Solving the Snake in the Box Problem with Heuristic Search:
First Results

Alon Palombo, Roni Stern,
Rami Puzis and Ariel Felner

Department of Information Systems Engineering

Ben-Gurion University of the Negev
Beer Sheva, Israel
palomboalon @ gmail.com
sternron, puzis, felner at post.bgu.ac.il

Abstract

Snake in the Box (SIB) is the problem of finding the
longest simple path along the edges of an n-dimensional
cube, subject to certain constraints. SIB has impor-
tant applications in coding theory and communications.
State of the art algorithms for solving SIB apply unin-
formed search with symmetry breaking techniques. We
formalize this problem as a search problem and propose
several admissible heuristics to solve it. Using the pro-
posed heuristics is shown to have a huge impact on the
number of nodes expanded and, in some configurations,
on runtime. These results encourage further research in
using heuristic search to solve SIB, and to solve maxi-
mization problems more generally.

Introduction

The longest simple path (LPP) problem is to find the longest
path in a graph such that any vertex is visited at most once.
This problem is known to be NP-Complete (Garey and John-
son 1990). The Snake in the Box (SIB) problem is a special
case of LPP in which: (1) the searched graph, denoted @,,,
is an n-dimensional cube, and (2) the only paths allowed are
induced paths in @Q,,. An induced path in a graph G is a se-
quence of vertices such that every two vertices adjacent in
the sequence are connected by an edge in G and every pair
of vertices from the sequence that are not adjacent in it are
not connected by an edge in G. An optimal solution to SIB
is the longest induced path in @,,. For example, the optimal
solution to )3 is shown in Figure 1 by the green line (for
now, ignore the difference between solid and dashed lines).
The Coil in the Box (CIB) is a related problem where the
task is to find the longest induced cycle in @Q,,.

SIB and CIB have important applications in error correc-
tion codes and communications. In particular, a snake of
length d in an n-dimensional cube represents a special type
of Gray code that encodes each of the numbers 0, ..., dton
bits (Kautz 1958).

The mapping between a snake of length d and a code is as
follows. Every vertex in the n-dimensional cube is labeled
by a binary bit vector of length n (see Figure 1 for an exam-
ple of this labeling). A snake s = (v, ..., vq) represents the
code that encodes each number i € (0, ..., d) by the label of
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Figure 1: An example of a snake in a 3 dimensional cube.

v;. Gray codes generated from snakes are particularly useful
for error correction and detection because they are relatively
robust to one-bit errors: flipping one bit in the label of v; is
either the label of v;_1, v; 11, or a label not in s. Thus, a one-
bit error would result in the worst case in an error of one in
the decoded number (mistaking ¢ for i — 1 or ¢ + 1).

Due to its importance, SIB and CIB have been studied
for several decades (Kautz 1958; Douglas 1969; Abbott and
Katchalski 1988; Potter et al. 1994; Kochut 1996; Hood et al.
2011; Kinny 2012). Existing suboptimal solvers use genetic
algorithms (Potter et al. 1994) and Monte Carlo tree search
algorithms (Kinny 2012). In this work we focus on finding
optimal solutions to SIB and CIB. Existing approaches to
optimally solving SIB and CIB employ exhaustive search,
symmetry breaking, and mathematical bounds to prune the
search space (Kochut 1996; Hood et al. 2011).

In this paper we formulate SIB and CIB as heuristic
search problems and report initial results on using heuristic
search techniques to solve them. SIB and CIB are both max-
imization problems (MAX problems), and thus search algo-
rithms may behave differently from their more traditional
shortest-path (MIN) counterparts (Stern et al. 2014b). The
most obvious difference is that admissible heuristic func-
tions, which are key components in optimal search algo-
rithms such as A* and IDA*, must upper bound solution cost
instead of lower bound it (as in MIN problems).

We propose several admissible heuristics for SIB and
CIB. Notably, one of the heuristics can be viewed as a maxi-
mization version of additive pattern databases (Felner, Korf,
and Hanan 2004; Yang et al. 2008). Another family of ad-



missible heuristics we propose are based on decomposing
the searched graph into a tree of biconnected components.

We compared the previous state of the art — exhaustive
DFS, with the MAX problem versions of A* and DFBnB
that use the proposed heuristics. Results suggests that DF-
BnB is in general superior to A* and DFS in this problem.
With the proposed heuristics, more than two orders of mag-
nitude savings is achieved in terms of number of nodes ex-
panded. In terms of runtimes, a huge speedup is observed in
some cases, while in other cases the speedup is more mod-
est due to overhead incurred by the proposed heuristics. We
hope this work will bring this fascinating problem to the at-
tention of the heuristic search community.

Problem Definition

The SIB is defined on a graph Q,, = (V,,, E,,) that repre-
sents an n-dimension unit cube, i.e., (g is a dot, ()1 is a
line, Q5 is a square, Q3 is a cube, etc. There are |V, | = 2™
vertices and each is labeled as a bit-vector [bob;...b,—1] of
length n. Every two vertices u, v € V,, are connected by an
edge in FE,, iff their Hamming distance equals 1 (i.e. only
one bit in the two vectors is different). A path s across an
edge (u,v) € E,, where u and v differ in the i*" bit is said
to be traversing the i*" dimension. The first vertex in the
path is called the tail and denoted as tail(s) while the last
vertex is called the head and denoted as head(s).

The original SIB problem is to find the longest path in @,
such that any two vertices on the path that are adjacent in
@Q,, are also adjacent on the path (Kautz 1958). Such paths
are called snakes.

Example 1 Consider an example of a snake as given in
Figure 1. The snake consists of the sequence of vertices
s = (000,001,011, 111). Vertex 000 is the tail of the snake
and 111 is the head. Note that vertex 101 cannot be ap-
pended to the head of s, since it is adjacent to 001, which
is a part of s. By contrast, vertex 110 can be appended to
the head of s as it is not adjacent to any other vertex v € s.

A generalized form of the SIB problem considers the
spread of the snake (Singleton 1966).

Definition 1 (Spread) A sequence of vertices (vo, ..., v;) is
said to have a spread of k iff Hamming(v;,v;) > k for
|i — 4] > k and Hamming(v;, v;) = |i — j| for |[i — j| < k.

Note that a snake as defined above has a spread of k = 2.
Intuitively, the snake cannot pass through vertices that are
fewer than k hops away from other vertices in it.

Example 2 Consider again the snake shown in Figure I,
s = (000,001,011,111,110). s has a spread of k = 2 as
every pair of non adjacent vertices in it has a Hamming dis-
tance larger than one. s does not have a spread of k = 3,
since Hamming(000,110) = 2 but the indices (the order
in the snake) of 000 and 110 are 0 and 5, respectively.

Obviously, the length of the longest snake for a given n
decreases as the spread grows. However, in some applica-
tions increasing the spread means better error detection ca-
pabilities, and thus can be desirable (Kautz 1958).

K 2 3 4 5 6 7

n

3 4% 3* 3* 3% 3% 3%
4 T* 5% 4% 4% 4% 4%
5 13% 7* 6* 5% 5% 5%
6 26% 13%* 8* 7* 6%* 6*
7 50% 21% 11% | 9% 8% 7*
8 98%* 35% 19%* 11* 10% | 9%
9 190 63 28% 19%* 12% 11%*
10 370 103 | 47* | 25% 15% 13%*
11 707 157 | 68 39% | 25% 15%
12 1302 | 286 104 | 56 33% | 25%
13 2520 | 493 181 79 47 31*

Table 1: Longest known snakes for different values of n and
k.

Definition 2 ((n,k)-SIB Problem) (n,k)-SIB is the problem
of finding the longest snake in Q,, with a spread of k.

Mathmatical Bounds

In terms of computational complexity, the (n,k)-SIB prob-
lem is a special case of the longest induced path prob-
lem which has been proven to be NP-Complete (Garey and
Johnson 1990). Due the importance of this problem in real-
life applications, there have been numerous works on the-
oretical bounds of the longest snake for different values
of n and k (Douglas 1969; Abbott and Katchalski 1988;
Danzer and Klee 1967; Zémor 1997). Most theoretical re-
sults give an upper bound on the length of snakes of the
form A\2"~! where 0 < )\ < 1, but empirical results show
that these bounds are not tight. The best currently known
empirical lower bounds for snakes with different values
of n and k are given in Table 1. These results were col-
lected from different sources (Hood et al. 2011; Kinny 2012;
Abbott and Katchalski 1991; Meyerson et al. 2014). Values
marked with an asterisk are known to be optimal.

Existing Approaches

Several approaches have been proposed for solving the
(n,k)-SIB problem. Some are geared towards finding long
snakes but do not provide guarantees on the optimality of
the solution. Such suboptimal approaches include Monte-
Carlo Tree Search (Kinny 2012) and Evolutionary Algo-
rithms (Potter et al. 1994; Casella and Potter 2005). Another
approach is to exhaustively grow snakes from other snakes
obtained by some other method, e.g., snakes obtained for
lower values of n (Kinny 2012).

We focus in this paper on finding optimal solutions to
this problem, i.e., finding the longest possible snakes. Due
to the complexity of the problem, optimal solution have
only been found for relatively small n and % values. Previ-
ous approaches include SAT (Chebiryak et al. 2008), build-
ing all possible snakes of a given length using isomorphic
rejection (Ostergérd and Pettersson 2014), and exhaustive
search using symmetry-breaking methods (Kochut 1996;
Hood et al. 2011). We describe these methods later in the pa-
per, and use some of them in the proposed heuristic search.



(n,k)-SIB as a Search Problem

(n,k)-SIB is fundamentally a path-finding problem in a
graph. As such, heuristic search algorithms can be applied
to solve it. Unlike much work in heuristic search, SIB is a
maximization (MAX) problem — we want the longest path
and not the shortest path. We formalize the state space for
this MAX problem as follows. A state represents a snake
s = (vg,v1,...,v;). A snake is said to be valid if it has a
spread of k (Definition 1). Expanding a state means generat-
ing all states that represent valid snakes obtained by append-
ing a single vertex to the head of the snake. A goal state is
a snake to which no vertex can be appended.’ The cost of a
state is the number of edges in the snake, and the task is to
find the longest snake, i.e., the highest cost state.

Recently, Stern et al. (2014b) showed that uninformed
search algorithms, such as Dijkstra’s algorithm (1959) and
bidirectional search, may not be effective for MAX prob-
lems. Indeed, state-of-the-art algorithms for solving the SIB
problem optimally use an exhaustive Depth-First Search
(Kochut 1996; Hood et al. 2011). Heuristic search algo-
rithms, however, can be used to find optimal solutions faster
than uninformed search algorithms even in MAX prob-
lems by using an admissible heuristic (Stern et al. 2014b;
Puzis, Elovici, and Dolev 2007; Stern et al. 2014a). An im-
portant difference between MAX and MIN problems is the
definition of an admissible heuristic: in MIN problems an
admissible heuristic is a lower bound on future costs, while
in MAX problems it is an upper bound. Heuristic search al-
gorithms usually consider the cost of the traversed path (g)
and the admissible heuristic value (h) for every state. For the
(n,k)-SIB problem, every state s is a snake, g(s) is the length
of s, and h(s) upper bounds the length of the snake that
starts from head(s) and, together with s form the longest
valid snake.

The most widely used heuristic search algorithm is A*
(Hart, Nilsson, and Raphael 1968) which is a Best-First
Search algorithm that expands states according to f(s) =
g(s) + h(s) and halts when a goal state is found. For MAX
problems, Stern et al. (2014b) showed that A* can only halt
when the best f-value is lower than or equal to the g-value
of the incumbent solution. Another popular search algorithm
for MAX problems is depth-first branch and bound (DF-
BnB). DFBnB, with an admissible heuristic, runs a depth-
first search, and prunes states with f-value that is worse
(smaller, in MAX problems) than the g-value of the incum-
bent solution.

The state space of the (n,2)-SIB problem is very large,
containing O(n?") states (all paths in an n-dimensional
cube). Prior work handled this combinatorial explosion
by employing symmetry breaking methods. In particular,
Kochut (1996) observed that the identity of the dimensions is
not important, and thus every snake has n!—1 snakes that are
equal to it except for the order of dimensions. Building on
this observation, Kochut proposed the following symmetry
breaking method. A snake is allowed to traverse a dimension

! Actually, one can define any state as a goal, since all states are
valid snakes. However, as we want the longest snake, if a snake can
be extended it is always desirable.

Notation Represents

Qn A graph representing an n-dimensional cube.

Qnls] Subgraph of @),, containing only vertices legal
for s

R, [s] Subgraph of Qn[s] containing only vertices
reachable from head(s)

Ni(v, G) Subgraph of G containing only vertices that are

- at most k — 1 steps from vertex v

Ni(v, G) Subgraph of G that does not contain the ver-

tices in Ny (v, G)

Table 2: Notations used to describe the proposed heuristics

d only if it has already traversed every dimension d’ < d at
least once. In our experiments we used this symmetry break-
ing method.

Next, we propose several novel admissible heuristics to
further handle the large size of this problem’s state space.

Heuristics

Key to the success of A* and DFBnB, especially in large
problems, is having an effective admissible heuristic. As one
of the main contributions of this work, we propose several
admissible heuristic functions for the (n,k)-SIB problem.

Legal Vertices Heuristic

The first admissible heuristic function we propose for (n,k)-
SIB counts the number of legal vertices in a state. A vertex
v is legal for a snake s if there exists a path s’ with a spread
of k such that s’ contains v and s is a prefix of s.

We call this heuristic, which counts the number of le-
gal vertices, the Legal Vertices heuristic and denote it by
hiegal- Piegar is computed for a snake s by maintaining the
set of illegal vertics for s. A vertex is Illegal if it is not le-
gal and we denote by IL[s] the set of illegal vertices for s.
Given I L[s], computing the legal vertices heuristic is trivial:
hiegai = 2™ — |IL[s]|. Showing that hjcgq; is admissible is
also trivial.

The exact manner in which IL[s] is computed is some-
what technical, and is based on measuring the Hamming dis-
tance between every vertex v € (), and every vertex u € s.
2 This can be done efficiently in an incremental manner in
O(n*¥~1). Since n and k are fairly small, maintaining I L][s]
requires reasonable computational overhead.

Reachable Heuristic

Removing the illegal vertices (and the edges adjacent to
them) for a snake s from @, results in a subgraph of @,,, de-
noted @, [s]. @ [s] may not be connected. Thus not all legal
vertices are reachable from head(s). Let R, [s] be the con-
nected component in @, [s] that includes head(s). The next

2Hood et al. (2011) showed that a vertex v cannot be added
to a snake s if its Hamming distance is less than k for at least k
vertices in s. Building on Hood et al.’s observation, we can deduce
that a vertex v is illegal and can be added to I L[s] if the number of
vertices in s that has a Hamming distance less than &k from v is not
exactly equal to k — min(k, Hamming(v, head(s))).



Figure 2: A small graph to demonstrate h and h;g.

admissible heuristic we propose, called Reachable, counts
the number of vertices in R,,[s]. Computing R,,[s] can be
done by performing a simple exhaustive search on Q,,[s]
starting from head(s).

Snake Head Pruning Heuristic

Consider the vertices in R, [s] adjacent to the head of the
snake. Only one of these vertices can be part of a snake that
s is a prefix of. Thus, the number of vertices in R, [s] minus
the number of neighbors of head(s) in R,[s] plus one is
an admissible heuristic. Further pruning and thus a stronger
heuristic can be obtained for k£ > 2, as follows.

Let Ni (v, G) denote the subgraph of a graph G that con-
tains all vertices that are k¥ — 1 or fewer hops away from
a vertex v, and let N (v, G) be the complement subgraph
that contains all vertices in G that are not in Ny (v, G).
Next, consider the vertices in Ny (head(s), R,[s]) and
Ny (head(s), R,[s]). A valid snake can pass through at most
k — 1 vertices in Ny (head(s), Ry,[s]), and thus, the follow-
ing heuristic, denoted hy, is an admissible heuristic:

hy(s) = min(|Ry[s]], [N (head(s), Ry[s])| + k — 1)
For convenience we list notations used so far in Table 2.

Example 3 Consider the snake s = (E,C), in the graph
that consists of all the solid vertices and edges in Figure 2
and assume that k = 2. The head of s is at vertex C, and
therefore the vertices A, B, and D are all reachable. Thus,
|R.[s]| = 3. However, only one of these vertices might
be added to s in a valid snake with a spread of 2. Thus,
hig(s) = min(|Ro[s]|, [Na(head(s), Ra[s])| +2 — 1) =
min(3,0+1) =1

Additive Disjoint Partition Heuristic

Let P={P,...,Py} be a disjoint partition of
Ny (head(s), R,[s]), and let U(P;) be the maximal
number of vertices that can be added to any snake that
passes through P;. For example, observe Figure 2. The solid
vertices and edges represent a graph P;, which is a subgraph
of a graph G that is an item of a disjoint partition of G.
Regardless of the topology of GG, no valid snake can contain
all the vertices in P; for any £ > 1. Specifically, for k = 2
it is easy to see that U(P;) = 4, as a possible snake may
contain the vertices A,B,D, and E. The dotted vertices and
edges show a graph G where such a snake is possible. For
k>3, U(FP;) will be 3.

Theorem 1 (Additive Disjoint Partition) For any disjoint
partition P = {Py,.., Py} of any graph G it holds that
S U(P) is an admissible heuristic.

Proof outline: Proof by contradiction. Assume that there is
a snake s that is longer than Y., U(P;). Since P is a dis-
joint partition of G, it means that there exists P; such that s
contains more vertices from it than U (F;). This contradicts
the definition of U (P;). g

Theorem 1 can be viewed as the MAX problem equiv-
alent of the well-known additive disjoint pattern database
heuristic which is known to be very effective in MIN prob-
lems (Felner, Korf, and Hanan 2004; Yang et al. 2008).

As in additive PDBs for MIN problems, the challenge
of using Theorem 1 to construct an effective heuristic is to
choose the best partition such that the resulting heuristic is
tight and the computation of U (F;) is fast. We present below
the partition we used in our experiments.

Note that heuristics derived from Theorem 1 are admis-
sible for any graph G. Thus, it can augment all the heuris-
tics proposed above, by setting G to be either Q,,[s], Ry[s],
or Ny (head(s), R,[s]). As expected, the best results were
obtained when using N (head(s), R,[s]) as the baseline
graph to partition.

Independent Set Partition The first heuristic based on
Theorem 1 that we propose generates a disjoint partition by
considering the neighborhoods of a (not necessarily maxi-
mal) independent set of Ny(v, N (head(s), Ry[s])). Con-
structing this disjoint partition is done as follows.

_ First, a single vertex v is chosen from
N ghead(s), R,[s]) according to some vertex order-
ing.” The first partition P; is the vertex-induced sub-
graph of Ny(head(s), R,[s]) that contains v and all
its neighbors, ie., Pi = Na(v, Ng(head(s), R,[s])).*
The next partition is created similarly, choosing a
vertex v’ from Ny(head(s),R,[s]) \ P1 and setting
Py = Ny(v',Ni(head(s), R,[s]) \ Pi). This process
continues until all vertices in Ny (head(s), R,[s]) are
covered.

To compute U (P;) we exploit the special structure of Q,,
(recall that Ny (head(s), Ry,[s]) is a subgraph of Q). In
@, there are no cliques of size 3 or more. Therefore, for
every P; we set U(F;) to be max(|P;| — 1, 3). The heuristic
resulting from the above partition and this computation of
U(PF;) is denoted by hyg.

Bi-Connected Component Tree Heuristic

A biconnected graph is a graph that remains connected af-
ter removing any single vertex. An equivalent definition is
that every two vertices have at least two vertex-disjoint paths
connecting them. A biconnected component of a graph G is
a maximal sub-graph of G that is biconnected. Every graph

*In our experiments we used an arbitrary node ordering, and
leave to future research the impact of different orderings on the
heuristic’s performance.

*A vertex-induced subgraph G’ of a graph G is a subgraph of
G whose edges are exactly all edges that exists in G between the
vertices of G’
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Figure 3: A small graph to demonstrate the BCT heuristic.

can be decomposed into a set of biconnected components
(a.k.a blocks). Cut-points and blocks form a block-cut-point-
tree that can be constructed in linear time (Harary and Prins
1966; Hopcroft and Tarjan 1973). Let BCT'[s] denote the
block-cut-point-tree constructed from the subgraph of reach-
able vertices in R, [s]. By definition, two biconnected com-
ponents cannot have more than a single cut-point between
them. Thus, once a snake traverses a cut-point, it can never
return to the component it just left and all the vertices in that
component become unreachable. Therefore, any valid snake
can pass through a single branch in BC'T'[s]. An example of
a graph and the biconnected components that compose it is
shown in Figure 3(a).

A direct implication of the above observation is that for
any biconnected component ¢, the maximal snake in the sub-
tree rooted by c traverses through ¢ and possibly through one
of its children in BCT'[s]. This observation can be formal-
ized as follows. Let H*(c) be the length of the longest valid
snake that visits only vertices in ¢, and let H*(c, ¢") be the
vertices in c that are part of the longest valid path that visits
both ¢ and ¢’. The length of the longest valid snake in the
subtree of BCT'[s] rooted by ¢, denoted h; -, is given by

hpor(c) =max(H"(c), max H*(c,c)+ hper(c))
c’€child(c)

Computing hjor(c) is difficult because H*(c) and
H*(c, ) are hard to compute. However, the above equation
can be used to derive an admissible heuristic if H*(c) and
H*(c, ) are replaced by admissible estimates of H*(c) and
H*(c,c’). We say that functions H(c) and H(c, ') are ad-
missible estimates of H*(c¢) and H*(¢, ) if H(c) > H*(c)
and H(c, ) > H*(c, ¢'), respectively. The resulting admis-
sible heuristic hpcr is computed as follows:

hpcr(c) = max(H (c), max )H(c, )+ hper(d))
c’€child(c

To instantiate this admissible heuristic, one needs to pro-
pose admissible H(c) and H (¢, ¢) functions. Next, we pro-
pose several ways to compute such admissible functions.

Counting Heuristic The first admissible H(c¢) and
H (e, ) functions ignores the difference between H (c) and
H(c, ') and returns for both functions the number of reach-
able vertices in ¢ minus one (to account for the head of the
snake). We denote by hcoyn: the implementation of hpor
using the above H (c) and H(c, ).

hper in general and h...,: Specifically are general
heuristics in the sense that they apply not just to the (n,k)-
SIB problems but to finding snakes (with spread k) in any
graph. For simplicity, we demonstrate how A.oyunt WOrks
on a simple graph depicted in Figure 3 (a). A through
E denote the biconnected components of the graph and
the BCT they compose is shown in Figure 3(b). £ and
C are leaves of this BCT, and thus hcpyni(E) = 2 and
heount(C) = 2. Following hcount(D)= 2-1+2=3. Now,
heount(B) = max(2,2+ 2,2+ 3) = 5, and finally we have
heount(A) = max(1,5+ 1) = 6. By contrast, the reachable
heuristic for the same setting is 8. Recall that since in MAX
problems admissible heuristics are upper bounds on future
costs, a heuristic that returns smaller values is stronger.

Intra-Component Heuristics The above implementation
of H(c) and H(c, ') can be viewed as applying the reach-
able heuristic on the corresponding bicomponents. Next,
we show how the same notions behind the more advanced
heuristics, hy; and hrg, can be used to implement more ac-
curate admissible H(c) and H(c, ). We call the resulting
BCT-based heuristics hgp, 77 and hpcr1s.

Snake Head Pruning. Every biconnected component ¢
has an entry point, denoted entry(c). This is the first vertex
in c that will be added to a snake that will visit c. If ¢ is
the root of BC'T'[s], its entry point is head(s). Otherwise,
the entry point is the vertex that connects c to its parent in
BCT(s].

Under the same reasoning explained for h7, of all the
vertices in Ny(entry(c),c) at most k — 1 vertices will be
added to any future valid snake. An admissible H(c) based
on this understanding is as follows:

Hy(c) = min(|c|, Ng(entry(c),c) + k — 1)

We extend the reasoning of Hy; to obtain a better H (c, ¢)
heuristic, denoted similarly as H(c,c’). The key idea in
Hyy(c, ') is that one can obtain a better estimate of how
many vertices in ¢ can be part of a snake if it is known that
the snake will move from ¢ to ¢’.

Every two biconnected components ¢ and ¢’ such that
¢’ is a child of ¢ in BCTs], have a single shared vertex.
We call this vertex the exit point from c to ¢’ and denote
it by exit(c,c’). Every snake that visits ¢ and ¢’ must visit
exit(c, ). Thus, from all the vertices in ¢ that are k—1 steps
from exit(c, ¢'), at most k—1 will be in the snake that passes
through exit(c, ¢’). Thus, the same “pruning” done for the
neighborhood of the entry point can be done for the neigh-
borhood of the exit point. Formally, H(c,¢’) = min(]|¢|,

[N (exit(c), Ni(entry(c),c))|+2 - (k-1))

Independent Set Partitioning. Applying the same logic
behind hrs to further improve Hy(c) and Hy(c,c’) is
straightforward. The part of c that is not “pruned” is par-



titioned in the same manner described for A, and the re-
sulting heuristic is the sum over the maximal snake that can
pass through each of these partitions.

From Snakes to Coils

e 3 4 5 6 7

n

3 6* 6% | 6% | 6¢ | 6% | 6*
4 8 gt | 8+ | g+ | 8+ | g*
5 14% | 10¢ | 10% | 10% | 10*% | 10%
6 26% | 16% | 12% | 12% | 12% | 12%
7 48% | 24% | 14% | 14% | 14% | 14%
8 96% | 36* | 22% | 16* | 16* | 16*
9 188 | 64 | 30% | 24% | 18% | 18%
10 358 | 102 | 46% | 28+ | 20* | 20*
11 668 | 160 | 70 | 40% | 30% | 22%
12 1276 | 288 | 102 | 60 | 36* | 32%
13 2468 | 494 | 182 | 80 | 50% | 36*

Table 3: Longest known coils for different values of n and k.

A related problem to (n,k)-SIB is the problem of find-
ing the longest cyclic path in @, having a spread of k.
Such cyclic paths are called coils and have similar real-
life application as the (n,k)-SIB problem. We denote by
(n,k)-CIB the problem of finding the longest coil in @,
with a spread of k. The complexity of (n,k)-CIB is simi-
lar to (n,k)-SIB, and as with (n,k)-SIB, the known bounds
are not tight. Table 3 shows best currently known em-
pirical lower bounds for coils with different values of n
and k, as collected from (Hood et al. 2011; Kinny 2012;
Abbott and Katchalski 1991; Meyerson et al. 2014). Values
marked with an asterisk are known to be optimal.

(n,k)-SIB and (n,k)-CIB are very similar problems. We
formulate (n,k)-CIB as a search problem in a very similar
manner to how the described above formulation of (n,k)-
SIB. A key difference is that the goal state is now more re-
stricted, as the coil must end in the same vertex that it started.
Next, we show how this difference manifests and can be ex-
ploited to solve (n,k)-CIB problem faster.

Improved Symmetry Breaking

The first main difference between (n,k)-SIB and (n,k)-CIB
is that in (n,k)-CIB there is another form of symmetry-
breaking we can use to avoid rotational equivalence. This
method, called bit count sequence, was introduced by Hood
et al. (2011). A given snake s = (vg,v1,...,v;) is trans-
lated into a bit count sequence, b = (bg, b1, ..., b;) where
the b; is the number of bits equal to one in v;. A snake s is
pruned according to this symmetry-breaking method if the
bit count sequence starting from a b; where ¢ > 0 is lexico-
graphically larger than the bit count sequence starting from
bg. For details and an example, see Hood et al. (2011). Since
this symmetry-breaking is orthogonal to our heuristics, we
use it in all of our experiments on coils.

Improved Snake Head Pruning

h was defined with respect to the head of the snake. How-
ever, in coils we also know where the coil will end up — at

Algorithm Expanded  Runtime
A* 1,883 0.067

n=6
DFBnB 2,642 0.167
n=7 A* 272,185,127 25,420
- DFBnB 275,613,574 9,356

Table 4: Performance of A* vs DFBnB.

the initial vertex. Thus, we improve h by also “pruning’
Ny (tail(s), Ry[s]). This is done exactly like the entry and
exit point “pruning” described for Ao, -

Improved BCT

The BCT-based heuristics gain substantially from the knowl-
edge that a coil will end up in the initial vertex. Instead of
checking all branches of the BCT, BCT heuristics for (n,k)-
CIB know exactly which branch of BC'T[s| the snake will
traverse — the branch that contains tail(s). This speeds up
substantially all BCT-based heuristics.

Experimental Results

Next, we performed a set of experiments on solving (n,k)-
SIB and (n,k)-CIB for different values of n and k with dif-
ferent search algorithms and heuristics.

Except when noted otherwise, all experiments were run
on a Windows 8 computer with a 2.4GHz Intel Core i7-
4700hq CPU and 8 GB of main memory.

Comparing Search Algorithms

First, we perform a set of experiments to choose which
heuristic search algorithm to use to find provably optimal so-
Iutions to (n,k)-SIB and (n,k)-CIB. We compared A* with
Depth First Branch and Bound (DFBnB). Since both (n,k)-
SIB and (n,k)-CIB are MAX problems, A* was ran until
a node is expanded with f-value lower than or equal to the
length of the incumbent solution. DFBnB was executed until
all states have been either visited or pruned. As a heuristic,
we used the best heuristic we developed, which is hpor+1s
(see below for a comparison of the different heuristics).
Table 4 shows the results for solving optimally the (6,2)-
SIB and (7,2)-SIB problems. The “Expanded” and ‘“Run-
time” columns show the number of nodes expanded and total
runtime in seconds, respectively, until the optimal solution
has been verified. Due to memory limitations, the experi-
ments of A* for (7,2)-SIB were conducted on a large com-
puter with 1TB of main memory. Marked in bold are the best
results in terms of nodes expanded and in terms of runtime.
For both n = 6 and n = 7, A* expanded fewer nodes
than DFBnB. This follows from the known “optimally ef-
ficient” property of A* (Dechter and Pearl 1985), which
(roughly) states that any algorithm using the same heuris-
tic would have to expand all the states expanded by A* to
find solutions that are guaranteed to be optimal. In more de-
tail, A* with a consistent heuristic expands all states with
f value smaller than the optimal solution cost (denoted C*)
and some states with f = C*. Other algorithms, including
DFBnB, will also need to expand all states with f < C* and
some of the states with f = C*. However, DFBnB may also



n k Finding Proving Max Gain
11 5 182,166 8,402,424 1.02
7 2 6405745 286,365,771 1.02
10 5 254 2,693 1.09
12 6 36199 238,209 1.15
9 4 4045 22,965 1.18
8 3 339,040 731,753 1.46
11 6 152 143 2.06
7 3 293 71 5.13
6 2 2024 438 5.62

Table 5: Number of nodes expanded by DFBnB to find opti-
mal solutions and to verify the optimality of that solution.

expand states with f > C*, which A* would never expand.
This explains the advantage A* has in terms of number of
nodes expanded.

A*’s advantage in number of nodes expanded is translated
to better runtime only for the easier problem of n = 6,
where A* solves the problem in 0.067 seconds while DF-
BnB needed 0.167 seconds. However, for the harder prob-
lem of n = 7, DFBnB was faster than A* by more than a
factor of 2. Indeed for n = 7 the difference in terms of num-
ber of nodes expanded is very small (DFBnB expanded 1.2%
more nodes) and the computation time per state for DFBnB
is much smaller, as there is no need to store states or use any
sort of priority queue. Also, note that in this domain we did
not implement any form of duplicate detection, as each state
represents a path and not a single vertex, and preliminary
experiments showed that performing duplicate detection in
this problem is not worthwhile.

Measuring the Potential of A* and IDA* Using A* to
solve hard (n,k)-SIB and (n,k)-CIB problems is not feasi-
ble due to A*’s high memory demands. An alternative is to
use Iterative Deepening A* (Korf 1985) (IDA*). Like A*,
IDA* expands all states with f > C*, some of the states
with f = C* and not a single state with f < C*.°> Thus, it
has the potential to improve on DFBnB, which may expand
states with f < C™*. In practice, however, we observed IDA*
and A* to be inferior to DFBnB in practically all settings
we experimented with. To understand why, consider the re-
sults shown in Table 5. Table 5 shows the number of states
expanded by DFBnB with hpcryrs when solving (n,k)-
CIB for different values of n and k. The “Finding” column
shows the number of states expanded until a coil with the
optimal solution length has been found. Some of these states
may have f < C*. The “Proving” column shows the num-
ber of states expanded afterwards until the optimal solution
has been verified. Since DFBnB prunes states with f-values
larger than the incumbent, all states counted in the ‘“Prov-
ing” column have f > C* and thus will also be expanded
by A* as well as IDA*.Thus, the potential gain, in terms of
number of nodes expanded, of A* and IDA* over DFBnB
is at most in the number of states expanded until an optimal
coil has been found. The “Max Gain” column shows the ra-
tio of such nodes from all the nodes expanded by DFBnB.
As can be seen, the potential gain of using A* and IDA* over

Note that for MIN problems these inequalities are reversed.

Finding+Proving Finding

n k Heuristic Expanded Time  Expanded Time
7 2 DFS 221,404,940,296 81,180 310,058,503 113
7 2 hiegal 31,603,173,285 36,138 139,479,007 168
7 2 Reachable 13,077,322,306 34,918 74,250,581 214
7 2 hy 5,146,255,022 15,084 40,117,094 112
7 2 hrs 1,322,734291 5461 18,592,509 71
7 2 hecount 3,808,678,007 24,461 34,560,151 190
7 2 hporyw 1,163,736,005 7,769 14,855,619 92
7 2 hpcr+1s 292,771,516 2,407 6,405,745 50
8 3 DFS 26,620,597 12 4,341,189 2
8 3 hiegal 16,848,839 35 3,337,321 7
8 3 Reachable 8,126,872 30 1,565,583 6
8 3 hy 3,437,740 14 837,311 3
8 3 hrs 2,543,581 13 704,728 4
8 3 hcount 5,281,071 37 1,079,209 8
8 3 hperyw 1,549,806 14 427,836 4
8 3 hpcr+is 1,070,793 11 339,040 4
11 5 DFS 351,252,436 851 1,248,645 3
115 hiegal 270,183,042 4,103 1,186,531 21
11 5 Reachable 95,032,776 1,182 613,290 9
115 hy 20,274,615 317 283,038 6
115 hrs 18,981,168 385 278,471 7
11' 5 hcount 74,718,320 1,324 555,895 13
115 hgoriw 9,563,469 289 187,320

11 5 hpcr+1s 8,584,590 305 182,166 7

Table 6: (n,k)-CIB results with different heuristics

DFBnB in this domain is usually negligible, as most of the
effort by DFBnB is exerted on proving optimality and not
in finding the optimal solutions. This explains the superior
runtime we observed for DFBnB in most settings: DFBnB
has a much lower computational cost per node than A*, and
does not traverse states multiple times (on the same branch)
as IDA* (due to IDA*’s iterations).

The results in Table 5 and 4 suggest that for (n,k)-SIB and
(n,k)-CIB DFBnB is superior to A* in most cases, and in
particular in the harder problems. All experiments reported
below thus use DFBnB as the search method of choice.

Comparing Heuristics

Next, we compared the performance of the proposed heuris-
tics against each other and against plain DFS, which is the
current state of the art (Hood et al. 2011). We chose as rep-
resentative the (7,2)-CIB, (8,3)-CIB, and (11,5)-CIB. These
settings of n and k were the hardest problems solved in rea-
sonable time. The number of nodes expanded and runtime
in seconds are given in Table 6. The results under “Find-
ing” show the number of nodes expanded and runtime spent
until the optimal coil has been found, while the results un-
der “Finding+Proving” show the total number of nodes ex-
panded and runtime, including finding an optimal solution
and proving that it is optimal.

First, observe that as discussed in Table 5, most effort is
spent in proving optimality. For example, for n = 7 and
k = 2 when using hpcr4 15, the number of nodes expanded
until an optimal solution is found was 6,405,745 but the total
number of nodes expanded until optimality was verified was
292,771,516. This again suggests that DFBnB is a suitable



Finding+Proving Finding

n k Heuristic Expanded Time Expanded Time
8 3 DFS 556,120,186 117 37,943,854 8
8 3 hiegal 163,055,814 173 12,850,416 14
8 3 Reachable 89,405,692 112 7,242,748 9
8 3 hy 36,297,451 72 3,024,380 6
8 3 hrs 20,214,140 60 1,790,446 5
8 3 hcount 37,531,696 233 3,141,984 18
8 3 hporyw 10,888,569 106 957,963 9
8 3 hpor+r1s 6,108,429 84 639,229 8
11 5 DFS 9,219,466,466 25,092 5,836,031,188 15,578
11 5 hiegal 3,296,260,745 25,883 2,181,872,051 17,178
11 5 Reachable 1,789,435,857 7,054 1,193,196,676 4,605
11 5 hy 245,345,738 1,633 162,763,500 1,047
11 5 hrs 196,828,023 2,147 132,791,420 1,432
11 5 hcount 739,969,859 7,076 499,355,508 4,689
11 5 hporiw 79,787,772 1,891 53,427,418 1,272
11 5 hpor+1s 61,184,873 3,428 41,686,854 2,301

Table 7: (n,k)-SIB results with different heuristics

search algorithm for these tasks.

The second trend observed is that using more sophisti-
cated heuristics reduces the number of nodes expanded, as
expected. The best heuristic in terms of number of nodes
expanded is hpcor415, and in all configurations it resulted
in a huge reduction in the number of nodes expanded com-
pared to DFS without a heuristic. For example, hpcryrs
expanded almost 40 times fewer states than DFS. These
results clearly demonstrates the big potential that heuristic
search algorithms have in solving MAX problems in gen-
eral, and the (n,k)-CIB problem in particular.

Next, consider the runtime results when using the differ-
ent heuristics. More sophisticated heuristics often require
more computations. Thus, the huge savings in expanded
nodes does not always translate to improved runtime. For ex-
ample, consider the runtime results for n = 8 and k£ = 3 in
Table 6. Although DFBnB with the best heuristic hpor+1s
expanded more than 20 times fewer states than plain DFS,
its gain in runtime was about 9%. This is because the com-
putation time of hpor4 15 is more than 20 times slower than
the time needed just to expand a node (without any heuris-
tic). By contrast, for n = 7 and k = 2, the reduction in the
number of expanded nodes obtained by using DFBnB with
hpor+1s Was so large that a substantial reduction in run-
time was also observed, solving n = 7 and k£ = 2 30 times
faster than DFS without a heuristic (which is the previous
state of the art). Lastly, observe the runtime results of n = 11
and k£ = 5. Here too, hporirs is the strongest heuris-
tic, as shown by the larger number of nodes DFBnB ex-
pands with the other heuristics. However, h g Ny expands
only slightly more states and is easier to compute. Thus, the
fastest configuration here is DFBnB with h g0, -

Results for (n,k)-SIB  For the (n,k)-SIB we compared the
proposed heuristics for solving the (8,3)-SIB and (11,5)-SIB
problems. Table 7 shows the resulting number of nodes ex-
panded and runtime in the same format of Table 6.

Notice that the number of nodes expanded and runtime
for solving (n,k)-SIB problems is significantly larger than

those reported for (n,k)-CIB in Table 6. This is because
when searching for coils we also used the stronger “bit count
sequence symmetry breaking method, which is not suitable
for finding snakes.

Here too DFBnB using our proposed heuristics expands
significantly fewer states than DFS. For (8,3)-SIB using
hpcor+15, DFBnB expands 76 times fewer states than DFS,
and for (11,5)-SIB as much as 137 times fewer expansions.
In terms of runtime, however, the results of the more sophis-
ticated BCT-based heuristics are less impressive and for both
settings the best performing heuristic was hz; even though it
expanded more states than hpcorrs. The runtime results
for hy surpass that of the current state of the art (DFS).

This difference in the performance of BCT-based heuris-
tics between (n,k)-SIB and (n,k)-CIB problems highlights
the different complexity of computing BCT-based heuristics
for snakes and for coils. As explained earlier, BCT-based
heuristics for snakes must consider all branches of the BCT
while for coils only a single branch needs to be considered.
Thus, the slower runtime for BCT-based heuristics in (n,k)-
SIB is expected.

In conclusion, we observe the following behaviors:

e DFBnB is usually better than A* in this domain.

e Using the proposed heuristics results in a huge reduction
in the number of states expanded.

e The more sophisticated heuristics are stronger but the cost
of computing them may outweigh their benefit.

Conclusion and Future Work

This paper reports the first study of using heuristic search
techniques to optimally solve the (n,k)-SIB and (n,k)-CIB
problems. Both problems are MAX problems that are vari-
ants of the longest path problem. Beyond academic interest,
solving these problems has important applications in coding
theory and communications. Several domain-specific admis-
sible heuristics were proposed, based on adapting additive
pattern databases to MAX problems and based on decom-
posing the searched graph into a tree of biconnected compo-
nents. Experimental results over a range of n and k values
showed that DFBnB is the method of choice for finding op-
timal solutions to these problems and that with the proposed
heuristics huge savings are achieved in terms of number of
nodes expanded. In some cases, these savings translate into
substantial reductions in runtime, while in other cases the
cost of computing these heuristics outweighs their benefit.

Much research is left for future work. Faster implementa-
tions of the existing heuristics, e.g., by computing them in-
crementally, may result in substantial overall speedup. Meta-
reasoning mechanisms can be developed to decide which
heuristic is most cost effective to use in which states. An-
other promising direction is to apply memory-based heuris-
tics to this problem. An orthogonal research direction is to
develop and evaluate suboptimal and bounded suboptimal
algorithms for the (n,k)-SIB and (n,k)-CIB problems. Ulti-
mately, we aim to find optimal solutions to larger instances.
We hope this work intices other search researchers to join us
in this quest.
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