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Abstract
The RTAA* algorithm has been proposed as an alternative
to the LSS-LRTA* algorithm for heuristic search under hard
time constraints. It uses a cruder but faster learning proce-
dure. Experimental results on pathfinding in mazes in the un-
known terrain setting indicated that RTAA* was superior to
LSS-LRTA*. In this paper, we attempt to replicate those re-
sults and we extend the analysis to additional domains. Our
results suggest that RTAA* is superior to LSS-LRTA* only
in situations where the heuristic is already relatively accu-
rate, either inherently or because of large lookahead. Overall,
neither algorithm seems superior to the other.

Introduction
Applications of heuristic search to on-line planning often re-
quire that an agent begin executing a partial plan before a
complete path to a goal state can be found. Real-time search
algorithms guarantee that an agent’s next action is selected
within a hard pre-specified time bound. They usually in-
corporate a learning mechanism that prevents infinite loops
and guarantees that, under certain conditions, the agent will
reach a goal despite limited planning. These algorithms can
also be adapted for planning in a partially-known state space
in which additional information becomes available during
action execution. Local Search Space Learning Real-Time
A* (Koenig and Sun 2009, LSS-LRTA*) is one of the most
popular real-time methods. It alternates between an A*-
style lookahead phase and a Dijkstra-style learning phase in
which the heuristic values of nodes within the local search
space are updated. Real-Time Adaptive A* (RTAA*) was
proposed by Koenig and Likhachev (2006) as an alternative
to LSS-LRTA*. It uses a faster but less thorough strategy for
updating heuristic values. The central question is whether
this faster strategy, by allowing deeper lookahead within the
same time bound, can overcome the less informed heuristic
values that are learned. Koenig & Likhachev present empir-
ical results on maze navigation with unknown terrain which
suggest that yes, RTAA* performs significantly better for
the same time bound. Subsequent authors have built addi-
tional algorithms on top of RTAA*, and the algorithm is
wide cited. So it is important to know whether the results
on unknown mazes generalize to other domains.
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In this paper, we replicate the experiments presented by
Koenig & Likhachev and evaluate the algorithms’ perfor-
mance in additional domains, including the sliding tile puz-
zle and a video game with directed state transitions. Unlike
the analysis of Arica et al. (2017), in order to capture the
potential advantage of RTAA*, we compute trajectory cost
subject to a time bound on search iterations. Our empirical
results (summarized in Table 1) suggest that LSS-LRTA* is
superior to RTAA* in situations where the heuristic is rela-
tively inaccurate or the lookahead is relatively small. RTAA*
does well when the heuristic is already quite strong or am-
ple lookahead is available. We did not find support for the
notion that RTAA* is generally superior to LSS-LRTA*.

Background
Both RTAA* and LSS-LRTA* interleave planning and ac-
tion execution. Planning consists of a lookahead phase, dur-
ing which an expansion-bounded A* generates the local
search space around an agent, discovering the optimal path
from the initial node to all frontier nodes, and a learning
phase, during which the heuristic values of the nodes within
the local search space are updated based on information
obtained during lookahead. Action execution is simply the
transitioning of an agent from node to node along the cost-
minimal path discovered during A* lookahead.

The main difference between the two algorithms is in the
way they handle the learning phase. LSS-LRTA* uses Dijk-
stra’s algorithm to update the heuristic values of the nodes
within the local search space in an outside-in manner, start-
ing with the nodes on the frontier of the local search space.
After learning, every node within the local search space has a
heuristic value equal to the minimum, over all frontier nodes,
of the cost to reach the frontier node plus the heuristic value
of that frontier node. In other words, a lower bound on its
best path to a goal through the frontier. While this seems
like optimal use of the information available to the algo-
rithm, note that Dijsktra’s algorithm does require a heap to
prioritize the backing up of low h values.

Instead of using a Dijkstra-style propagation, RTAA* up-
dating the heuristics of the nodes in the local search space
using:

h(n)← g(b) + h(b)− g(n)

where n is the node to be updated and b is the best node
on the frontier (that was about to be expanded during the



A* lookahead). Note that this update can be performed on
nodes in any order using simple iteration — in particular, no
heap is required. While we would expect LSS-LRTA* to in-
crease heuristic values more, resulting in superior accuracy,
we would expect RTAA*’s updates to occur more quickly.

Experimental Set-up
We implemented RTAA* and LSS-LRTA* in C++. We sepa-
rated the search algorithms and problem domains so that the
search algorithms remain general-purpose. We used heap-
based open lists and hash tables for closed lists. Ties be-
tween nodes with identical f-values were broken in favor of
nodes with greater g values. Remaining ties are broken ran-
domly using a random integer assigned to each node. New
nodes are allocated from a memory pool. Experiments were
run on a machine with a 3.16 GHz Core2 duo E8500 and
8GB RAM.

The A* lookahead phase is limited in the number of nodes
it can expand. To infer the performance of the algorithms
with a time-based bound, amortized CPU time per search
episode was calculated by dividing the total planning time
by the number of search episodes. In several of the plots be-
low, we compute the difference in performance between the
two algorithms at the same time bound. However, since our
time-based data was derived from node bounds, it is rarely
the case that we had data for both algorithms at the same
time bound. To allow comparison, we used linear interpo-
lation to infer what LSS-LRTA*’s performance would have
been for each time per search episode used by RTAA*.

Due to space limitations, we report only the most impor-
tant results in this paper. For additional plots and analysis,
please refer to Kochvi (2017).

Grid Pathfinding
Inspired by video games, grid pathfinding is a popu-
lar benchmark for real-time search. Following Koenig &
Likhachev, we used four-way movement and the Manhattan
distance heuristic, which yields perfect estimates in the ab-
sence of obstacles. We used two different versions of each
algorithm: one in which the agent knows ahead of time
which cells are blocked (“known terrain”) and another in
which the agent only learns if a cell is blocked when di-
rectly adjacent to it (“unknown terrain”). During lookahead,
the agent assumes unobserved cells are free of obstacles (the
“freespace assumption”). If the agent encounters an obstacle
during action execution, it begins a new lookahead phase.
The only significant implementation difference is that, in un-
known terrain, obstacle states were stored in a separate hash
table as they were observed.

Mazes
Following Koenig & Likhachev, we used depth-first search
to generate 2,500 mazes of size 151×151. Start and end cells
were selected uniformly at random. We note that mazes are
a bit atypical as heuristic search benchmarks. During looka-
head, most states will have only one non-duplicate successor
state. The heuristic is very uninformed. And solutions may
involve visiting a relatively large fraction of the state space.

Unknown Terrain The experiments in the original
RTAA* paper were performed on mazes with unknown ter-
rain. Our CPU times were about 10 times longer than those
reported by Koenig & Likhachev. Because they only report
results in one domain, it seems likely that they used a 2D
array to store nodes for fast access, while we used a hash
table for generality. We also detected some anomalies in
their statistical analysis (see (Kochvi 2017) for details). Af-
ter correcting for this, our overall results matched the origi-
nal paper well, giving us confidence in our implementation.
We did notice one subtle trend when comparing our LSS-
LRTA* results: our implementation seems to perform better
at lower lookaheads and worse at higher lookaheads than
theirs. Our trajectory cost, lookahead node expansions, and
search episodes were around 10% lower for a lookahead of
1, rising to a few percent more for a lookahead of 89 (the
highest lookahead reported in the original paper). It was not
clear what might explain these differences.

Figure 1 presents some of our results. The left panel
shows the total number of nodes expanded during all looka-
head phases under the goal is reached. At first, as the num-
ber of expansions allowed per lookahead increases, better
actions can be selected and fewer expansions are required
to reach the goal. However, the benefit of lookahead quickly
decreases and then becomes a liability. With larger looka-
heads in unknown terrain, more of the obstacles that actually
lie within the local search space are incorrectly assumed to
be traversable due to the freespace assumption and thus a
greater proportion of the path given by the A* search will be
blocked by obstacles. Only a modest amount of lookahead
is actually helpful.

The center panel shows, as expected, that RTAA* has
lower CPU time per planning episode (in microseconds)
than LSS-LRTA* for a given number of lookahead expan-
sions. This difference can be attributed to the computational
overhead of the learning phase.

Finally, the right panel shows the main performance met-
ric: difference in total trajectory cost as a function of CPU
time taken per search episode. Darker data points represent
time bounds at which RTAA* outperforms LSS-LRTA*.
Koenig & Likhachev report that when a search episode
is limited to 20.99 microseconds or less, RTAA* deliv-
ers lower trajectory costs than LSS-LRTA*. However our
data suggest that LSS-LRTA* performs better at the lower
and mid-range lookaheads, while RTAA* is better at higher
ones, with its advantage increasing as the time per search
episode increases. We fit a regression line (-2476.624 +
191233.06/planning time, r2 = 0.87, shown in purple in
the figure): its x-intercept is 77.22us per search episode.
Above this, RTAA* performed better. Learning is crucial in
mazes, where the Manhattan distance heuristic is quite poor.
Our working hypothesis is that, as lookahead increases, this
compensates for the weaker learning of RTAA*. We believe
that the freespace assumption may also play a role here.
With larger lookaheads, a larger proportion of the nodes
within the local search space will be incorrectly assumed to
be traversable. LSS-LRTA*’s fine-grained learning strategy
combined with these incorrect estimates may actually result
in less accurate updates to the heuristic values than those
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Figure 1: Mazes, unknown terrain: (left) expansions, (center) planning time, (right) trajectory cost difference vs lookahead

given by RTAA*, whose learning strategy depends on only
a single node.

Known Terrain Figure 2 shows results on the same mazes
when assuming known terrain. The left panel shows very
different behavior from the unknown terrain case. Because
the terrain is known, increased lookahead results in more
viable actions and fewer node expansions overall for both
algorithms. LSS-LRTA* requires fewer expansions than
RTAA*. The center panel shows performance vs looka-
head. For very short time bounds, LSS-LRTA* outperforms
RTAA*. For other bounds, neither clearly outperforms the
other. This is different from unknown terrain, where RTAA*
was clearly superior for mid to large bounds. The thorough
learning strategy of LSS-LRTA* is more effective when the
heuristic values derived from lookahead are better informed,
as they are in known terrain , allowing it to be competitive
with RTAA* despite its computational overhead.

Random Maps
In many search problems, the heuristic function is more
helpful than it is in mazes. To vary heuristic accuracy, we ran
both algorithms over 512×512 grid maps randomly filled
with obstacles at 10,20,30, and 40% density. The Manhat-
tan distance heuristic decreases in accuracy as the obstacles
density increases. The library (Sturtevant 2012) from which
they were sourced orders scenarios into buckets according
to optimal solution length. We chose 100 instances from the
buckets with the longest optimal solution lengths, because
in real-time applications, worst-case performance typically
drives design decisions.

Unknown Terrain The right panel of Figure 2 and the
three panels of Figure 3 show algorithm performance as the
obstacles density increases. With 10% or 20% obstacles, the
heuristic is very accurate and LSS-LRTA* has no advantage
over RTAA*. With 30%, we start to see the now-familiar
advantage at low lookaheads. As with mazes, due to the
freespace assumption with unknown terrain, the benefit of
lookahead fades as lookahead increases. With 40% obsta-
cles, the problems become difficult and LSS-LRTA* has a
clear advantage at all but the largest lookaheads.

Known Terrain Plots for the known terrain case are omit-
ted for space as they are qualitatively similar to those for un-

known terrain, although perhaps more extreme: the 10% and
20% cases show significant advantage for RTAA* through-
out, the 30% case swings quickly from a large advantage
for LSS-LRTA* at low lookaheads to a strong advantage for
RTAA* at high lookaheads, and 40% cases illustrates dom-
inance of LSS-LRTA* throughout. As in the unknown ter-
rain case, RTAA* performs better with fewer obstacles and
with a longer time-limit. One could say that RTAA* per-
forms well when the heuristic is already accurate or when
deep lookahead can provide very informed frontier values.

Game Map
To provide a benchmark more representative of potential ap-
plications than random grids, we also ran on the orz100d
map from the game Dragon Age: Origins (Sturtevant 2012),
shown in Figure 4. The map has a healthy mix of cluttered
areas and open space. Overall, 38% of the grid nodes are
obstacles. As before, this benchmark comes with start-goal
pairs organized by optimal solution length — we used 100
pairs from the buckets with the longest optimal solution
lengths.

Results for the unknown terrain setting are shown in the
left and center panels Figure 5. They are quite different from
the corresponding plots for random maps, and are perhaps
most similar to the results obtained from mazes with known
terrain. LSS-LRTA* performs strongly for low and mid-
range lookaheads, with RTAA* starting to perform compet-
itively for high lookaheads. Very similar results were ob-
tained for the known terrain setting (plots omitted). While
we do not have any firm hypotheses why the game map be-
haves so differently, it is clear that our results do not point to
superiority of RTAA* for this problem.

Traffic
While the previous grid pathfinding benchmarks were in-
spired by video games, they do not model an important
characteristic of certain games: directed state transitions. In
many state spaces, certain actions are irreversible and sev-
eral actions can be required in order to revisit the same state
(if it is possible at all). We implemented a benchmark used
by Kiesel, Burns, and Ruml (2015) that is modeled on the
game Frogger. In the version used here, a 100 × 100 grid is
filled 50% with obstacles, with start and goal states in each
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Figure 2: Mazes, known terrain: (left) expansions, (center) performance. (right) Random maps, unknown terrain, performance

-15

-10

-5

0

5

10

tra
je

ct
or

y 
co

st
 (R

TA
A*

 - 
LS

S-
LR

TA
*)

0 100 200 300 400 500 600
planning time (ms) / search episode

-50

0

50

100

tra
je

ct
or

y 
co

st
 (R

TA
A*

 - 
LS

S-
LR

TA
*)

0 100 200 300 400 500 600
planning time (ms) / search episode

0

5000

10000

15000

20000

25000

30000

35000

tra
je

ct
or

y 
co

st
 (R

TA
A*

 - 
LS

S-
LR

TA
*)

0 100 200 300 400 500 600
planning time (ms) / search episode

Figure 3: Random Maps, Unknown Terrain: Trajectory Cost vs. Time Bound: (left) 20% obstacles, (center) 30%, (right) 40%

Figure 4: orz100d

corner. Each obstacle has a cardinal direction. At every time
step, the obstacles move to adjacent locations according to
their direction (bouncing off the edges of the world) and the
agent can move in a cardinal direction or stay in the same
location. Each state is defined by a particular configuration
of obstacles and the location of the agent. If, in the course

of events, no successor states are available for the agent, the
agent is returned to the start state. Because computing a suc-
cessor state involves moving all the obstacles, which can be
expensive, a hash table was used by the successor generator
to cache generated states. The heuristic used is Manhattan
distance. The domain is fully observable. We used looka-
heads from 1–150 nodes.

The right panel of Figure 5 shows the difference in per-
formance between the two algorithms. There is significant
noise, possibly due to the large effect on trajectory cost of
restarting back at the start location upon collisions. Cer-
tainly, there does not seem to be evidence favoring one algo-
rithm over another.

Sliding Tile Puzzle
We ran both algorithms over 100 instances of the 4 x 4 slid-
ing tile puzzle from the classic problem set from Korf (1985)
and averaged their results. We chose as lookaheads multiples
of 100 up to 10,000. The heuristic was Manhattan distance.
We tested the algorithms with three different cost functions:
unit (every action costs 1), heavy (the cost to move a tile is
equal to the tile’s number), and square root (the cost to move
a tile is equal to the square root of the tile’s number).
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Figure 5: Game map, unknown terrain : (left) expansions, (center) performance. (right) Traffic performance.

low high
mazes unk LSS RTAA*

mazes known LSS same
random unk 10% same RTAA*
random unk 20% LSS RTAA*
random unk 30% LSS RTAA*
random unk 40% LSS RTAA*

random known 10% RTAA*
random known 20% RTAA*
random known 30% LSS RTAA*
random known 40% LSS

orz100d unk LSS same
orz100d known LSS same

traffic same
tiles maybe RTAA*

Table 1: Summary of results by time bound

To summarize the results (omitted for space), the algo-
rithms appeared roughly comparable and there were no dis-
cernible trends in performance versus lookahead. Overall,
RTAA* outperformed LSS-LRTA* 74%,71%, and 75% of
the time for unit, heavy, and square root action costs re-
spectively. Wilt and Ruml (2011) report results suggesting
that the Manhattan distance heuristic is most effective for
unit, less effective for square root, and least effective for
heavy. This accords with the pattern of results that we see:
RTAA* is most effective when the heuristic is strong, and
LSS-LRTA* becomes more effective as learning becomes
more important.

Conclusions
Table 1 summarizes our results. We saw that RTAA* was
superior to LSS-LRTA* in cases where the heuristic was
relatively strong or the lookahead relatively large. In our
benchmarks, there were just as many situations in which
LSS-LRTA* was superior as vice versa. Our results do not
support a claim that one algorithm is consistently better than
the other.

Probably the greatest limitation of our analysis is that

we did not compare the implementation using by Koenig
& Likhachev to ours. While our comparison is fair in the
sense that we maximally shared code between algorithms,
implementations with domain-specific optimizations would
reduce the time spend on domain operations, magnifying
differences in search operations such as the learning over-
head advantage of RTAA*.

In addition, although our study uses 16 different bench-
marks, any finite set gives only a limited view of algorithm
performance. Theoretical work can yield more general re-
sults, although often this requires oversimplification.
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