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Situated Temporal Planning

‘planning while the clock ticks’, ‘time-aware planning’

Introduction

B The Problem

B ICAPS-18
B AAAL19 Example: planning a route involving a bus ride
B AE2 Analysis

W Greedy B ‘take 10:00 bus’ action expires at 10:00
New Work subtree of plans becomes invalid
Conclusion consider only if sufficient time to complete plan
B exploring ‘take 9:47 bus’ action can invalidate 10:00 action
searching under multiple nodes means less time for each
B plan expiration time uncertain until plan is complete
but completion effort and final feasibility also uncertain
B which plans to explore?
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B exploring ‘take 9:47 bus’ action can invalidate 10:00 action
searching under multiple nodes means less time for each
B plan expiration time uncertain until plan is complete
but completion effort and final feasibility also uncertain
B which plans to explore?

Previous planner (ICAPS-18) just pruned.
Recent work (AAAI-19) showed problem is hard.

We implement an approximate hack and find it can work.
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Previous work: the Time-Predictive Planner (ICAPS-18

ntroduction based on OPTIC (Benton, Coles, and Coles, ICAPS-12)
) T3 [FArelelem uses STN to track time flexibly
Bl AAAI-19
B AE2 Analysis B encodes external events as TlLs
W Greedy B constrains actions to happen after now
New Work . .
_ B prunes infeasible nodes
sencusien B estimates if plan can be completed in time (temporal RPG)
B two open lists, prefers complete-able
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) T3 [FArelelem uses STN to track time flexibly
Bl AAAI-19
B AE2 Analysis B encodes external events as TlLs
W Greedy B constrains actions to happen after now
New Work . .
_ B prunes infeasible nodes
sencusien B estimates if plan can be completed in time (temporal RPG)
B two open lists, prefers complete-able

better than OPTIC assuming a fixed planning time

but used usual cost-based search order!
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Allocating Effort when Actions Expire SAE2, AAAI-19!

I troduction n partial plans/nodes/processes to share CPU, discrete time

B The Problem

B ICAPS-18

For each process 7, given

B AE2 Analysis

B Greedy termination CDF M (t) = probability ¢ requires CPU time < ¢
New Work like heuristic for effort required

Conclusion

success probability P, = probability 7 results in solution
without considering time found

deadline CDF D;(t) = probability 7 expires before wall time ¢
not certain until solution is complete

Find schedule for processes that

B maximizes probability of finding a solution
B that is still valid when found

can be formulated as an MDP (see paper)
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Analysis of the AE2 MDP !AAAI-IQ!

policy = time allocation = time-aware planning strategy

Introduction

B The Problem

:L\C:;Sj Theorem. With known deadlines, there exists a linear
contiguous policy that is an optimal solution.

B Greedy

New Work Theorem. Finding the optimal (linear contiguous) policy for the
Conclusion case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

Theorem. With known deadlines and diminishing logarithm of
returns, optimal policy can be computed in polynomial time.
(algorithm given)

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning — 5 / 19



A Greedy Algorithm for AE2 !AAAI-IQ!

Introduction m;i(t) = probability i« completes after ¢ units of computation
(AR as = M;(t) — Mi(t—1)
:ﬁéﬁt\lni.ysis fi(t) = probability ¢ succeeds after ¢ units of computation
t
New Work — Pz Z mz(t,)(]_ . Dz(t,))
Conclusion 7—0
e; = 'most effective’ computation time for ¢
log(1 — f;(t
— argmtin 8 n fi(t))

Greedy algorithm: prioritize soonest deadline and greatest
Improvement per unit computation

a  log(1l— fi(ei))
E[DZ] €;

maximize (i) =

tested on standalone AE2 problems
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New Work

New Work
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A Moadified Greedy Algorithm for Use in Planning

Introduction

New Work

B New Greedy

B Results

Conclusion

a log(1 — fi(e;))

original greedy: maximize Q(¢) = ED;
1 €;

but don't have M, P, and D distributions for f; and ¢;
new modified approach:

B estimate F[D;] using slack in temporal RPG
time before current plan + relaxed plan must start
B approximate e; with estimated remaining search time under ¢
estimated search distance times expansion delay
B replace — log(l — fz(ez)) with E[DZ] — €;
slack beyond expected planning time
New greedy algorithm: prioritize soonest deadline and greatest
planning slack
Q N max(0, E|D;] — ¢;)
maX(E[DZ-], th) €;

new: maximize Q(i) =
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Experimental Results

42 Robocup Logistics League problems
Time-Predictive Planner (ICAPS-18) with different search orders

Introduction

New Work

B New Greedy

.

Conclusion Q(n) with a =

h(n) | —10* -1 0 01 1 10
number solved 21 27 29 20 29 30 30

most failures were missed deadlines
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Conclusion

Conclusion
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Summary

Planning while time passes is extra hard!

Introduction

New Work B just formalizing the problem is non-trivial
Conclusi 1
encuson B metareasoning must be cheap

A greedy approach can perform well!

B even if highly simplified and approximated
B for problems with deadlines, searching on time beats cost!

Further directions

B more benchmarks
B consider solution cost
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Backup Slides

Backup Slides
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Solving the AE2 MDP

State space exponential in n.

B Solving AE2
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—e 2. Linear contiguous policies: (1,1, 1, 2,2, 3, 3,3, ...)
B 4 Types of Algs 3. Known deadlines
B Exp. Set-up
M Results 1 Good news:
B Results 2

Theorem. With known deadlines, there exists a linear
contiguous policy that is an optimal solution.
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2. Linear contiguous policies: (1,1, 1, 2,2, 3, 3,3, ...)
3. Known deadlines

Good news:

Theorem. With known deadlines, there exists a linear
contiguous policy that is an optimal solution.

Bad news:

Theorem. Finding the optimal (linear contiguous) policy for the
case of known deadlines is NP-hard.

Implies that solving the full AE2 MDP is NP-hard.

However...
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Diminishing Returns

log probability ¢ still running: LPR;(t)

Introduction

New Work

diminishing returns: d(LZIfi(t)) is non-decreasing (B&D, 1994)

Conclusion

Backup Slides

Diminishing returns LPF

B Solving AE2
B Diminish. Returns 0
1 2 3 4 5 6 7 8 9 10 11

B 4 Types of Algs -0.2
B Exp. Set-up 0.4
B Results 1 06

B Results 2 =
T 08

-
-1
-1.2
-1.4
-1.6

Processing time t
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returns, optimal policy can be computed in polynomial time.
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Four Types of Algorithms

Optimal: solve MDP directly

Introduction

New Work

Simple Heuristics: run ‘most promising’ until failure; round
robin; random

Conclusion

Backup Slides
B Solving AE2

B Diminish. Returns DiminishingReturns: optimal for DR

W Exp. Set-up Greedy: inspired by DR, basically at each step select most
M Results 1 .

B Results 2 likely to succeed

metric: probability a non-expired solution is found
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Experimental Set-up

synthetic M; (t), P, D, (t)

B distributions: exponential (diminishing returns!), normal,
uniform

Backup Slides .

B Solving AE2 B tried range of parameters

B Diminish. Returns
B 4 Types of Algs
temporal planning problems
B Results 1

B Results 2

Introduction

New Work

Conclusion

m OPTIC planner (as in ICAPS-18) on Robocup Logistics
League
B search trees used to generate snapshots

known and unknown deadlines
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Results with Known Deadlines

I troduction dist n Greedy DR MP
B 2 0.61 0.67 0.70

New Work 5 0.72 0.82 0.61
T 10 0.60 0.88 0.71
100 0.81 0.99 0.91

Backup Slides N 2 0.56 0.45 0.33
B Solving AE2 5 0.83 0.72 0.27
B Diminish. Returns 10 0.93 0.41 0.09
B 4 Types of Algs 100 | 1.00 0.70 0.23
B Exp. Set-up U 2 0.61 0.65 0.50
5 0.90 0.88 0.75
B Results 2 10 0.98 0.98 0.66
100 | 1.00 1.00 0.80

P 2 0.72 0.79 0.01

5 0.78 0.81 0.79

10 1.00 0.87 0.99

100 1.00 0.91 0.86

avg 0.82 0.78 0.58

simple ‘Most Promising’ not so good

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning — 18 / 19



Results with Known Deadlines

I troduction dist n Greedy DR MP
B 2 0.61 0.67 0.70

New Work 5 0.72 0.82 0.61
T 10 0.60 0.88 0.71
100 0.81 0.99 0.91

Backup Slides N 2 0.56 0.45 0.33
B Solving AE2 5 0.83 0.72 0.27
B Diminish. Returns 10 0.93 0.41 0.09
B 4 Types of Algs 100 | 1.00 0.70 0.23
B Exp. Set-up U 2 0.61 0.65 0.50
5 0.90 0.88 0.75
B Results 2 10 0.98 0.98 0.66
100 | 1.00 1.00 0.80

P 2 0.72 0.79 0.01

5 0.78 0.81 0.79

10 1.00 0.87 0.99

100 1.00 0.91 0.86

avg 0.82 0.78 0.58

simple ‘Most Promising’ not so good
DR optimal for DR, okay with known deadline

Wheeler Ruml (UNH) Beyond Cost-to-go Estimates in Situated Temporal Planning — 18 / 19



Results with Known Deadlines

I troduction dist n Greedy DR MP
B 2 0.61 0.67 0.70

New Work 5 0.72 0.82 0.61
T 10 0.60 0.88 0.71
100 0.81 0.99 0.91

Backup Slides N 2 0.56 0.45 0.33
B Solving AE2 5 0.83 0.72 0.27
B Diminish. Returns 10 0.93 0.41 0.09
B 4 Types of Algs 100 | 1.00 0.70 0.23
B Exp. Set-up U 2 0.61 0.65 0.50
5 0.90 0.88 0.75
B Results 2 10 0.98 0.98 0.66
100 | 1.00 1.00 0.80

P 2 0.72 0.79 0.01

5 0.78 0.81 0.79

10 1.00 0.87 0.99

100 1.00 0.91 0.86

avg 0.82 0.78 0.58
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Results with Unknown Deadlines

I troduction dist n Greedy DR MP
B 2 0.61 0.35 0.64

New Work 5 0.65 0.36 0.63
CORE 10 0.70 0.45 0.66
100 0.70 0.44 0.65

Backup Slides N 2 0.63 0.37 0.20
B Solving AE2 5 0.70 0.35 0.09
B Diminish. Returns 10 0.65 0.30 0.15
W 4 Types of Algs 100 | 0.76 0.32 0.06
B Exp. Set-up U 2 0.68 0.39 0.53
B Results 1 5 0.70 0.43 0.57
10 | 0.78 0.46 0.59
100 0.86 0.52 0.59

P 2 0.61 0.24 0.46

5 0.90 0.54 0.45

10 0.90 0.32 0.62

100 0.85 0.77 0.38

avg 0.73 0.41 0.45

DR poor for unknown deadlines
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