8

0.4

IDA*

breadth

wA*

greedy

Life Four-way Grids 35% Obstacles

log10 total raw cpu time
210

S
o
lu

ti
o
n

 Q
u

a
li

ty

0.8

0.4

0

A*

wA*

greedy

breadth

beam search might be best approach, or it might be awful



Beam Search Rich and Knight 1991, Bisani 1992

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 13 / 28

no goals

dead ends (left) and many duplicates (right) cause problems



LSS-LRTA* Koenig And Sun, 2008

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 14 / 28

real-time search: interleave planning and acting
time bound on planning per action

1. run A* for a fixed number of expansions
2. commit to bestf
3. back-up heuristic values using djikstra variant
4. act and repeat



LSS-LRTA* Koenig And Sun, 2008

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 14 / 28

real-time search: interleave planning and acting
time bound on planning per action

1. run A* for a fixed number of expansions
2. commit to bestf
3. back-up heuristic values using djikstra variant
4. act and repeat

7

7 8

8

910

15 15



LSS-LRTA* Koenig And Sun, 2008

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 14 / 28

real-time search: interleave planning and acting
time bound on planning per action

1. run A* for a fixed number of expansions
2. commit to bestf
3. back-up heuristic values using djikstra variant
4. act and repeat

7

7 8

8

910

15 15



LSS-LRTA* Koenig And Sun, 2008

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 14 / 28

real-time search: interleave planning and acting
time bound on planning per action

1. run A* for a fixed number of expansions
2. commit to bestf
3. back-up heuristic values using djikstra variant
4. act and repeat

910

15 159

9

9

15



LSS-LRTA* Koenig And Sun, 2008

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 14 / 28

real-time search: interleave planning and acting
time bound on planning per action

1. run A* for a fixed number of expansions
2. commit to bestf
3. back-up heuristic values using djikstra variant
4. act and repeat

910

15 159

9

9

15



LSS-LRTA* Koenig And Sun, 2008

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 14 / 28

Korf's 100 15 Puzzles

log10 total raw cpu time
0-3

S
o
lu

ti
o
n

 Q
u

a
li

ty
0.8

0.4

breadth

LSS-LRTA*

greedy

Life Four-way Grids 35% Obstacles

log10 total raw cpu time
210

S
o
lu

ti
o
n

 Q
u

a
li

ty

0.8

0.4

0

greedy

breadth

LSS-LRTA*

don’t commit if you don’t have to!



Section Summary

Introduction

Suboptimal

■ Greedy

■ Beam

■ LSS-LRTA*

■ Summary

Bounded Suboptimal

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 15 / 28

■ duplicate policy affects solution cost and solving time

■ beam searches

breadth-first generally better than best-first

need closed lists, see Wilt et al SoCS-10

■ topology dictates algorithm choice

greedy if problems are small

beam search if problems too big for greedy

many dead necessitates complete searches

many duplicates necessitates duplicate dropping

■ real-time only if you have real-time constraints



Bounded Suboptimal Search

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 16 / 28



Bounded Suboptimal Search: Outline

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 17 / 28

■ weighted A*

larger w 6= faster search

■ optimistic search

selecting an appropriate optimism

handling duplicates effectively

next tutorial: skeptical search, A∗

ǫ , EES



Weighted A* Pohl 1970

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 18 / 28

1. Best-first Search on f ′(n) = g(n) + w · h(n)

w ≥ 1
placing additional emphasis on h should encourage progress
admissible h ensures bound.



Weighted A* Pohl 1970

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 18 / 28

1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal then return n

4. otherwise expand n, inserting its children into open
5. return failure

placing additional emphasis on h should encourage progress



Weighted A* Pohl 1970

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 18 / 28

1. while open has nodes
2. remove n from open with minimum f ′(n)
2a f ′(n) = g(n) + w · h(n)
2b. break ties on in favor of low f(n)
3. if n is a goal then return n

4. otherwise for each child c of n
4a. if c was ever expanded, discard it
4b. if c is in open, keep c with smallest g
4c. otherwise insert c into open
5. return failure

discarding duplicates greatly improves performance
at the cost of solution quality
only applicable with consistent heuristics



Weighted A* Pohl 1970

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 18 / 28

Life Four-way Grid World

Suboptimality
42

to
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

 r
e
la

ti
v
e
 t

o
 A

*
4

2

expand duplicates

drop_duplicates

Life Four-way Grid World

Suboptimality
42

fi
n

a
l 

so
l 

co
st

2.7e+06

2.4e+06

drop duplicates

expand duplicates

discard duplicates when possible



Weighted A* Pohl 1970

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 18 / 28

Dynamic Robot Motion Planning

Suboptimality
321

to
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

2e+07

1e+07

wA*

Dock Robot

Suboptimality
8040

to
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

8e+06

4e+06

wA*

larger w does not always mean better performance



Bound for Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 19 / 28

f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

■ p is the deepest node on
an optimal path to opt.

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)

w · g(opt)

1. works for any f ′(p) ≤ w · f(p)
2. g(p) + w · h(p) ≪ w(g(p) + h(p))!



Optimistic Search Thayer and Ruml, ICAPS-08

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 20 / 28

■ run weighted A∗ with a high weight.

■ expand node with lowest f value after a solution is found.

continue until w · bestf ≥ f(sol)

this ’clean up’ guarantees solution quality.



Optimistic Search Thayer and Ruml, ICAPS-08

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 20 / 28

■ p is the deepest node on
an optimal path to opt.

■ bestf is the node with the
smallest f value.

f(p) ≤ f(opt)
f(bestf ) ≤ f(p)

bestf provides a lower bound on solution cost

Determine bestf via priority queue sorted on f



Optimistic Search Thayer and Ruml, ICAPS-08

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 20 / 28

1. run weighted A∗ with weight (bound− 1) · 2 + 1

2. expand node with lowest f value after a solution is found.

Continue until w · bestf ≥ f(sol)

this ’clean up’ guarantees solution quality.



Optimistic Search Thayer and Ruml, ICAPS-08

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 20 / 28

1. run weighted A∗ with a high weight.

2. expand node with lowest f value after a solution is found.

continue until w · bestf ≥ f(sol)

this ’clean up’ guarantees solution quality.



Optimistic Search Thayer and Ruml, ICAPS-08

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 20 / 28



Optimistic Search Thayer and Ruml, ICAPS-08

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 20 / 28

1. w = (bound− 1) · optimism

2. while open and clean contain nodes
3. if no incumbent has been found
4. remove n from open with minimum f ′(n)
5. remove n from clean
5. if n is a goal, set incumbent to n

6. otherwise expand n, inserting its children into open and clean
7. otherwise remove n from clean with minimum f(n)
8. if bound · f(n) ≤ f(incumbent), return incumbent
9. otherwise expand n, inserting its children into open
10. return failure

In practice, clean isn’t constructed until an incumbent is found.



Optimistic Search Thayer and Ruml, ICAPS-08

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 20 / 28

Dynamic Robot Motion Planinng

Suboptimality
42

lo
g
1

0
 t

o
ta

l 
n

o
d

e
s 

g
e
n

e
ra

te
d

8

7

6

5

4

wA*

Optimism 2

Optimism 5

Optimism 20

proper optimism depends on h accuracy



Section Summary

Introduction

Suboptimal

Bounded Suboptimal

■ Weighted A*

■ Optimistic Search

■ Summary

Anytime Search

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 21 / 28

■ use weighted A* as a first approach to a problem

■ use optimistic search if you know weighted A* works well

■ duplicate handling can be important

wA* can drop, requires consistent heuristic

other algorithms can delay

■ solving problems and showing bounds can be separate steps



Anytime Search

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 22 / 28



Anytime Search Algorithms: Outline

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 23 / 28

■ anytime repairing A*

■ anytime weighted A*

■ restarting weighted A*

come back next session for d-fenestration, size-cost search



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

anytime weighted A*, Hansen and Zhou 1997

1. run weighted A*
2. if you find a goal, keep going.

anytime repairing A*, Likhachev et al, 2003

1. run weighted A*
2. if you find a duplicate, don’t look at it just yet.
3. if you find a goal
4. dump duplicates into open, reduce w, keep going.

restarting weighted A*, Richter et al 2010

1. run weighted A*
2. if you find a goal, start over with a lower weight.



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

anytime weighted A*, Hansen and Zhou 1997

1. run weighted A*
2. if you find a goal, keep going.

anytime repairing A*, Likhachev et al, 2003

1. run weighted A*
2. if you find a duplicate, don’t look at it just yet.
3. if you find a goal
4. dump duplicates into open, reduce w, keep going.

restarting weighted A*, Richter et al 2010

1. run weighted A*
2. if you find a goal, start over with a lower weight.



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

continued search, Hansen and Zhou 1997

1. run some complete suboptimal search
2. if you find a goal, keep going.

repairing search, Likhachev et al, 2003

1. run some complete parameterized search
2. if you find a duplicate, don’t look at it just yet.
3. if you find a goal
4. dump duplicates into open, change parameter, keep going.

restarting search, Richter et al 2010

1. run some complete parameterized search
2. if you find a goal, start over with a different parameter.



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

anytime weighted A*, Hansen and Zhou 1997

1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal set n as incumbent
4. otherwise for each child c of n
5. if f(c) < f(incumbent) insert c into open
6. return incumbent

anytime repairing A*, Likhachev et al, 2003
restarting weighted A*, Richter et al 2010



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

anytime weighted A*, Hansen and Zhou 1997
anytime repairing A*, Likhachev et al, 2003

1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal
4. set n as incumbent
5. empty delay into open
6. reduce w

7. otherwise for each child c of n
8. if c was ever expanded, add it to delay
9. otherwise insert c into open
10. return incumbent

restarting weighted A*, Richter et al 2010



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

anytime weighted A*, Hansen and Zhou 1997
anytime repairing A*, Likhachev et al, 2003
restarting weighted A*, Richter et al 2010

1. while open has nodes
2. remove n from open with minimum f ′(n)
3. if n is a goal
4. set n as incumbent
5. reduce w

6. if w < 1, return incumbent
7. otherwise restart the search
8. otherwise for each child c of n
9. if f(c) < f(incumbent) insert c into open
10. return incumbent



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

Life Four-way Grids 35% Obstacles

raw cpu time
40200

S
o
lu

ti
o
n

 Q
u

a
li

ty
0.8

0.4

0

ARA*

AwA*

RWA*

Korf's 100 15 Puzzles

raw cpu time
3002001000

S
o
lu

ti
o
n

 Q
u

a
li

ty

0.96

0.88

0.8

RwA*

ARA*

AwA*

no one best anytime algorithm (or even framework)
generally, try repairing first.



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

effort of anytime A*



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

effort of anytime repairing A*



Anytime Algorithms Based on Weighted A*

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 24 / 28

effort of restarting A*



Summary Anytime Search

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

■ wA* Variants

■ Summary

Summary

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 25 / 28

■ ARA*, AwA*, RwA*

describe general frameworks (wA* not important)

continued – few duplicates, tight lower bound

repairing – many duplicates, high initial bound

restarting – low h bias, cheap expansions

■ great for unknown deadlines

■ for known deadlines, deadline aware search

(Dionne et al, SoCS-11)



Summary

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

■ Bibliography

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 26 / 28



Things We Discussed

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

■ Bibliography

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 27 / 28

■ suboptimal search minimize solving time

no guarantees on solution quality

so use inadmissible heuristics

and drop duplicate states

■ bounded suboptimal search balance time and cost

bounds on solution quality

drop duplicates when possible

looser bounds 6= always better performance

■ anytime search unknown deadlines

automatically trades time for quality

deadline agnostic

frameworks can be used with any complete algorithm



Bibliography

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

■ Bibliography

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 28 / 28

■ J. E. Dorand and D. Michie,
“Experiments with the Graph Traverser Program”,
Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 1966.

■ Ira Pohl, “Heuristic Search Viewed as Path Finding in a Graph”,
Artificial Intelligence volume 1, 1970.

■ Elain Rich and Kevin Knight, “Artificial Intelligence”, 1991.

■ Sven Koenig and Xiaoxun Sun,
“Comparing Real-Time and Incremental Heuristic Search for
Real-Time Situated Agents”,
AAMAS-2008.

■ Jordan T. Thayer and Wheeler Ruml,
“Faster Than Weigthed A*:
An Optimistic Approach to Bounded Suboptimal Search”,
ICAPS-2008.



Bibliography

Introduction

Suboptimal

Bounded Suboptimal

Anytime Search

Summary

■ Bibliography

Jordan Thayer and Wheeler Ruml (UNH) Suboptimal Search – 28 / 28

■ Eric A. Hansen, Shlomo Zilberstein and Victor A. Danilchenko,
“Anytime Heuristic Search: First Results”,
University of Massachusetts, Amherst Technical Repart 97-50,
1997.

■ Maxim Likhachev, Geoff Gordon and Sebastian Thrun
“ARA*: Anytime A* with Provable Bounds on Sub-Optimality”,
NIPS-2003.

■ Eric A. Hansen and Rong Zhou,
”Anytime Heuristic Search”,
Journal of Artificial Intelligence Research volume 28, 2007.

■ Silvia Richter, Jordan T. Thayer and Wheeler Ruml,
”The Joy of Forgetting: Faster Anytime Search via Restarting”,
ICAPS-2010.

■ Chris Wilt, Jordan T. Thayer, and Wheeler Ruml,
“A Comparison of Greedy Search Algorithms”, SoCS-2010.


	Introduction
	This is Search
	What is a duplicate?
	Common Data Structures
	Different Kinds of Search
	Simple Tips for Efficient Search
	About the Tutorial
	Things We Will Discuss
	Things We Won't Discuss

	Unboundedly Suboptimal Search
	Suboptimal Search: Outline
	Greedy Best-first Search Doran and Michie 1966
	Beam Search Rich and Knight 1991, Bisani 1992
	LSS-LRTA* Koenig And Sun, 2008
	Section Summary

	Bounded Suboptimal Search
	Bounded Suboptimal Search: Outline
	Weighted A* Pohl 1970
	Bound for Weighted A*
	Optimistic Search Thayer and Ruml, ICAPS-08
	Section Summary

	Anytime Search
	Anytime Search Algorithms: Outline
	Anytime Algorithms Based on Weighted A*
	Summary Anytime Search

	Summary
	Things We Discussed
	Bibliography


