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All actual work done by my fantastic students and collaborators.

Grateful thanks to NSF, BSF, and DARPA.
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Search enables planning / action selection

■ achieve goal robustly
■ optimize resource use (time, energy, pollution, . . . )
■ autonomy or decision-support
■ support retaskability, AGI

Search enables algorithms

■ dynamic programming
■ discrete optimization
■ ‘intractable’ → possible
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Search enables planning / action selection

■ achieve goal robustly
■ optimize resource use (time, energy, pollution, . . . )
■ autonomy or decision-support
■ support retaskability, AGI

Search enables algorithms

■ dynamic programming
■ discrete optimization
■ ‘intractable’ → possible

Point 1/3: Suboptimal search is the most important kind!
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uniform-cost search: best-first on g
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A*: best-first on f = g + h
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goalstart
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f = g + h < f*

heuristic is more about procrastination or pruning than guidance
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all nodes with g(n) + h(n) < f∗

Helmert and Röger, “How Good is Almost Perfect?”, AAAI-08
Best Paper Award:
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all nodes with g(n) + h(n) < f∗

Helmert and Röger, “How Good is Almost Perfect?”, AAAI-08
Best Paper Award:

detecting symmetries and partial orders only fixes modeling errors
suboptimal search is the practical answer!
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optimal: minimize solution cost

greedy: minimize solving time

bounded suboptimality: minimize time subject to relative
cost bound (factor of optimal)

bounded cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound

anytime: incrementally converge to optimal

utility: maximize function of cost and time

real-time: return next action within absolute time bound
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optimal: minimize solution cost

greedy: minimize solving time

bounded suboptimality: minimize time subject to relative
cost bound (factor of optimal)

bounded cost: minimize time subject to absolute cost bound

contract: minimize cost subject to absolute time bound

anytime: incrementally converge to optimal

utility: maximize function of cost and time

real-time: return next action within absolute time bound

My personal very biased view!
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information that becomes available during problem-solving

Point 2/3: many sources of information beyond h!

ĥ(n): unbiased heuristics (possibly learned on-line from h)

d̂(n): distance-to-go estimates (eg, unit-cost h)

experience so far: eg, how misleading are estimates? how many
paths look promising?

beliefs: distributions over values, quantify uncertainty

not today: preferred actions / policies
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world model

planner

search

agent

world

actions

sensing
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model of space

meta-reasoner

open list

search algorithm

domain

expand

g, h values

children,
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finding solutions as quickly as possible

Greedy best-first search (GBFS): best-first search on h

inadmissible ĥ can be more informed
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minimize solving time = minimize number of expansions to goal

for domains with costs, this is not h(n)
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minimize solving time = minimize number of expansions to goal

for domains with costs, this is not h(n)

d̂(n) distance-to-go, remaining solution path length, arcs-to-go,
hops-to-go

h = 4

d̂ = 2

h = 5

d̂ = 1
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Greedy: best-first search on h

Speedy: best-first search on d̂ (Thayer, Ruml, and Kreis,
SoCS-09)
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why faster than h? (Wilt and Ruml, SoCS-14)

■ not: predicts search effort
■ local minima are smaller

Domain Cost Max Local Expected Exp
Min Size Min Size

Tiles unit 392 2 801
inverse 51,532 87 93,010
rev inv 2091 2 855

Hanoi unit 7,587 1,892 36,023
rev sq 35,874 4,416 559,250
square 2,034 201 4,663

TopSpin unit 296 250 933
sum 922 3 749
stripe 240 3 441
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intuition: for high cost ratios, many annoyingly cheap paths
required to compensate for one unforeseen expensive action

h = 5

h = 20 h = 6

h = 7

h = 8

h = 7

h = 8
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robust greedy search is a wide open area!

ǫ-greedy, type-wA*, beam search
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quickly find a solution within factor b of optimal

simple hack (Pohl, AIJ 1970): f ′(n) = g(n) + b · h(n)
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quickly find a solution within factor b of optimal

simple hack (Pohl, AIJ 1970): f ′(n) = g(n) + b · h(n)

fmin = lowest f(n) on open

the key lemma: fmin is a global lower bound

1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path
3. fmin ≤ f(p) = g(p) + h(p) ≤ f∗

can expand any node with f(n) ≤ b · fmin

start

p
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quickly find a solution within factor b of optimal

two tasks: find sol ≤ b · fmin , raise fmin

RR-d (Fickert, Gu, and Ruml, AAAI-22):
multi-queue alternation (Röger and Helmert, ICAPS-10)

open: sorted on f̂ , explore
focal: sorted on d̂, exploit
cleanup: sorted on f , raise bound

filter for open and focal: f(n) ≤ b · fmin

obvious ablations/substitutions are worse
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Coverage W
A
∗

E
E
S

D
P
S

D
X
E
S

R
R
-D

P
S

R
R
-d

Sum (1652) 995 967 1012 894 982 1025
Normalized(%) 58.7 57.0 60.0 51.5 57.9 60.7

Expansions 569 558 472 734 665 383
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2 3 4 5 6 7

100

101

Inverse Tile

Solved: 100

EES

RR-DXES

RR-d

many duplicates: ΦpwXD (Chen and Sturtevant, AAAI-21)
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find cheapest solution within deadline
note: anytime algorithms (should) optimize for unknown deadline

n

h = 4

d̂ = 2

h = 5

d̂ = 1
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find cheapest solution within deadline
note: anytime algorithms (should) optimize for unknown deadline

n

h = 4

d̂ = 2

h = 5

d̂ = 1

■ d̂(n) distance-to-go
■ expansion delay: number of expansions when a node is

generated and expanded
■ d̂(n) · delay estimates expansions to goal
■ time per expansion
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find cheapest solution within deadline

Deadline Aware Search
1. while (time) < (deadline) and open is non-empty
2. dmax ← calculate d bound
3. s← pop lowest f state from open
4. if s is a goal and is better than incumbent
5. incumbent ← s

6. else if d̂(s) < dmax, expand s

7. else prune s

8. if open empties, recover some pruned states
9. return incumbent

ripe for improvement!
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■ Optimal search is impractical
■ Lots of room for creativity in suboptimal search

Going beyond lower bounds on cost-to-go:

■ Inadmissible cost-to-go f̂

■ Inadmissible distance-to-go d̂: Speedy
■ RR-d uses f, f̂ , and d̂

see also XES (IJCAI-21)
see also EES/Anytime EES
see also Dynamic-f̂ (JAIR, 2015)

■ DAS also uses expansion delay

next: exploiting estimates of uncertainty
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return next action within prespecified time bound

agent

goal
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return next action within prespecified time bound

agent

goal
search frontier

search for bounded time
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return next action within prespecified time bound

agent

goal
search frontier

the frontier

top level action
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return next action within prespecified time bound

agent

goal

top level action

commits to best action



Real-time Heuristic Search

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

■ Real-time Search

■ The Issues

■ Decision-making

■ Lookahead

■ Risky Lookahead

■ Summary

■ Whence Beliefs?

■ Completeness

■ Results

■ Planning

Conclusion

Wheeler Ruml (UNH) Suboptimal Heuristic Search – 28 / 52

return next action within prespecified time bound

agent
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return next action within prespecified time bound

agent

goal

search frontier

top level action

concurrent search and execution, online planning,
‘receding horizon control’
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three phases:

1. Lookahead:
expand minimum f node

2. Decision-making:
backup minimum f from frontier (‘minimin’)
select top-level action with minimum f

3. Learning:
update heuristic values
(avoid loops, escape local minima, ensure completeness)

repeat until goal achieved
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three phases:

1. Lookahead:
Which nodes to expand?
minimum f optimal for A* (offline optimal)
what about online?

2. Decision-making:
Which action to pick?
lowest f optimal for A* (offline optimal)
what about online?

3. Learning:
How to backup from frontier?
minimin optimal for A* (offline optimal deterministic)
Bellman optimal for VI (offline optimal stochastic)
what about online?
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

A

B1

C1

x1 x2

0.3

C2

x3 x4

0.5

0.49

B2

C3

x5 x6

0.35

C4

x7 x8

0.35

0.51

lower bound on cost-to-go h = 0, so f = g

some xi will be revealed at the next step
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

but decision theory says minimize expected value
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

f̂ is expected total plan cost

four xi will be revealed at the next step
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f̂ is expected value

Should an agent expand nodes under α or β?
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f̂ is expected value

Should an agent expand nodes under α or β?

f̂ is not the answer: what to do?
want to maximize value of information

need to consider uncertainty of estimates
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Nancy (Mitchell et al, AAAI-19; Fickert et al, AAAI-20)

■ want to maximize value of information
■ expand nodes which minimize expected regret
■ relies on belief over values
■ choose expansions that decrease uncertainty about best
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expand under α or β?
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expand under α or β?

need 2 things:
1) current beliefs
2) estimate of how beliefs might change with search
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expand under α or β?

Risk: expected regret if a suboptimal action is selected
α is TLA with lowest expected value, other is β

E


f∗(α)− f∗(β)︸ ︷︷ ︸

our regret

∣∣ f∗(β) < f∗(α)︸ ︷︷ ︸
when α not best



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expand under α or β?

Risk: expected regret if a suboptimal action is selected
α is TLA with lowest expected value, other is β

E
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our regret
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
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expand under α or β?

expand under the TLA that minimizes risk!
expand under β!
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Nancy:
parent ← belief with minimum f̂ among successors
conveys an entire belief distribution
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minimin: parent gets best child’s f
assumes no more information will become available

Bellman: parent gets expected-best child’s f̂
assumes no more information will become available

Nancy: parent gets expected-best child’s belief
assumes no more information will become available

Cserna: parent gets expected min over all children’s beliefs
assumes we will know optimal choices

something intermediate would seem appropriate!
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1. Lookahead:
Which nodes to expand?
those that minimize risk

2. Decision-making:
Which action to pick?
minimum f̂ (rationality)

3. Learning:
How to backup from frontier?
backup beliefs (‘Nancy backups’)

minimizing uncertainty drives the search

see also XES (bounded-cost search, IJCAI-21)
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Nancy: Heuristic values: scalar → probability distribution (belief)

How to form beliefs?
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Nancy: Heuristic values: scalar → probability distribution (belief)

How to form beliefs?

assumptions:

Gaussian at f̂ with width ∝ d̂, truncated at f
online learning with few parameters

training data:

histogram of previous h∗ given h

offline learning with many parameters
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What do the distributions look like?

Beliefs differ by domain. Often not Gaussian!
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conditions on problem:

1. initial beliefs have finite expected value
2. positive action costs
3. finite state space
4. no dead-ends

conditions on algorithm:

1. goal-aware
2. learning creates local consistency (eg, DP)
3. selects actions via f̂

This proof applies to any LSS-LRTA*-style algorithm



Example Results: Racetrack

Why Suboptimal?

Greedy Search

Bounded-suboptimal

Contract Search

Real-time Search

■ Real-time Search

■ The Issues

■ Decision-making

■ Lookahead

■ Risky Lookahead

■ Summary

■ Whence Beliefs?

■ Completeness

■ Results

■ Planning

Conclusion

Wheeler Ruml (UNH) Suboptimal Heuristic Search – 43 / 52

30 100 300 1000
Node Ex ansion Limit

−160

−140

−120

−100

−80

−60

−40

−20

0

Al
go
rit
hm

 C
os
t -

 L
SS

-L
RT

A*
 C

os
t

Algorithm
Nancy (DD)
LSS-LRTA*
Nancy

Even assumptions work well!
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LSS- Nancy Nancy
LRTA* (Gauss) (data)

Barman 559 702 415
Blocksworld 35 39 34
Elevators-unit 34 27 26
Parking 62 27 31
Rovers 31 29 33
Satellite 15 17 16
Termes 662 129 238
Tidybot 30 30 29
Transport 499 567 422
Transport-unit 35 29 27
VisitAll 52 50 52

Data works when assumptions don’t!
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Suboptimal search is the most important kind!

■ practical instead of provably intractable
■ distinct settings: bounded-suboptimal, contract, utility...

many sources of information beyond h!

■ unbiased estimates (can be learned online)
■ distance-to-go, not just cost
■ beliefs can model uncertainty

search algorithm as agents

■ entire AI agent toolbox applies
what to represent, how to estimate
how to exploit experience

■ search highlights issues more clearly than RL

Suboptimal heuristic search needs YOU!
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simple hack: f ′(n) = g(n) + w · h(n)
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simple hack: f ′(n) = g(n) + w · h(n)

fmin = lowest f(n) on open

the key lemma: fmin is a global lower bound

1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path
3. fmin ≤ f(p) = g(p) + h(p) ≤ f∗
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simple hack: f ′(n) = g(n) + w · h(n)

fmin = lowest f(n) on open

the key lemma: fmin is a global lower bound

1. any optimal path must pass through the frontier
2. let p be an open node along an optimal path
3. fmin ≤ f(p) = g(p) + h(p) ≤ f∗

wA*’s bounded suboptimality:

f ′(s) ≤ f ′(p)
g(s) = = g(p) + w · h(p)

≤ w · f(p) ≤ w · f∗

note that any node with f(n) ≤ w · fmin can be expanded!
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f(p) should equal f(bc)
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h∗(p) = c(p, bc) + h∗(bc)

h(p) = h(bc) + c(p, bc)− ǫh

ǫh = h(bc) + c(p, bc)− h(p)

ĥ(n) = h(n) + ǭh · d̂(n)
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f(n) ≤ w · fmin

g(n) = ≤ w · f∗
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it’s time to take suboptimality seriously!

■ estimates, not lower bounds
■ belief distributions to quantify uncertainty

acting under uncertainty to maximize utility
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it’s time to take suboptimality seriously!

■ estimates, not lower bounds
■ belief distributions to quantify uncertainty

acting under uncertainty to maximize utility
= all of AI
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