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All actual work done by my fantastic students and collaborators.
Grateful thanks to NSF, BSF, and DARPA.
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Heuristic Search Is Fundamental

Why Suboptimal? Search enables planning / action selection

.

B Behavior of A* B achieve goal robustly

B Optimal Isn't .- . .

S i O B optimize resource. yse (time, energy, pollution, ...)
B Info Sources B autonomy or decision-support

M Classic Al Agent -

B Alg as Agent B support retaskability, AGI

Greedy Search
Bounded-suboptimal Search enables algorithms

Contract Search

B dynamic programming
B discrete optimization
B ‘intractable’ — possible

Real-time Search

Conclusion
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B Alg as Agent B support retaskability, AGI

Greedy Search
Bounded-suboptimal Search enables algorithms

Contract Search

B dynamic programming
B discrete optimization
B ‘intractable’ — possible

Real-time Search

Conclusion

Point 1/3: Suboptimal search is the most important kind!
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Dijkstra vs A* for Pathfinding

Why Suboptimal?
B Search Rocks

B Optimal Isn't

B Problem Settings
B Info Sources

M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

uniform-cost search: best-first on ¢
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Dijkstra vs A* for Pathfinding

Why Suboptimal?
B Search Rocks

B Optimal Isn't

B Problem Settings
B Info Sources

M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

A*: best-firston f =g+ h
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A* (Hart, Nilsson, and Raphael, 1968!

Why Suboptimal?

B Search Rocks

B Behavior of A*

B Optimal Isn't
B Problem Settings
B Info Sources
M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

start

goal
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A* !Hart, Nilsson, and Raphael, 1968!

B Behavior of A*
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A* SHart, Nilsson, and Raphael, 1968!

B Behavior of A*

f=g+h <f*

heuristic is more about procrastination or pruning than guidance
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Optimal Search is Provably Impractical

Why Suboptimal?

B Search Rocks
B Behavior of A*

B Optimal Isn't

B Problem Settings
M Info Sources

M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

all nodes with g(n) + h(n) < f*

Helmert and Roger, “How Good is Almost Perfect?”, AAAI-08
Best Paper Award:

In many cases, such as the
GRIPPER domain and a family of MiCcoNIC tasks, there is no
significant difference in node expansions between A" with
an almost perfect heuristic and breadth-first search.

We suggest that, beyond a certain point, trying fo im-
prove a heuristic search algorithm by refining 1ts heuristic
estimates 15 basically frutless.
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all nodes with g(n) + h(n) < f*

Helmert and Roger, “How Good is Almost Perfect?”, AAAI-08
Best Paper Award:

In many cases, such as the
GRIPPER domain and a family of MiCcoNIC tasks, there is no
significant difference in node expansions between A" with
an almost perfect heuristic and breadth-first search.

We suggest that, beyond a certain point, trying fo im-
prove a heuristic search algorithm by refining 1ts heuristic
estimates 15 basically frutless.

detecting symmetries and partial orders only fixes modeling errors
suboptimal search is the practical answer!
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Suboptimal Search Problem Settings

Why Suboptimal?

B Search Rocks
B Behavior of A*
B Optimal Isn't

B Problem Settings

M Info Sources

B Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

optimal:

minimize solution cost
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Suboptimal Search Problem Settings

Why Suboptimal?

B Search Rocks
B Behavior of A*
B Optimal Isn't

B Problem Settings

B Info Sources
M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

optimal: minimize solution cost

greedy: minimize solving time

bounded suboptimality: minimize time subject to relative
cost bound (factor of optimal)

bounded cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound
anytime: incrementally converge to optimal
utility: maximize function of cost and time

real-time: return next action within absolute time bound
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Suboptimal Search Problem Settings

Why Suboptimal?

B Search Rocks
B Behavior of A*
B Optimal Isn't

B Problem Settings

B Info Sources
M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

optimal: minimize solution cost

greedy: minimize solving time

bounded suboptimality: minimize time subject to relative
cost bound (factor of optimal)

bounded cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound
anytime: incrementally converge to optimal
utility: maximize function of cost and time

real-time: return next action within absolute time bound

My personal very biased view!
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Taking Suboptimal Search Seriously: More Information

Why Suboptimal?

B Search Rocks

B Behavior of A*
B Optimal Isn't

B Problem Settings

B Info Sources

M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

information that becomes available during problem-solving

Point 2/3: many sources of information beyond h!

?L(n) unbiased heuristics (possibly learned on-line from h)

d(n): distance-to-go estimates (eg, unit-cost h)

experience so far: eg, how misleading are estimates? how many
paths look promising?

beliefs: distributions over values, quantify uncertainty

not today: preferred actions / policies
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Classic Al Agent

Why Suboptimal?

B Search Rocks

B Behavior of A*
B Optimal Isn't

B Problem Settings
B Info Sources

B Classic Al Agent

B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

sensing

agent

world model

k
oy

| |

!

actions

planner

search

world
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Point 3/3: Search Algorithm as an Agent

Why Suboptimal?

B Search Rocks

B Behavior of A*
B Optimal Isn't

B Problem Settings
B Info Sources

M Classic Al Agent
B Alg as Agent

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

search algorithm

children,
g, h values

)

model of space

AN

| |

!

expand

meta-reasoner

open list

domain

—
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Greedy Search

Greedy Search
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Inadmissible Heuristics 7

Why Suboptimal?

Greedy Search

B Inadmissible kA

B Distance-to-go
B d Performance
B Why?
B GBFS Behavior
B Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

finding solutions as quickly as possible

Greedy best-first search (GBFS): best-first search on h
inadmissible A can be more informed

400 —

total raw cpu time
S
[}
|

Heavy Vacuum

admiss. h

= === nadmiss. h

searching on h is faster than h
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Distance-to-go

Why Suboptimal?

Greedy Search

B Inadmissible A

B Distance-to-go

B d Performance
B Why?
B GBFS Behavior
B Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

minimize solving time = minimize number of expansions to goal

for domains with costs, this is not h(n)
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Distance-to-go

Why Suboptimal?

Greedy Search

B Inadmissible A

B Distance-to-go

B d Performance
B Why?
B GBFS Behavior
B Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

minimize solving time = minimize number of expansions to goal

for domains with costs, this is not h(n)

AN

d(n) distance-to-go, remaining solution path length, arcs-to-go,

hops-to-go

Yy o

N >

|
— o
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Performance of Distance-to-go

Why Suboptimal?

Greedy Search

B Inadmissible A
B Distance-to-go

B d Performance

B Why?
B GBFS Behavior
B Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Greedy: best-first search on 1.
Speedy: best-first search on d (Thayer, Ruml, and Kreis,

SoCS-09)

Heavy Vacuum

admiss. h
= === nadmiss. h
400

[«]
£
+~
]
o
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B
]
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S 200 —
=]
it

| | |

10 20 30

searching on d is faster than h
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Why Is Speedy Faster Than Greedy?

Why Suboptimal?

Greedy Search

B Inadmissible A
B Distance-to-go

B d Performance

W Why?

B GBFS Behavior
B Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

why faster than A7 (Wilt and Ruml, SoCS-14)

B not: predicts search effort
B local minima are smaller

Domain  Cost Max Local Expected Exp
Min Size  Min Size
Tiles unit 392 2 301
inverse 51,532 37 93,010
rev inv 2091 2 8b5
Hanoi unit 7,587 1,892 36,023
rev sq 35,874 4,416 559,250
square 2,034 201 4,663
TopSpin unit 296 250 033
sum 022 3 749
stripe 240 3 441
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Minimum Size Controls GBFS

Why Suboptimal?

Greedy Search

B Inadmissible h
B Distance-to-go

B d Performance
B Why?

B GBFS Behavior

B Others

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

intuition: for high cost ratios, many annoyingly cheap paths
required to compensate for one unforeseen expensive action
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Other Greedy Search Algorithms

Why Suboptimal?

Greedy Search
M Inadmissible h
B Distance-to-go

B d Performance
B Why?
B GBFS Behavior

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

robust greedy search is a wide open area!

e-greedy, type-wA*, beam search
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Bounded-suboptimal

Bounded-suboptimal Search
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Bounded-suboptimal Search: Weighted A*

Why Suboptimal? quickly find a solution within factor b of optimal

Greedy Search

simple hack (Pohl, AlJ 1970): f'(n) = g(n) +b- h(n)

Bounded-suboptimal

B Weighted A*

B RR-d
B Planning
B Search

Contract Search

Real-time Search

Conclusion

Wheeler Ruml (UNH) Suboptimal Heuristic Search — 18 / 52



Bounded-suboptimal Search: Weighted A*

Why Suboptimal?

Greedy Search

Bounded-suboptimal

B Weighted A*

B RR-d
B Planning
B Search

Contract Search

Real-time Search

Conclusion

quickly find a solution within factor b of optimal

simple hack (Pohl, AlJ 1970): f'(n) = g(n) +b- h(n)

fmin = lowest f(n) on open

the key lemma: f,,:, is a global lower bound

1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path start

3. fmin < f(p) =g(p) + h(p) < f*

can expand any node with f(n) <b- fin
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Bounded-suboptimal Search: RR-d

Why Suboptimal? quickly find a solution within factor b of optimal

Greedy Search

two tasks: find sol < b- fin, raise fimin

Bounded-suboptimal
B Weighted A*

WRRd

i RR-d (Fickert, Gu, and Ruml, AAAI-22):

Contract Search multi-queue alternation (Roger and Helmert, ICAPS-10)
Real-time search open: sorted on f, explore

Conclusion T

focal: sorted on d, exploit
cleanup: sorted on f, raise bound

filter for open and focal: f(n) < b- fiin

obvious ablations/substitutions are worse
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IPC Coverage sb = 1.5!

Why Suboptimal? A g_)

Greedy Search aé: (Iﬁ (d,_) % 2 E
soeekspinel. | Coverage = w Ao O « o
B RR-d Sum (1652) 995 067 1012 | 894 982 1025
Normalized(%) 58.7 57.0 60.0 | 51.5 57.9 60.7
Contract Search Expansions 569 558 472 | 734 665 383

Real-time Search

Conclusion
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Search Domains

Why Suboptimal? Uniform Vacuum World

Greedy Search 102 Solved: 41
Bounded-suboptimal = RR-DPS
B Weighted A* DPS

B RR-d m— WA*

M Planning = EES
= RR-DXES

RR-d

Contract Search

Real-time Search

1]
Conclusion 10
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Search Domains

Why Suboptimal? Heavy Tlle

Greedy Search 102 Solved: 34
Bounded-suboptimal = RR-DPS
B Weighted A* DPS

B RR-d — VA

M Planning \ = EES
—— RR-DXES
Contract Search RR-d
Real-time Search

Conclusion \

1.5 2.0 2.5 3.0

100,
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Search Domains

Why Suboptimal? IHVGI‘SG Tlle

Greedy Search Solved: 100
Bounded-suboptimal = EES
B Weighted A* = RR-DXES

B RR-d RR-d
B Planning

104

Contract Search

Real-time Search

Conclusion

many duplicates: ®,,xp (Chen and Sturtevant, AAAI-21)
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Contract Search

Contract Search
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Ingredients for Contract Search

Why Suboptimal? find cheapest solution within deadline
Greedy Search note: anytime algorithms (should) optimize for unknown deadline

Bounded-suboptimal

Contract Search

B Ingredients n

B DAS
B DAS Results
B Summary So Far

Yy o
Il
N =~
Il
— O

Real-time Search

| |
Conclusion L ‘
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Ingredients for Contract Search

Why Suboptimal? find cheapest solution within deadline
Greedy Search note: anytime algorithms (should) optimize for unknown deadline

Bounded-suboptimal

Contract Search

B Ingredients n

B DAS
B DAS Results
B Summary So Far

Yy o
Il
N =~
Il
—_ O

Real-time Search

| |
Conclusion ,L ‘

AN

d(n) distance-to-go

expansion delay: number of expansions when a node is
generated and expanded

B d(n)- delay estimates expansions to goal

B time per expansion
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Deadline-Aware Search SDionne, Thayer, Ruml, SoCS—ll!

Why Suboptimal? find cheapest solution within deadline

Greedy Search

Deadline Aware Search

Bounded-suboptimal

i S 1. while (time) < (deadline) and open is non-empty
die“ts 2. dpmar < calculate d bound
WDAS |

B DAS Results
B Summary So Far

s < pop lowest f state from open
if sis a goal and is better than incumbent
incumbent < s

AN

3
4
5.
6. elseif d(s) < dpaz, expand s
2
3
0.

Real-time Search

Conclusion

else prune s
if open empties, recover some pruned states
return incumbent

ripe for improvement!
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Results for Deadline-Aware Search

Why Suboptimal? DAS Korf 100 Tiles
Greedy Search 0.9 ssssss ARA* (wt=3.0) 1
Bounded-suboptimal mmnnn. ARA#* {Wt=6.0) . "I"
*

Contract Search 4? T RWA* (wt=3.0) .*‘:‘o‘ " \
M Ingredients @ - OS5 ‘*‘ “0“ I ‘_',
W DAS > ” o & 2 i

g RWA®* (wt=6.0) v & 5
s e I '
B Summary So Far 'E 0.6 — .s I

5 0.
Real-time Search o f

79 I
Conclusion i f I

1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32
Deadline (seconds)
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Results for Deadline-Aware Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

B Ingredients
B DAS

B DAS Results

B Summary So Far

Real-time Search

Conclusion

Solution Quality
o
|

o
o0
|

Dynamic Robot 500x500 (75 Lines)

— DAS
TLLTLTTITT ARA‘{‘ (W‘t:S.O)

ssssur ARA* (wt=1.5) o e
RWA* (wt=3.0 . 1

- CS s

W

ot .
ui““ 1' L T o
-.. v
,I

1/64 1/32 1/16 1/8 14 1/2 1 2 4 8 16 32 64
Deadline (seconds)
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Summary So Far

Why Suboptimal? B Optimal search is impractical
Greedy Search | LOtS Of room for CreatiVity in SUbOptimal SearCh

Bounded-suboptimal

Going beyond lower bounds on cost-to-go:

Contract Search

B Ingredients .. >

B DAS B Inadmissible cost-to-go f

B DAS Results B Inadmissible distance-to-go d: Speedy
= 7

B RR-duses f, f, and d

see also XES (IJCAI-21)

see also EES/Anytime EES

see also Dynamic-f (JAIR, 2015)
B DAS also uses expansion delay

Real-time Search

Conclusion

next: exploiting estimates of uncertainty
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Real-time Search

Real-time Search
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Real-time Heuristic Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search

B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

return next action within prespecified time bound

agent

‘ ‘ \g oal
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Real-time Heuristic Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search

B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

return next action within prespecified time bound

search frontier

-
/

~

‘

—

\g oal
- -~ \
)
/
/
/

v

-
~
—

search for bounded time
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Real-time Heuristic Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search

B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

return next action within prespecified time bound

search frontier

best

top level action

‘\
X
X
N,
A
A

y'e

—

best node on

the frontier
| | goal
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Real-time Heuristic Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search

B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

return next action within prespecified time bound

best
top level action

|| || Qoal

commits to best action
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Real-time Heuristic Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search

B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

return next action within prespecified time bound

agent

|| || Xgoal
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Real-time Heuristic Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search

B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

return next action within prespecified time bound

search frontier

. oal
best ‘\ _ g
toplevelacUon

agent ~

concurrent search and execution, online planning,
‘receding horizon control’
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Classic Real-time Search: LSS-LRTA* (Koenig&Sun 2008

Why Suboptimal? th ree phaseS:

Greedy Search

1. Lookahead:
expand minimum f node
Realtime Search 2. Decision-making:
backup minimum f from frontier (‘minimin’)

Bounded-suboptimal

Contract Search

B The Issues . . ..

B Decision-making select top-level action with minimum f
M Lookahead 3. Learning:

B Risky Lookahead .

W Summary update heuristic values

B Whence Beliefs?
B Completeness

B Results ] .
B Planning repeat until goal achieved

(avoid loops, escape local minima, ensure completeness)

Conclusion
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Taking Real-time Search Seriously

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search

B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

three phases:

1.

Lookahead:
Which nodes to expand?
minimum f optimal for A* (offline optimal)
what about online?
Decision-making:
Which action to pick?
lowest f optimal for A* (offline optimal)
what about online?
Learning:
How to backup from frontier?
minimin optimal for A* (offline optimal deterministic)
Bellman optimal for VI (offline optimal stochastic)
what about online?
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Decision-making: An Example (Pemberton & Korf 1995!

Why Suboptimal? Should an agent at A move to By or By?
Greedy Search (z; are unknown but i.i.d. uniform 0-1)

Bounded-suboptimal

Contract Search

Real-time Search
B Real-time Search
M The Issues

B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

lower bound on cost-to-go h =0,s0 f =g

some z; will be revealed at the next step
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Decision-making: An Example (Pemberton & Korf 1995!

Should an agent at A move to By or By?

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues

B Decision-making

B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

(z; are unknown but i.i.d. uniform 0-1)

0.4

PO
J .

ol
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Decision-making: An Example (Pemberton & Korf 1995!

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues

B Decision-making

B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

Should an agent at A move to By or By?
(z; are unknown but i.i.d. uniform 0-1)

PO
J .

0.4

ol

but decision theory says minimize expected value
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Decision-making: An Example (Pemberton & Korf 1995!

Should an agent at A move to By or By?

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues

B Decision-making

B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

(z; are unknown but i.i.d. uniform 0-1)

A

f Is expected total plan cost

four x; will be revealed at the next step
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Lookahead: An Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues

B Decision-making

B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

o
v
%

fe) f(8)

AN

f is expected value

Should an agent expand nodes under « or 57
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Lookahead: An Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues

B Decision-making

B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

belief about «

belief about

fe) f(8)

AN

f is expected value

Should an agent expand nodes under « or (57

f is not the answer: what to do?
want to maximize value of information
need to consider uncertainty of estimates
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Nancy: Risk-based Lookahead

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search
B Real-time Search
B The Issues

B Decision-making
B Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

Nancy (Mitchell et al, AAAI-19; Fickert et al, AAAI-20)

want to maximize value of information

expand nodes which minimize expected regret

relies on belief over values

choose expansions that decrease uncertainty about best
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Risk-based Lookahead Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues
B Decision-making
B Lookahead

B Risky Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

expand under « or 37

A

g
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Risk-based Lookahead Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
M The Issues
B Decision-making
B Lookahead

B Risky Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

expand under « or 37

g

B @

— T~

need 2 things:
1) current beliefs
2) estimate of how beliefs might change with search
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Risk-based Lookahead Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
M The Issues
B Decision-making
B Lookahead

B Risky Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

expand under « or 37

Al 8

By @

N

- -

need 2 things:
1) current beliefs
2) estimate of how beliefs might change with search
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Risk-based Lookahead Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
M The Issues
B Decision-making
B Lookahead

B Risky Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

expand under « or 37

g

riske & T~

Risk: expected regret if a suboptimal action is selected
« is TLA with lowest expected value, other is

E

\

f*(a) = £4(8)

Vs

our regret

B <)

when o not best
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Risk-based Lookahead Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
M The Issues
B Decision-making
B Lookahead

B Risky Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

expand under « or 37

Al B

N
/ N\

= mm = L

Risk: expected regret if a suboptimal action is selected
« is TLA with lowest expected value, other is

E

\

f*(a) = £4(8)

Vs

our regret

B <)

when o not best
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Risk-based Lookahead Example

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues
B Decision-making
B Lookahead

B Risky Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

expand under « or 37

Al B

Q

1
riske & ol o~ N

,/
risk A ~ ~ 4

expand under the TLA that minimizes risk!
expand under !

Wheeler Ruml (UNH)

Suboptimal Heuristic Search — 36 / 52



Nancy Backups

Why Suboptimal? @

Greedy Search Oé /B |

Bounded-suboptimal O A0 % 5 1

Contract Search

Real-time Search @ @

B Real-time Search

B The Issues O. .5 O 3 .35
B Decision-making

G © ¢ G
B Risky Lookahead o

B Summary ‘/l\ ‘/'\

B Whence Beliefs?

(43 N
B Completeness r “
B Results

B Planning

Conclusion Nan Cy:
parent < belief with minimum f among successors
conveys an entire belief distribution

Wheeler Ruml (UNH) Suboptimal Heuristic Search — 37 / 52



Open Problem: How to Back-up Frontier Values

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
M The Issues
B Decision-making
B Lookahead

B Risky Lookahead

B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

minimin: parent gets best child’s f
assumes no more information will become available
Bellman: parent gets expected-best child’s ]/‘\
assumes no more information will become available

Nancy: parent gets expected-best child’'s belief
assumes no more information will become available
Cserna: parent gets expected min over all children’s beliefs
assumes we will know optimal choices

something intermediate would seem appropriate!
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Nancy’s Response to the Central Issues

Why Suboptimal? 1. Lookahead:

Greedy Search Which nodes to expand?
Bounded-suboptimal those that minimize risk

Contract Search 2. Decision-making:

Real-time Search Which action to pick?

B Real-time Search .. -~ ] ]

B The Issues minimum f (rationality)

B Decision-making 3 Learning.

B Lookahead ) ' ]

B Risky Lookahead How to backup from frontier?
T backup beliefs (‘Nancy backups')
B Completeness

B Results

— [Pk minimizing uncertainty drives the search
Conclusion

see also XES (bounded-cost search, IJCAI-21)
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How to Form Beliefs?

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?

B Completeness
B Results
B Planning

Conclusion

Nancy: Heuristic values: scalar — probability distribution (belief)

How to form beliefs?
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How to Form Beliefs?

Why Suboptimal? Nancy: Heuristic values: scalar — probability distribution (belief)

Greedy Search
Bounded-suboptimal How to form beliefs?

Contract Search

Real-time Search assumptions:
M Real-time Search

M The Issues Gaussian at f with width o d, truncated at f

B Decision-making

W Lookahead online learning with few parameters
B Risky Lookahead
B Summary

B Whence Beliefs?

B Completeness

W Results training data:
B Planning

Conclusion histogram of previous h* given h
offline learning with many parameters
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Example h* Distribution: Transport vs Blocks World

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

B Real-time Search
B The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?

B Completeness
B Results
B Planning

Conclusion

What do the distributions look like?

h* distribution

40 1

301

201

10

1 | i

0

5 10 15 20 5

Beliefs differ by domain. Often not Gaussian!

Wheeler Ruml (UNH)
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A New General Completeness Proof

—— conditions on problem:
Uy Semves 1. initial beliefs have finite expected value
SoundecsBoRtima. . D positive action costs

SSifcas 3. finite state space

Real-time Search

B Real-time Search 4 no dead_ends

B The Issues o .

B Decision-making conditions on algorithm:

B Lookahead

W Risky Lookahead 1. goal—awa re

B Summar . .

B Vhonce Belicfe? 2. learning creates local consistency (eg, DP)

3. selects actions via f

B Results
B Planning

Conclusion

This proof applies to any LSS-LRTA*-style algorithm
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Example Results: Racetrack

Why Suboptimal?

Greedy Search

Bounded-suboptimal -20

Contract Search

0
o -40
Real-time Search *U
B Real-time Search <
B The Issues o 60
B Decision-making &I
M Lookahead _,' -80
B Risky Lookahead §
B Summary o
B Whence Beliefs? E e
B Completeness %’
210
B Planning
Conclusion —140 Algorithm
Nancy (DD)
160 LSS-LRTA*
Nancy
30 100 300 1000

Node Expansion Limit

Even assumptions work well!
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IPC Planning: Mean Solution Cost

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search
B Real-time Search
M The Issues

B Decision-making
B Lookahead

B Risky Lookahead
B Summary

B Whence Beliefs?
B Completeness

B Results

B Planning

Conclusion

LSS-  Nancy Nancy
LRTA* (Gauss) (data)

Barman 559 702 415
Blocksworld 35 39 34
Elevators-unit 34 27 20
Parking 62 27 31
Rovers 31 29 33
Satellite 15 17 16
Termes 662 129 238
Tidybot 30 30 29
Transport 499 567 422
Transport-unit 35 29 27
VisitAll 52 50 52

Data works when assumptions don't!

Wheeler Ruml (UNH)
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Conclusion

Conclusion
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Recap: Suboptimal Heuristic Search

Why Suboptimal? Suboptimal search is the most important kind!

Greedy Search B practical instead of provably intractable
Soundecsuboptimal | gy distinct settings: bounded-suboptimal, contract, utility...

Contract Search

Real-time Search many sources of information beyond h!
C lusi . . .
v B unbiased estimates (can be learned online)

B Questions? B distance-to-go, not just cost
B beliefs can model uncertainty

search algorithm as agents

B entire Al agent toolbox applies
what to represent, how to estimate
how to exploit experience
B search highlights issues more clearly than RL

Suboptimal heuristic search needs YOU!
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Questions?

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

B Recap

M Questions?
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Back-Up Slides

Back-Up Slides

Wheeler Ruml (UNH) Suboptimal Heuristic Search — 48 / 52



A Simple Bounded-suboptimal Search: Weighted A*

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

B Weighted A*

B Learning ]?
B EES Bound
B Subopt. Search

simple hack: f'(n) = g(n) +w - h(n)
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A Simple Bounded-suboptimal Search: Weighted A*

T —_— simple hack: f'(n) = g(n) +w - h(n)

Greedy Search

Bounded-suboptimal fmzn — |OW€St f(’]’L) on opeéen

Contract Search .

Real-time Search the key lemma: f,,;, Is a global lower bound

SeicTaich 1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path

B Leaming | 3. fmin < f(p) = g9() +h(p) < f*

M EES Bound

B Subopt. Search
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A Simple Bounded-suboptimal Search: Weighted A*

T —_— simple hack: f'(n) = g(n) +w - h(n)

Greedy Search

Bounded-suboptimal fmzn — |0W€St f(’]’L) on opeéen

Contract Search .

Real-time Search the key lemma: f,,;, Is a global lower bound

SeicTaich 1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path

B Leaming | 3. fmin < f(p) = g9() +h(p) < f*

M EES Bound

B Subopt. Search

wA*'s bounded suboptimality:

f'(s) < f'(p)
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A Simple Bounded-suboptimal Search: Weighted A*

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

B Weighted A*

B Learning f
B EES Bound
B Subopt. Search

simple hack: f'(n) = g(n) +w - h(n)

fmin = lowest f(n) on open

the key lemma: f,,;, Is a global lower bound

1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path

3. fmin < f(p) =g(p) + h(p) < f*

wA*'s bounded suboptimality:

f'(s) < f(p)
g(s) = = g(p) +w - h(p)
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A Simple Bounded-suboptimal Search: Weighted A*

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

B Weighted A*

B Learning f
B EES Bound
B Subopt. Search

simple hack: f'(n) = g(n) +w - h(n)

fmin = lowest f(n) on open

the key lemma: f,,;, Is a global lower bound

1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path

3. fmin < f(p) =g(p) + h(p) < f*

wA*'s bounded suboptimality:

f'(s) < f'(p)
g(s) = = g(p) +w - h(p)
<w- f(p) <w- f*
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A Simple Bounded-suboptimal Search: Weighted A*

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

B Weighted A*

B Learning f
B EES Bound
B Subopt. Search

simple hack: f'(n) = g(n) +w - h(n)

fmin = lowest f(n) on open

the key lemma: f,,;, Is a global lower bound

1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path

3. fmin < f(p) =g(p) + h(p) < f*

wA*'s bounded suboptimality:

f'(s) < f'(p)
g(s) = = g(p) +w - h(p)
<w- f(p) <w- f*

note that any node with f(n) < w - fiun can be expanded!
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Debiasing i Via Temporal Difference Learning

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

B Weighted A*

B Learning f

B EES Bound
B Subopt. Search
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Debiasing i Via Temporal Difference Learning

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

Conclusion

Back-Up Slides

B Weighted A*

B Learning f

B EES Bound
B Subopt. Search

f(p) should equal f(bc)
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Debiasing i Via Temporal Difference Learning

f(p) should equal f(bc)

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

(o) = f*(bec)
g(p) +h*(p) = g(bec) + h*(be)

Real-time Search

Conclusion ° " B N
Seale Up Slides o h*(p) = c(p,bc)+ h*(be)
B Weighted A* °

B Learning f

B EES Bound
B Subopt. Search
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Debiasing i Via Temporal Difference Learning

f(p) should equal f(bc)

Why Suboptimal?

Greedy Search

Bounded-suboptimal

f*(p) S (bc)
g(bc) + h*(bc)

c(p, be) + h™(be)

Contract Search

Real-time Search

Conclusion

°

~s

*

=
|

Back-Up Slides . °
| |
B Weighted A*

~ . °
M Learning f "
.
|

Bl EES Bound

B Subopt. Search

h(bc) + c¢(p, bc) — e,

= h(bc) + c(p,bc) — h(p)
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Debiasing i Via Temporal Difference Learning

f(p) should equal f(bc)

Why Suboptimal?

Greedy Search

Bounded-suboptimal

ff(p) = f(bc)
g(p) +h*(p) = g(bc)+ h™(be)
c(p, be) + h™(be)

Contract Search

Real-time Search

Conclusion

°

~s

*

=
|

Back-Up Slides . °
B Weighted A* -

~ . °
M Learning f "
|

Bl EES Bound

B Subopt. Search E h(p) — h(bC) + C(p, bC) — €y,

: e, = h(bc)+ c(p,bc) — h(p)
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EES’ Bounded Suboptimality

g(n) = <w- f*

B EES Bound
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A Science of Suboptimal Search

Why Suboptimal? it's time to take suboptimality seriously!

Greedy Search

Bounded-suboptimal

B estimates, not lower bounds
B belief distributions to quantify uncertainty

Contract Search

Real-time Search

Conclusion

Back-Up Slides
B Weighted A*

B Learning ]?
B EES Bound

m EES Bound _ _ . .
acting under uncertainty to maximize utility
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A Science of Suboptimal Search

Why Suboptimal? it's time to take suboptimality seriously!

Greedy Search

Bounded-suboptimal

B estimates, not lower bounds
B belief distributions to quantify uncertainty

Contract Search

Real-time Search

Conclusion

Back-Up Slides
B Weighted A*

B Learning ]?
B EES Bound

m EES Bound _ _ . .
acting under uncertainty to maximize utility
— all of Al
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