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Abstract

Many systems, such as mobile robots, need to be controlled
in real time. Real-time heuristic search is a popular on-line
planning paradigm that supports concurrent planning and ex-
ecution. However, existing methods do not incorporate a no-
tion of safety and we show that they can perform poorly in
domains that contain dead-end states from which a goal can-
not be reached. We introduce new real-time heuristic search
methods that can guarantee safety if the domain obeys cer-
tain properties. We test these new methods on two different
simulated domains that contain dead ends, one that obeys the
properties and one that does not. We find that empirically the
new methods provide good performance. We hope this work
encourages further efforts to widen the applicability of real-
time planning.

Introduction
Systems that interact with the external physical world of-
ten must be controlled in real time. Examples include sys-
tems that interact with humans and robotic systems, such
as autonomous vehicles. In this paper, we address real-time
planning, where the planner must return the next action for
the system to take within a specified wall-clock time bound.
We assume the system has fully observable state, discrete
time, and discrete deterministic actions. We adopt a heuris-
tic state-space search approach: while the system transitions
from state s1 to s2, the planner exploits a heuristic cost-to-go
function to explore promising parts of the state-space graph
starting from s2 to find an appropriate action to execute once
the transition completes. The duration of the transition gives
rise to the time bound for the planner. The problem domain
is represented by an initial starting state, a successor state
generator, and a goal predicate on states.

Because the planner cannot necessarily find a complete
path to a goal state within the time bound, there is no guar-
antee that the selected action leads to a goal. In fact, it may
be necessary to return to a previously visited state in order
to reach a goal, so real-time heuristic search methods up-
date their heuristic function to avoid becoming trapped in
cycles (Korf 1990). If the state space is finite and a goal
is reachable from every state, most real-time search meth-
ods are complete and will eventually reach a goal. In prac-
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tice, the state spaces of many real-world applications can be
considered finite, but unfortunately they often contain dead-
end states from which a goal is not reachable. For example,
if a robot is traveling too fast towards an obstacle, it may
be impossible to avoid a crash. As we will see below, con-
ventional real-time search methods quickly succumb to dead
ends. This prevents existing search methods from being ap-
plied to many on-line planning problems.

In this paper, we study general methods for avoiding dead
ends in real-time search. In contrast to traditional off-line
safety verification, we aim to avoid a pre-specified controller
and lengthy preprocessing and rather allow an agent to dy-
namically plan for its current goals and prove on-line that its
next action will be safe. We define a general problem setting
for safe on-line planning and several new real-time search
algorithms and prove conditions under which they can keep
an agent safe. We define a new safety-oriented node evalua-
tion function and develop practical methods that exploit its
information to efficiently preserve safety while selecting ap-
propriate actions. We empirically test these methods on two
simulated domains, traffic crossing and controlling a vehi-
cle with inertia, and find that the new methods dramatically
outperform the conventional ones.

Preliminaries
The algorithms we discuss are based on a modern general-
purpose real-time search algorithm, Local Search Space
Learning Real-Time A* (LSS-LRTA*) (Koenig and Sun
2009). (Note that incremental approaches, such as D*
(Koenig and Likhachev 2002), or anytime approaches, such
as ARA* (Likhachev, Gordon, and Thrun 2004), have plan-
ning times that are not tightly bounded, rendering them inap-
plicable.) We begin by introducing LSS-LRTA* and study-
ing its behavior in domains with dead ends.

Real-time Heuristic Search
Psuedocode for LSS-LRTA* is sketched in Figure 1. The
algorithm proceeds in two phases: planning and learning.
The planning phase is similar to A*: expanding nodes in
best-first order, preferring low f values, where f(n) =
g(n) + h(n), the cost-so-far plus an estimate of the cost-to-
go. To obey the real-time bound, only a pre-specified num-
ber of nodes are expanded, forming a local search space.
In the learning phase, a Dijkstra-like propagation updates



Algorithm 1: LSS-LRTA*.
Input: sroot , bound

1 while the agent is not at a goal do
2 perform bound expansions of A* search from

sroot
3 if open becomes empty, terminate with failure
4 s← node on open with lowest f value
5 update h values of nodes in closed
6 commit to actions along path from sroot to s
7 sroot ← s

Figure 1: Top: (left) Barto racetrack; (right) Handmade clut-
tered track. Bottom: (left) Hansen-Barto combined track;
(right) Traffic: white cells are bunkers—see text.

the heuristic values of all expanded nodes backwards from
the search frontier. Nodes with no successors are given an h
value of∞. In the original version of LSS-LRTA*, the agent
then commits to all the actions leading to the node on the
frontier with the lowest f value. In the experiments below,
we also evaluate a more conservative version that commits
only to the first action along the most promising path. If one
or more goal states are discovered during planning, the agent
commits to the best path to a goal. If the open list becomes
empty, a goal state is not reachable and we say the agent has
failed.

LSS-LRTA* is complete if h is consistent and the cost of
every action is bounded from below by a constant (Koenig
and Sun 2009). It is quite general: it does not assume that
the state space is undirected (every predecessor of a state is
also a successor), that action costs are uniform, that there
is a single goal state or a small number of them, or even
that goal states are given explicitly. It can handle planning
in unknown and dynamic environments. Many other algo-
rithms build on LSS-LRTA*, including RTAA* (Koenig and
Likhachev 2006) and daLSS-LRTA* (Hernández and Baier
2012).

Empirical Performance
While LSS-LRTA* is complete in finite state-spaces that
lack dead ends, we have found that it can perform poorly
if they are present. We empirically examined its behavior
in two domains. Both feature directed state spaces, in the
sense that it is not always possible to return to the previ-
ous state, and dead end states, which have no successors.
The first is a dynamic world that presents exogenous dan-
gers to the agent. It is an extension of the traffic domain
used by Kiesel, Burns, and Ruml (2015): reminiscent of the
video game Frogger, the agent must navigate a grid from
the upper-left to the lower-right using four-way movement
while avoiding moving obstacles. A cartoon sketch is shown
at the bottom right of Figure 1 (the white cells are bunkers,
described below). Each obstacle moves either vertically or
horizontally, one cell per timestep. Obstacles bounce off the
edges of the grid but pass through each other. While these
velocities are known to the agent, and hence the domain is
deterministic, the system state space is large, involving both
the location of the agent and the locations of the obstacles
(or equivalently, the timestep). In addition to moving in the
four directions, the agent can also execute a no-op action
and remain stationary. We extend the domain to include spe-
cial bunker cells, off of which dynamic obstacles bounce,
protecting the agent. The objective is to minimize the num-
ber of moves to reach the goal and the cost-to-go heuristic
h is the Manhattan distance, which is perfect in the absence
of obstacles. We created 100 random instances of 50 by 50
cells in which each cell has a 50% chance to be the starting
position of an obstacle or a 10% chance of being a bunker.

The second domain is reminiscent of autonomous driv-
ing and is a variant of the popular racetrack problem (Barto,
Bradtke, and Singh 1995). The agent moves in a grid at-
tempting to reach one of a set of goal locations while
avoiding static obstacles. Figure 1 shows the three maps
used in our experiments. The top left track was created by
Hansen and Zilberstein (2001) and the bottom left track was
made by combining it with a track by Barto, Bradtke, and
Singh (1995). We created the cluttered track in the top right
to provide variety. The agent’s velocity in the x and y direc-
tions can be adjusted by at most one at each timestep. While
acceleration is tightly bounded, velocity is limited only by
the size of the grid. The system state includes the agent’s
location and velocity. The objective is to minimize the num-
ber of time steps until a goal cell is reached. The heuristic
function is the maximum, either horizontally or vertically, of
the distance to the goal divided by an estimate of the max-
imum achievable velocity in that dimension. This is admis-
sible. This domain differs from traffic in that the heuristic is
inherently dangerous: it prefers states in which the agent is
closer to a goal, which are likely to be those in which it is
moving faster and hence more likely to crash. For each of
the three maps, we created 25 instances with starting posi-
tions chosen randomly among those cells that were at least
90% of the maximum distance from a goal.

We compared the strategy of committing to all the actions
to the lookahead frontier to merely committing to one action
at a time. In both domains, multiple-action commitment was
consistently superior, so this is what we show below. When
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Figure 2: Success rates in (left) traffic and (right) racetrack.

committing to multiple actions, the search algorithm devotes
all the time until the last committed action ends to its plan-
ning phase (the ‘dynamic’ lookahead strategy of (Kiesel,
Burns, and Ruml 2015)).

We implemented all domains and algorithms in Kotlin
(JetBrains 2017) and ran them on a modern Xeon server.
Each algorithm was given a maximum of 10 CPU minutes
and 20 GB of RAM. Runs exceeding those resources were
marked as failed. Figure 2 shows the fraction of instances in
which LSS-LRTA* (blue line) successfully guided the agent
to a goal. The x-axis represents different durations for ac-
tions in the world: longer durations allow more node expan-
sions during lookahead before the next action must be re-
turned. (As in many studies of real-time search, for simplic-
ity and reproducibility, we measure time using node expan-
sions.) Error bars represent 95% confidence intervals around
the mean. As one might expect, in both domains, for smaller
action durations when there is less time to plan, LSS-LRTA*
collides with obstacles more often. But even with 1,000 ex-
pansions, it cannot keep the agent safe. Clearly, safety is cur-
rently an issue for real-time search algorithms.

Problem Setting
As the foundation for our approach to safety, we assume that
the user supplies a predicate that identifies certain states as
safe. We take this to indicate that a goal is likely to be reach-
able from such states, and thus that it can benefit the agent
to maintain a feasible plan to reach a safe state in case the
other states it is considering turn out to be dead ends. We
will say that a state that is safe or that is known by the agent
to have a safe descendant is a comfortable state and that an
action leading to a comfortable state is a safe action. If an
agent never goes to an uncomfortable state then we say it
stays safe. We call a node with no safe descendants unsafe;
note that determining unsafety may be impractical. We em-
phasize that in some domains the safety predicate might be
merely heuristic. Although (as we will see below) a guaran-
tee that a goal is reachable from every safe state can endow
certain algorithms with desirable properties, safety can in
some cases merely indicate that such states might be useful
in avoiding failure. In the traffic domain, for example, the
safety predicate marks states in which the agent is located
in a bunker as safe. However, it could be that a multitude of
dynamic obstacles will prevent the agent from ever actually
reaching a goal. In racetrack, states in which the agent has

velocity zero in both dimensions are marked as safe. Assum-
ing the goal states are not completely blocked by obstacles,
this safety predicate actually does guarantee goal reachabil-
ity.

If the user has a predicate that can detect some of the dead-
end states, we will not consider it explicitly in this paper. We
assume that, if available, the detector is applied to every state
at generation time and that those for which it returns true are
pruned. Unless the detector is always perfect, the agent may
still encounter dead-end states.

Basic Safe Real-Time Search
We now turn to safe search algorithms. We begin by defining
a conservative search algorithm to be one that prefers safe
actions. More precisely, it adheres to this general schema: 1)
expand nodes, starting from the agent’s current state, to gen-
erate a local reachable portion of the state space, and call the
safety predicate on each generated state, 2) back up com-
fort by marking all predecessors of any comfortable state
as comfortable, and 3) commit to a safe action, if one ex-
ists. All conservative search algorithms have the appealing
property that they keep the agent comfortable under certain
conditions.

Theorem 1 For a given conservative search algorithm a, if
the agent starts in a comfortable state and every comfort-
able state s has a comfortable descendant that is reachable
within the local search space generated by a from s, then a
keeps the agent comfortable.

Proof: Assume the agent becomes uncomfortable. This
means a non-safe action was selected. Any safe node that is
generated in the local search space was reached via a feasible
sequence of actions from the current state, so the absence of
a safe action implies that no safe nodes were generated. This
is a contradiction, as the local search space was guaranteed
to contain one. 2

The applicability of Theorem 1 hinges on ensuring that a
comfortable descendant will be in the local search space.
We now introduce a conservative search that we will call
simple safe search. It is similar to LSS-LRTA*, except that
in its planning phase, it first performs a breadth-first search
until either a safe state is generated or a prespecified depth
bound k is reached. It then uses any remaining expan-
sion budget to perform best-first search on f , starting from
the already-developed breath-first search frontier. After the
learning phase, simple safe search marks the ancestors (via
all predecessors) of all generated safe states (from both the
breadth-first and best-first searches) as comfortable and all
top-level actions leading from the initial state to a comfort-
able state as safe. To select actions, it chooses the best f
node on the frontier, checks along its path for a comfortable
node, and commits to the actions leading to the deepest such
node. If no comfortable node is found, the path to the next-
best frontier node is checked, and so on. If no safe states are
found, S0 behaves as LSS-LRTA* would, committing to the
best frontier node (or the first action toward it in the case of
single commitment). We will refer to this action selection
strategy as safe-toward-best.



More sophisticated variations on this simple algorithm are
possible, but we study this one for its simplicity. For exam-
ple, Theorem 1 is easy to apply — we need only ensure there
is at least one safe node within distance k:

Theorem 2 If the agent starts in a comfortable state, ev-
ery comfortable state has a comfortable descendant no more
than k steps away, and the expansion bound is large enough
to allow a complete depth-k breadth-first search, then simple
safe search keeps the agent comfortable.

Proof: An immediate corollary of Theorem 1. 2

Remarkably, despite its strong assumptions, Figure 2 shows
that simple safe search (yellow line denoted SS) is able to
keep the agent much safer than LSS-LRTA* in both of our
benchmark domains. The parameter k was arbitrarily set to
10 for these experiments.
Theorem 2 might seem trivial, but it can be applied in both of
our benchmark domains. In traffic, note that the no-op action
allows an agent to remain in a bunker location, meaning that
safe states always have an immediate safe successor. So if
the agent starts in a safe state, the theorem applies and the
agent will remain comfortable. Of course, if the lookahead
is too small to allow the agent to find a comfortable state
that is closer to a goal, the agent will remain comfortable at
the expense of reaching a goal (we note that it fails a few
trials at low action durations), but this is a fundamental and
unavoidable trade-off. Similarly, in racetrack, applying zero
acceleration allows the agent to stay in a safe state, so the
agent will only leave a safe state when it has a feasible plan
to reach another. Successor states with velocity k will never
have a safe descendant within k − 1 steps so the agent will
never accelerate beyond k−1. Intuitively, because the agent
only chooses actions that lead to states from which it has
looked far enough ahead to know that it can come to a stop
if necessary, then it will remain safe. However, it will take a
long time to reach the goal (and again we note some failures
at low durations).

Although it requires severe assumptions, one can exploit
the similarity to LSS-LRTA* for a completeness result:

Theorem 3 If h is consistent, all action costs are bounded
from below, the goal is reachable from every state, and the
most attractive top-level action can always be proven safe
by k-step lookahead, then simple safe search is complete.

Proof: Because the learning phase in simple safe search be-
haves like LSS-LRTA*’s, then if the most attractive top-level
action (the one LSS-LRTA* would take) can be proven safe
by k-step lookahead, the algorithm reduces to LSS-LRTA*
(albeit with a smaller lookahead). So if the domain adheres
to the assumptions of LSS-LRTA*’s completeness proof,
simple safe search inherits the property. 2

A Simpler Variant of LSS-LRTA*
Not all domains are guaranteed to have safe states within a
constant distance of any comfortable state, and as a practi-
cal matter, it seems profligate to expand nodes breadth-first
even if they have poor f values. So we next examine an even
simpler strategy we call S0. It behaves like LSS-LRTA*, but
checks for safe states during node generation in the planning

Algorithm 2: SafeRTS
Input: sroot , bound

1 while sroot 6= sgoal do
2 C ← ∅
3 b← 10 � initialize expansion budget
4 while expansion limit bound is not reached do
5 perform ASTAR for b expansions
6 perform BEST-FIRST SEARCH on dsafe

from the top node t of open
until comfortable node c is found
or until b expansions

7 if such c found then
8 cache comfort of nodes in path from t to c
9 b← 10 � reset budget

10 C ← C ∪ {t}
11 else
12 b← 2 ∗ b � increase budget

13 for c ∈ C do
14 propagate comfort to ancestors of c
15 choose node s in open with lowest f value that

has ssafe safe predecessor
16 if such s and ssafe exists then
17 starget ← ssafe

18 else if identity action is available at sroot then
19 starget ← sroot � apply identity action
20 else
21 TERMINATE � no safe path is available
22 use DIJSKTRA to update h values of the nodes
23 move the agent along the path from sroot to

starget
24 sroot ← starget

phase. In the learning phase, S0 propagates back the com-
fort of each node to its predecessors that have been discov-
ered in the previous exploration phase. Like simple safe, S0
uses safe-toward-best action selection. When a state is deter-
mined to be comfortable, this information is cached (along
with its h value as usual for real-time search) so that we do
not need to rederive this if we encounter the state again, in
the next search iteration for example.

As shown in Figure 2, S0 dominates LSS-LRTA* and sur-
passes simple safe search in racetrack. In the traffic domain,
S0 occasionally fails to reach a goal within the time limit.
Although S0 performs better than LSS-LRTA*, it is still not
able to reliably keep the agent safe in practice. In short,
merely watching over LSS-LRTA*’s shoulder is not suffi-
cient for an effective safe real-time search.

Heuristic Search for Safety
Having seen the ineffectiveness of simple methods, we
now investigate a more sophisticated approach that we call
SafeRTS (sketched in Algorithm 2). In contrast to S0,
SafeRTS explicitly tries to prove nodes safe, but in contrast
to simple safe search, SafeRTS only does this for states that
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appear to be promising. To enable explicitly finding a plan to
a safe state, we introduce a safety heuristic, dsafe(n), that es-
timates the distance, in state transitions, from a given node
n forward through the state space to the nearest safe state.
For example, in traffic, dsafe is the Manhattan distance to
the nearest bunker. Because of both static and dynamic ob-
stacles, this is an optimistic estimate. In racetrack, it is the
maximum of the absolute values of the x and y velocities of
the agent, representing the number of decelerations required
to bring the agent to a stop. In the absence of obstacles, this
estimate is perfect, although with obstacles the true value
may be∞.

SafeRTS distributes the total expansion allowance avail-
able for the planning iteration between two alternating
stages: exploring the state space via a best-first search on
f and attempting to prove that the currently most promis-
ing frontier node is safe via a best-first search on dsafe . The
node with lowest f (breaking ties toward low h) at the end
of the exploration stage is chosen as the promising node for
the subsequent proving stage. The proving stage succeeds
when the chosen node is determined to be a predecessor of
a comfortable node (line 7).

We do not know how much effort will be required to prove
the chosen node safe, or even if this is possible, so both the
exploration and proving stages are subject to a stage expan-
sion budget, initially set arbitrarily to ten nodes. Nodes gen-
erated during the proving stage are not added to the search
tree, as they may have suboptimal g values that could mis-
lead the learning phase. The proving stage ends when it suc-
ceeds or its budget is exhausted. If the proof is successful,
the stage budget is reset to its original value (line 10) and
the nodes used for the proof are marked as comfortable and
this information is cached for future use (line 9). If no com-
fortable descendant is found, the stage budget is doubled,
effective with the next exploration stage (line 13). In this
way, SafeRTS limits its effort in case it tries to prove the
safety of an unsafe node, while also focusing its proving ex-
pansions on promising states. When the overall time bound
is exhausted, SafeRTS performs learning as in LSS-LRTA*
and backs up comfort through predecessors as in S0.

We experimented with two action selection strategies:
safe-toward-best, as used in simple safe and S0 and shown

in Algorithm 2 (line 15), and best-safe, in which we com-
mit to the actions leading to the safe node that was most
recently expanded in the A* search (and was therefore most
recently judged promising). Figure 3 illustrates their differ-
ences, with safe-toward-best working back from promising
nodes on open and best-safe considering all safe nodes. With
either strategy, if no comfortable (or safe in the case of best-
safe) nodes are encountered, SafeRTS will take an identity
action that takes the agent directly back to the current state if
one exists. In this case, SafeRTS preserves its current search
tree and augments it during the next planning phase.

Theoretical Properties
The properties of SafeRTS depend on the state space and on
the action commitment strategy. For the following results,
we assume SafeRTS with best-safe action commitment, and
we make the following assumptions about the state space:
A0) the state space is finite, A1) the heuristic is admissible
and consistent, A2) the cost of transitioning between two
states is bounded from below by a positive constant, A3) the
start and goal states are safe, A4) the goal is reachable from
every safe state, and A5) an identity action is available at
each safe state.

First, we show that SafeRTS keeps the agent safe.
Theorem 4 Until it reaches a goal, the agent will always
move to a safe state different from its current state.
Proof: The agent starts in a safe state (A3). If the search ex-
pands one or more safe states, the agent will move to one of
them. Otherwise, identity actions are taken until a safe node
is selected for expansion. Since the space is finite (A0) and
the goal is safe (A3) and reachable (A4), this will eventually
happen. 2

For a proof of completeness, we need a few preliminary
results, which are similar to those for previous algorithms.
Theorem 5 The h values will stay admissible and consis-
tent.
Proof: The heuristic values are updated using the same
learning phase as used by LSS-LRTA*. As our heuristic val-
ues are initially admissible and consistent (A1) and action
costs are positive (A2), the same proof as used for LSS-
LRTA* (Koenig and Sun 2009, Theorem 2) applies. 2

Theorem 6 Increases in h values are bounded from below.

Proof: During learning, every h value is set to the sum of one
of the original h values, of which there are a finite number,
plus a subset of the action costs (no action will be included
more than once in a shortest path due to A2). Because only a
finite number of such sums are possible, only a finite number
of differences between such sums are possible, and thus the
increases in h values are bounded from below by a problem-
dependent constant. 2

Unlike similar results for previous real-time search al-
gorithms, we need to handle the fact that the agent might
not move to the best successor. And unlike in Korf (1990)’s
proof for RTA*, it is not the case that the h value of the
agent’s previous state is always updated. Our approach re-
lies on committing only to states that were expanded during
lookahead, allowing us to say something about their value.



Theorem 7 If the agent moves from current state a to any
expanded state b inside the LSS, incurring cost c(a, b), and
if h(a) < c(a, b) + h(b), then h(a) will be increased during
the learning phase.
Proof: Let h′(a) denote h(a) after learning and let best be
the node on the LSS frontier with the lowest f value. By
the back-propagation of h values from the LSS frontier dur-
ing learning, h′(a) = g(best) + h(best) = f(best). Due to
the consistent h (theorem 5) and A*’s expansion order when
forming the LSS, f(b) ≤ f(best). We assumed h(a) <
c(a, b) + h(b), so we have h(a) < f(b) ≤ f(best) = h′(a).
2

Theorem 8 For any looping sequence of states L visited by
the agent in which the first state s1 and the last state s|L|
are the same, the h value of at least one state in L will be
increased by the learning phase.

Proof: Assume, for sake of contradiction, that the agent trav-
els in a loop L and no h values are increased. By the con-
sistency of h (Theorem 5), h(s1) ≤ c(s1, s2) + h(s2). But
since there is no h increase, Theorem 7 implies h(s1) ≥
c(s1, s2) + h(s2). So we have

h(s1) = c(s1, s2) + h(s2)

= c(s1, s2) + c(s2, s3) + h(s3)

= · · ·

=

|L|−1∑
i=1

c(si, si+1)

+ h(s|L|)

=

|L|−1∑
i=1

c(si, si+1)

+ h(s1)

Because costs are positive (A2), the sum is positive and this
is a contradiction. 2

Following the spirit of Korf’s proof, the key is to show that
infinite traps cannot exist, although we use the properties of
h for the contradiction:
Theorem 9 There does not exist a finite set S of non-goal
nodes such that, after a finite time, the agent will move within
S forever after.
Proof: Assume, for sake of contradiction, that S exists.
Without loss of generality, restrict S to be as small as pos-
sible. If there are states in S that are visited only a finite
number of times, we consider only times after the last such
visit and shrink S, removing such states. Hence, each state is
visited an infinite number of times. This implies that, for any
state, we will visit it again. By Theorems 8 and 6, this im-
plies that an h value will be increased by an amount bounded
from below. There will be an infinite number of such in-
creases, contradicting the admissibility of h (Theorem 5). 2

We are now ready for completeness itself:
Theorem 10 The agent will eventually reach a goal.
Proof: The agent stays safe (Theorem 4), so a goal is al-
ways reachable (A4). For the agent to not reach a goal, there
would have to exist a set of non-goal nodes within which the
agent traveled forever. Theorem 9 disallows this. 2

While our proofs made use of several assumptions, it is
straightforward to see that some assumptions are required:

Theorem 11 There does not exist an algorithm that can
keep the agent safe in all domains or can be complete in
all domains.

Proof: Assume, for sake of contradiction, that such an algo-
rithm a exists. Construct a simple domain whose state space
is a single directed path forking at node n with one successor
leading to a dead end and the other to the only goal. To be
complete and keep the agent safe, a must make the correct
decision at n. If a is able to expand k nodes within the time
bound, add k + 1 nodes with identical h and dsafe values
after n along each path. Whichever arbitrary way a breaks
the tie, place the goal on the other path. 2

Empirical Performance
In our experiments, SafeRTS seemed to perform slightly
better with the safe-toward-best action selection strategy,
so that is what we present here. Figure 2 shows that, as
expected from Theorem 10, SafeRTS keeps the agent safe
while achieving a goal in racetrack. However, SafeRTS can
not always be guaranteed keep the agent safe in traffic, be-
cause the start state is not always safe in our benchmark set.
In our experiments, using a multiple-commitment action se-
lection strategy, SafeRTS never failed. Empirically, it seems
that SafeRTS can reliably keep the agent safe, unlike every
other real-time method tested.

To give a sense of the quality of the behavior generated
by different planners, we also measured the time (in number
of expansions) from the beginning of planning until a goal is
reached, known as the goal achievement time (Kiesel, Burns,
and Ruml 2015). This measure is also well-defined for off-
line methods like A*, allowing us to compare them to real-
time search. The left and center panels of Figure 4 presents
goal achievement time for the racetrack and traffic domains,
expressed as a factor of the time taken to execute an optimal
plan (A* without planning time). Data points are omitted
for action durations for which an algorithm did not solve
all the benchmark instances in a domain, thus S0 and SS
are rarely seen in racetrack and LSS-LRTA* is rare in both.
The results show that SafeRTS surpasses the other real-time
methods tested. Our plots also include the success rate and
goal achievement time of A* for reference, but we note that
A* cannot actually be used without non-trivial modification
in the traffic domain, as its plan for the initial state will be
out of date by the time it is returned because time has passed
and the obstacles will have moved. Nevertheless, SafeRTS
performs almost as well as A* in traffic while still adhering
to the real-time bound and allowing responsive behavior.

To confirm our understanding of these algorithms’ be-
havior, we also measured the average velocity achieved by
the agent in the racetrack domain. The right panel of Fig-
ure 4 shows that, as we would expect, the more sophisti-
cated SafeRTS method is able to maintain a higher velocity
than the basic safe real-time methods SS and S0, while being
more robust than LSS-LRTA*. All methods achieve higher
speeds when they are allowed greater lookahead. Again, A*
represents perfect off-line performance.
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Figure 4: Goal achievement times in (left) traffic and (center) racetrack. Average velocity (right) in the uniform racetrack.

Discussion
The specific methods we have investigated each have their
limitations. Simple safe search can keep an agent safe, but
this can come at the expense of completeness. SafeRTS
can provide provable completeness, but only under best-
safe action commitment and certain domain assumptions.
More generally, if the safety predicate can identify very few
states as safe, then staying safe and making progress toward
a goal will be difficult for any algorithm. And of course,
real-time search algorithms can suffer from poor behavior
if h is highly misleading—this results in the agent revisit-
ing states, or scrubbing (Sturtevant and Bulitko 2016), as it
updates its h estimates. (Existing methods that avoid this be-
havior, such as EDA* (Sharon, Felner, and Sturtevant 2014),
assume undirected state spaces.)

Zilberstein (2015) notes the importance of avoiding dead
ends when building reliable AI systems, and indeed it has
been studied in many contexts. For example, dead end de-
tectors have been proposed in domain-independent deter-
ministic planning (Lipovetzky, Muise, and Geffner 2016).
There has been work in real-time search on identifying so-
called ‘dead’ states and ‘swamps’ that can be pruned with-
out removing an optimal path (Sturtevant and Bulitko 2011;
Sharon, Sturtevant, and Felner 2013)—this differs from our
focus on dead ends in directed state spaces. Musliner, Dur-
fee, and Shin (1995) use non-real-time planning to gen-
erate safe controllers. In planning under uncertainty, work
has addressed detecting dead ends (Kolobov, Mausam, and
Weld 2010) and avoiding them in off-line planning (Cama-
cho, Muise, and McIlraith 2016). Safety has also been ad-
dressed in reinforcement learning, where it is important not
to take an unsafe action even if it yields important informa-
tion about the underlying model being learned. Moldovan
and Abeel (2012), for example, address safe learning but as-
sume the existence of a policy that can always bring the sys-
tem back to the starting state. Work on safety in robotics has
focused mainly on collision avoidance. The work of Bareiss
and van den Berg (2015), for example, proposes a central-
ized algorithm to control multiple robots to avoid collisions,
and is not real-time in the hard bounded sense we use here.
Bekris and Kavraki (2007) address safety for a single agent
among dynamic obstacles, although their approach is limited

to motion planning. Schmerling and Pavone (2013) consider
uncertain dynamics. Dey, Sadigh, and Kapoor (2016) com-
bine motion planning with higher-level temporal logic mis-
sion plans.

Traditionally, safety in real-time systems has been con-
cerned with formally verifying off-line the behavior of rel-
atively simple pre-specified finite-state controllers against a
known system model. In contrast, our aim is to enable a re-
taskable agent to plan its actions on-line in light of its current
goals and knowledge, while still avoiding dead ends. The
agent and the world may have a combined state space that
is too large to completely verify off-line. The approach we
are taking should be easy to adapt to other kinds of reacha-
bility maintenance goals, such as ‘emcee an exciting party,
but ensure that it is always possible to return the house to its
pre-party condition by dawn.’

We address safety in on-line planning, as this allows the
agent’s goals, the system model, or the agent’s information
about the world to change without necessitating a lengthy
pause for replanning. By taking a heuristic search approach,
our methods are quite general and not limited to particular
state representations or planning formalisms. LSS-LRTA*
has been used in partially known environments (Koenig and
Likhachev 2006) and adapted for dynamic environments
(Bond et al. 2010), and we expect that our methods should
be adaptable to these settings. Furthermore, on-line planning
often scales to larger and more complex problems better than
off-line planning, because an entire plan or policy does not
need to be constructed (Korf 1990).

Conclusion
As our results show, susceptibility to dead ends is a seri-
ous liability of previous real-time heuristic search methods.
LSS-LRTA* failed to solve a significant fraction of instances
in both the traffic and racetrack domains. We presented a set-
ting for investigating safety in the context of on-line plan-
ning. A user-provided safety predicate is used to encour-
age the agent to avoid dead ends and a user-provided safety
heuristic dsafe can be used to efficiently find safe states.
We showed that naively adding safety to LSS-LRTA* was
not effective. We introduced simple safe search and proved
conditions under which it can keep an agent safe, and pre-



sented the more sophisticated SafeRTS algorithm that pro-
vided high performance on both of our very different bench-
mark domains while guaranteeing completeness in certain
domains. While no real-time method can guarantee safety
in every domain, these methods apply in a wide variety of
situations. We hope this work encourages further efforts in
widening the applicability of on-line planning.
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