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Abstract— Many kinodynamic motion planners have been de-
veloped that guarantee probabilistic completeness and asymp-
totic optimality for systems for which steering functions are
available. Recently, some planners have been developed that
achieve these properties of completeness and optimality without
requiring a steering function. However, these planners have
not taken strong advantage of heuristic guidance to speed
their search. This paper introduces Region Informed Optimal
Trees (RIOT), a sampling-based, asymptotically optimal motion
planner for systems without steering functions. RIOT’s search
is guided by a low-dimensional abstraction of the state space
that is updated during planning for better guidance. Simulation
results suggest RIOT is adaptable, scalable, and more effective
on difficult problems than previous work.

Index Terms—Motion Planning, Dynamics, Non-holonomic
systems.

I. INTRODUCTION

This paper addresses kinodynamic planning, in which one
must find a feasible system trajectory (or equivalently, a
sequence of controls) that obeys not just geometric and
kinematic constraints but also dynamic ones such as limited
acceleration in the face of inertia. There are many types of
algorithms for this setting. Algorithms based on heuristic
graph search often exploit a heuristic cost-to-go estimate
to focus their efforts on states that participate in low-cost
trajectories [1]–[3]. The heuristic estimates are often derived
from plan costs in low-dimensional abstractions. However,
the completeness and optimality of graph-based methods
depends heavily on how the state space is discretized; such
planners almost never find truly optimal motions and an
unlucky discretization can cause incompleteness.

Sampling-based motion planners are not limited by a
fixed discretization and provide probabilistic completeness
in continuous space. Some methods [4] aim to quickly find
a single solution while others, known as anytime methods,
continue searching to find better solutions until stopped,
asymptotically converging on an optimal solution [5]. Some
of these planners require a steering function that, given two
states, returns an optimal feasible trajectory connecting them
(without considering obstacles) [5], [6], while others only
require the ability to forward simulate the dynamics of the
system [4], [7]. Inspired by graph search, some sampling-
based methods use abstraction to derive heuristics [8], [9].
These planners are effective at finding single solutions
quickly but do not converge to optimal solutions.

Other types of methods include trajectory optimization
[10] and potential fields [11]. While these can be very
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effective for simple spaces, they tend to be susceptible to
local minima and have difficulty in complex environments.

In this paper, our aim is to combine the most promising
aspects of previous work to develop a relatively simple
asymptotically optimal kinodynamic motion planner that ex-
ploits abstraction-based heuristics for fast search but does not
require a steering function, and is thus widely applicable. Our
proposed method, Region Informed Optimal Trees (RIOT),
uses an abstraction of the state space to bias where the
motion tree is grown. The path costs in the abstraction
adapt over time to exploit experience during the search. We
compare RIOT experimentally against DIRT [12], the cur-
rent state-of-the-art in asymptotically optimal kinodynamic
motion planning without a steering function. For a variety
of problems, RIOT finds lower cost solutions faster than
DIRT. For some easy problems, DIRT is faster. We find
that, even when provided with the same heuristic information
as RIOT, DIRT discovers solutions more slowly. We also
show that RIOT works well even when its abstraction is
relatively coarse or initially not representative of the state
space. RIOT’s strong performance supports the continuing
trend of integrating ideas from heuristic graph search into
sampling-based motion planning.

II. PREVIOUS WORK

We will touch on only the most closely related work;
for thorough background see [13] or [14]. There are many
planners that are capable of kinodynamic path planning.
Rapidly-exploring Random Trees (RRT) [4] has probabilistic
completeness in most cases [15]. The motion tree in standard
RRT is extended by choosing a sample uniformly from the
entire state space and expanding from the nearest neighbor
of the sample in the motion tree. RRT has a natural Voronoi
bias to fill the state space and was shown to find solutions to
difficult problems and does not require a steering function.
RRT is intended to find a single solution and is therefore not
intended, and most often does not, converge to optimal [5].
RRT is not guided by a heuristic function so the search tends
to go everywhere equally and can waste search effort. A goal
bias is often implemented to encourage the search to reach
the goal [4] but this typically consists of just occasionally
selecting the goal as the target state.

RRT* [5] is a modification of RRT to achieve asymptotic
optimality but it requires a steering function (or controllable
linear dynamics and a commercial solver [16]). RRT* uses a
process of rewiring states in the search graph when there are
neighbors nearby which can be used to obtain better trajec-
tories. This rewiring scheme is shown to converge to optimal
solutions, but in practice it can be slow. Batch Informed



Trees (BIT*) [6] is a sampling based motion planner that
carefully uses heuristics to minimize unnecessary collision
checking. Building on the approach of [17], BIT* places a
batch of samples at once and connects and rewires them to
find the optimal path to the goal with the current samples.
This is repeated to converge to an optimal solution. BIT* is
much faster than previous sampling-based optimal planners.
Like RRT*, BIT* depends on a steering function in order to
connect and rewire the samples. Thus, these algorithms are
not suitable for robots with dynamic constraints.

Some motion planning algorithms have achieved prob-
abilistic completeness and asymptotic optimality without
requiring a steering function. Sparse Stable Trees (SST) [7]
uses an RRT-like expansion with a biased selection to get
better solutions over time. SST also uses pruning to maintain
a sparse tree and achieve near-optimality while lowering the
cost of nearest neighbor queries. SST* [7] slowly reduces
the sparsity in SST for asymptotic optimality.

Dominance Informed Region Trees (DIRT) [12] uses re-
gions around states in the motion tree to search in promising
areas while maintaining completeness and optimality. The
regions in DIRT are larger for states that are likely to provide
better paths to the goal. When a sample is uniformly taken
in the state space, a state to expand is chosen randomly
from all states whose dominance regions contain the sample,
therefore there is an indirect effect that larger regions will be
selected more often. DIRT also uses a ”blossom expansion”
the first time a state is selected to attempt to create an edge
that gets the best path to the goal. The blossom expansion
creates many possible trajectories, from a curated set or
using a randomly selected control, and selects the best one
to be used according to heuristics. Further expansions of a
state use a single random control to maintain completeness
and asymptotic optimality. A greedy expansion is also used
in DIRT to immediately select a new state for expansion
whenever it has a better heuristic value than its parent.
This encourages fast convergence to the goal in easy areas.
DIRT was shown to have significant speed-ups from previous
planners such as SST and Rand A* [18]. The disadvantage
of DIRT is the optimistic heuristic and low transparency of
the algorithm. As the heuristic in DIRT must be admissible
and does not take obstacles into account, the search is
susceptible to local minima and the algorithm relies on
random exploration to escape them rather than adapting. This
makes searching for solutions in high dimensional spaces or
narrow passages difficult. The dominance informed regions
can also be difficult to conceptualize, making it harder to
alter the algorithm without losing desired properties.

RRT 2.0 [19] plans in the state-cost space to achieve
optimal kinodynamic motion planning. RRT 2.0 is not heuris-
tically guided although hybrid adaptations of RRT 2.0 with
other planners are proposed in [19] which provide heuristics
and improve performance in some cases. RRT 2.0 was shown
to have better performance than SST although with less of a
performance increase than DIRT achieved.

There are also many planners which have taken advantage
of simplifications or abstractions of the state space in order

to guide high dimensional search. SyCLoP [8] uses a de-
composition of the state space, thereby taking obstacles into
account, to find the most promising regions for the sampling
based planner to explore. By searching the decomposition as
a graph, these regions are used as a heuristic to guide the
search. Because the graph is relatively small, the heuristic
values can be quickly computed to bias the search in the
continuous space. GUST [9] further develops this idea for
a fast search to goal based on an abstraction of the state
space. GUST updates the regions based on experience and
makes the abstraction more fine grained in difficult areas of
the state space. These algorithms are intended to quickly find
one solution and therefore are not asymptotically optimal.

III. PROBLEM STATEMENT

We formalize the motion planning problem as an 8-tuple
{X,M, xstart,TG,U, P rop, Tmax, h}. The state space of the
problem X can be partitioned into a collision-free subset
Xf and an obstacle subset Xobs. There is a start state,
xstart ∈ Xf . There is also a task space, T, that is a result
of mapping the state space X using M : X → T. The
goal set is defined in the collision-free subset of the task
space, TG ⊂ Tf . Goal states are defined as all states x
such that M(x) ∈ TG. The control space is denoted U. A
trajectory π(t) : [0, tπ] → Xf is a function generated by
integrating the dynamics function ẋ = Prop(x, u) with the
applied controls u ∈ U and the initial state x = π(0) for
duration tπ . In our simulations, the controls u are piece-wise
constant, although this is not strictly necessary for our formal
analysis. Trajectory segments are generated with a varying
number t ∈ (0, Tmax) of fixed ∆t time steps for Tmax ∈ Z+

[15], limiting the number of time steps in a segment. Each
trajectory from the initial state to a leaf of the motion tree
τ has a cost g that we aim to minimize. We also provide
a state heuristic function h which is the cost-to-go estimate
from a state to the goal set. An admissible heuristic function
h provides guidance for the search but does not overestimate
the optimal cost to the goal: h(τ) = 0,∀M(τ) ∈ TG
and h(τ) ≤ c∗(τ),∀M(τ) ∈ Tf where c∗ denotes the
optimal cost of a solution trajectory for a given problem.
An admissible heuristic is required for pruning trajectories
that are more costly than an incumbent solution.

The f(x) value of a state x ∈ X is the cost of the trajectory
to the state, g(x), plus the heuristic estimate to the goal from
the state, h(x). This function is used to determine which
states are more likely to provide low cost solutions. It is
also used to prune states that are unable to provide a better
solution than the incumbent.

We will say that trajectories π1 and π2 are δ-similar if the
end state of π2 is within a δ radius ball of the end state of
π1 and that trajectory π has ε clearance if all states in the
trajectory are at least ε away from obstacles. We will make
use of the following relatively weak standard assumptions:
Assumption 1: Chow’s condition [20] of Small-time Locally
Accessible (STLA) systems is met for the dynamics of
the system. This provides that the reachable set of states
A ⊂ V from state x in time t ≤ Tmax∆t without leaving



neighborhood V ⊂ X has the same dimensionality as X for
any V . This assumption implies the existence of δ similar
trajectories for any trajectory π [7].
Assumption 2: The second derivative of the dynamics of the
system ẍ(t) are bounded.
Assumption 3: The dynamics of the system are Lipschitz
continuous in both x(t) and u(t). The cost function must
also be Lipschitz continuous w.r.t X, additive, monotonically
increasing, and non-degenerate.
Assumption 4: There exists a ε clearance solution trajectory,
πsol, generated by a piece-wise constant control function, Ῡ.
This assumption implies the planning query can be solved
given the discrete, piece-wise constant control space U and
dynamics ẋ = Prop(x, u).
Assumption 5: The task space mapping function, M, must
have topological equivalence w.r.t. the cost, heuristic, and
distance functions between the state space, X, and task space,
T. This means the task space and state space are capable of
being transformed into one another by a continuous one-
to-one transformation in both directions. This assumption
allows for analysis in both the state and task space and
implies accuracy for cost, heuristic, and distance evaluation
in the state space.

An algorithm is probabilistically complete if the prob-
ability that the algorithm will find a solution if one ex-
ists approaches 1 as the iterations n approaches infinity,
lim
n→∞

P(∃xgoal ∈ (M(τn) ∩ TG)) = 1 for the motion tree
τ which contains all trajectories. An algorithm is asymp-
totically optimal if the probability of finding the optimal
solution approaches 1 as the iterations approach infinity,
P(lim sup

n→∞
Yn = c∗) = 1 where Yn is a random variable

representing the minimum cost over all trajectories returned
by the end of iteration n of the algorithm.

IV. ALGORITHM

RIOT combines aspects of GUST, DIRT, and BIT* to
produce a heuristically guided, probabilistically complete,
asymptotically optimal kinodynamic motion planner that
does not require a steering function. The psuedocode is
shown in Algorithm 1 where the inputs are the start state
xstart, goal set xgoal, the map of the environment, the blos-
som number bn, the control space U, the forward propagation
function Prop, max propagation time Tmax, and heuristic
function h. The algorithm starts by partitioning an abstraction
of the task space, T, into a discretized graph of regions,
denoted G at Line 1. The abstraction can be created however
desired, for example uniform grid, random sampling and
Voronoi decomposition, or triangular decomposition as long
as it covers the task space. The purpose of G is to estimate
the cost of optimal solutions through every region of the
state space. This allows the planner to prioritize searching
in the most likely regions to provide high quality solutions.
Each region r has the properties ĝ, ĥ, f̂ , Ps, ĝmax, and ĥmax
which are also used by any state which maps to that region.
The values ĝ, ĥ, and f̂ are found by searching G, discussed
in more detail below. Ps is the probability of successful

Algorithm 1 RIOT (xstart, xgoal,map, bn,U, P rop, Tmax, h)
1: G← InitializeAbstraction(map)
2: τ ← {xstart}
3: πsol ← ∅, πsolc =∞
4: xnew ← ∅, xsel ← ∅, β ← ∅
5: while TimeRemaining do
6: if Greedy(G, xnew) then
7: xsel = xnew
8: else if πsolc =∞ then
9: xsel = NearestNeighbor(RandomSample(map))

10: else
11: AbstractionSearch(G, xstart, xgoal)
12: r ← SelectRegion(Ginterior)
13: xsel ← SelectState(G, r)
14: xnew ← ∅
15: if f(xsel) ≤ πsolc then
16: if xsel ∈ β then
17: Ecand(xsel)← Blossom(xsel,U, Tmax, 1)
18: else
19: Ecand(xsel)← Blossom(xsel,U, Tmax, bn)
20: β ← β ∪ xsel
21: while Ecand(xsel) 6= ∅ do
22: C ← argmin

f̂ ,ĥ,f

Ecand(xsel)

23: Ecand(xsel)← Ecand(xsel)\C
24: xnew ← Propagate(xsel, C)
25: UpdatePs(G, xnew)
26: if xnew 6= ∅ and f(xnew) ≤ πsolc then
27: τ ← τ ∪ xnew
28: UpdateInterior(G, xnew)
29: Maxg(G, xnew)
30: break
31: if xnew ∈ xgoal then
32: if g(xnew) < πsolc then
33: πsol = π(xnew), πsolc = g(xnew)
34: Maxh(G, xnew)
35: return πsol

propagation to a region from any other region and is used to
weight the edge cost between regions during the search of G.
The values ĝmax and ĥmax upper bound ĝ and ĥ respectively
in each region. Edges are created between regions with cost
according to the task space cost between their center points,
weighted by Ps. We also keep track of all regions touched by
the motion tree, denoted Ginterior. We will use the shorthand
G(x) to refer to the region that state x maps to.

Each iteration of the main loop at Line 5 starts by
selecting a state in the motion tree to extend from. There is
a possibility of greedy selection of a state in Line 6 of each
iteration. The greedy test checks if a new state was added
in the last iteration. If the new state is in a better heuristic
region than its parent (ĥ(xnew) < ĥ(xnew.parent)) or in an
equal heuristic region with a better state heuristic, this new
state is immediately selected. This greedy selection improves
time to find solutions and optimal solution convergence by
utilizing the abstraction. If the greedy selection is not used,



and no solution has been found, a random sample is taken
in the task space and the nearest state is selected in Line 9.
This improves exploration of the search, ensuring it is not
too greedy when a solution has not yet been found and the
abstraction may be inaccurate. Otherwise the abstraction is
searched and a region is selected from Ginterior at Line 12
with probability proportional to 1

f̂(r)
, inversely proportional

to the f̂ value of each region. This means that regions likely
to provide high quality solutions are selected more often.
This is just one of many possible ways to bias the region
selection. A state is selected uniformly from all states in the
motion tree that map to the selected region. If the selected
state is not deemed irrelevant by Line 15 incumbent pruning
based on the current best solution cost πsolc , it is expanded.

Expansion starts by creating a set of edges for the selected
state. Edges come from Blossom(xsel,U, Tmax, n) which
returns a set of n edges from controls u ∈ U generated
for random time steps [1;Tmax]. If xsel is not in the set
β that records states that have previously been selected for
expansion (Line 16), a set of |Ecand| = bn edges are created
by Blossom (Line 19). For all future selections of a state,
one edge is randomly generated (Line 17). From this set of
edges, edges are collision checked, best first, until a collision
free edge is found. For each propagation, the probability of
success is updated in UpdatePs for region G(xnew) (Line
25) depending on whether it was a collision or successful.
The sorting of these edges from the destination is by f̂ value
of the region first, ĥ value of the region second, and f value
of the state last. This prioritizes search through low cost
regions towards the goal. If the new state is not pruned by
the incumbent (Line 26), it is added to the motion tree.

After adding the state to the motion tree, the set of interior
regions is updated in UpdateInterior at Line 28. This
ensures that if a new region has been touched by the motion
tree then it can be selected for expansion. For each state
added to the motion tree, Maxg in Line 29 checks if it is
the lowest cost trajectory to that region seen so far and if so
ĝmax of that region becomes the g value of that trajectory.
A similar update is done in Maxh in Line 34 to change the
ĥmax values of regions along the solution trajectory.
AbstractionSearch at Line 11 runs Dijkstra’s Algorithm

on the abstraction from the region that contains the start state
G(xstart) to estimate the cost from the start to each region,
ĝ, and again from the region(s) containing the goal set to
estimate the cost from the goal to each region, ĥ. The sum
of the cost-to-come ĝ and cost-to-go ĥ yields an estimate
f̂ of the lowest cost path from start to goal through that
region. The region costs are initialized to the minimum ĝ
or ĥ value of current trajectories through that region, which
upper bound the AbstractionSearch cost with ĝmax and
ĥmax respectively. An example of this f̂ estimate can be seen
by the color gradient in the House and Obstacle Field maps in
Fig. 1 where the dark blue regions are expected to have lower
cost trajectories. The abstraction is meant to be as close an
approximation to an optimal solution through each region as
possible, therefore it is inappropriate to have an abstraction

Algorithm 2 NaiveRandomTrees(xstart,map,U, Tmax)

1: τ ← {xstart}
2: while TimeRemaining do
3: xselected ← UniformSampling(τ)
4: t← Sample(0, Tmax); Υ← Sample(U, t)
5: xnew ←

∫ t
0
f(x(t),Υ(t))dt+ xprop

6: if CollisionFree(xselected → xnew) then
7: τ ← {xnew}
8: return τ

cost greater than a realized cost in the motion tree. However,
the abstraction is not forced to be admissible, as this may
decrease performance and is not necessary to maintain any
desired properties. For certain environments, it may not be
possible to determine if regions are completely occluded and
initializing the probability of successful propagation may
require estimates. The edge costs are weighted by dividing
them by Ps(dest), the probability that a state propagation
that ends in the region represented by the destination vertex
will be collision free. This success probability is updated
every time a new motion is computed, so that RIOT can
recognize when a region is blocked or difficult to navigate
and try growing the motion tree elsewhere, similar to [21].
The weighted edge cost c = edge(source, dest)/Ps(dest)
from region source to region dest approaches infinity as
the probability of successful propagations approaches 0,
limPs(dest)→0(c) → ∞. Ps(r) = 0 should occur only if a
region is completely occluded with obstacles. This requires
that Ps is initialized to an optimistic estimate with some
number of initialization values. This can be done by random
sampling in each region and always including at least 1
success if there is any uncertainty whether a region is
completely blocked.

V. ANALYSIS

Following [7], our proof that RIOT is asymptotically
optimal will be based on its similarity to a simple method,
Naive Random Trees (NRT), shown in Algorithm 2. NRT
expands a motion tree by uniformly selecting a state from the
motion tree in Line 3. The control and time to propagate the
control is then sampled randomly in Line 4 and propagated
in Line 5. The trajectory is collision checked in Line 6
and added to the motion tree in Line 7 if collision free.
It was shown by [7] that NRT is asymptotically optimal, so
our proof merely needs to show how a subset of RIOT’s
expansions can be seen as a simulation of that method.
Lemma 1: RIOT will use the non-greedy state selection
infinitely many times as time approaches infinity.
Proof: The greedy selection only occurs for a state with
a lower region heuristic or equal region heuristic and lower
state heuristic than its parent. The abstraction heuristic values
are not altered until a greedy choice is not selected in Line
11 of Algorithm 1, therefore the region heuristic is constant
until the greedy choice has ended. Eventually a greedy choice
will not be possible as a constant heuristic can not infinitely
decrease. Therefore it is not possible to continually go to a



region with a lower heuristic and thus the non-greedy choice
will be selected. This argument holds repeatedly, thus a non-
greedy choice will be made infinitely many times as time
approaches infinity.
Lemma 2: RIOT’s non-greedy choice has positive probabil-
ity of selecting any state in the motion tree for expansion.
(Note this holds regardless of the admissibility of the ab-
straction heuristic.)
Proof: When the greedy choice is not selected, if a solution
has not yet been found, the nearest neighbor of a random
sample is selected in Line 9. This means that the algorithm
has positive probability of selecting any state. If an incum-
bent solution exists, RIOT first selects a region from among
those that have been touched by the motion tree and contain a
state (Lines 12 and 28 of Algorithm 1). The f̂ bias for region
selection in Line 12 assigns positive probability of selection
for any region r with f̂(r) <∞. ĝ(r) is upper bounded by
the cheapest trajectory to that region, thus clearly finite for
all regions in Ginterior. ĥ(r) is determined by the cost to the
goal in the abstraction, which can only be infinite if Ps = 0
for some region on every path to the goal. Because Ps = 0 is
only for completely blocked regions and a solution exists by
assumption 4, the f̂ values of reachable regions will remain
finite. Once a region is selected, RIOT selects a state from
the motion tree in that region uniformly, therefore every state
has positive probability of being selected.
Lemma 3: RIOT will generate all trajectories from a state
given infinite selections.
Proof: In RIOT there is a Blossom expansion the first time
a state is selected for expansion. For all future selections of
that state, only a single random control is generated and with
infinite attempts all controls will be generated. This implies
that with infinite time RIOT will realize the full reachability
of each state.
Theorem 1: RIOT is probabilistically complete and asymp-
totically optimal.
Proof: By Lemma 1 and Lemma 2, RIOT simulates Line 3
of NRT. By Lemma 3, RIOT will generate all trajectories
from a given state as in Line 4 of NRT. RIOT will also add
the new state to the tree if collision free and not irrelevant
due to incumbent pruning as in Lines 6 and 7 of NRT. Thus,
RIOT simulates NRT. Theorem 18 of [7] shows that NRT
will eventually find a solution if one exists, thus proving
probabilistic completeness of RIOT. Theorem 20 in [7] shows
that NRT, and therefore RIOT, is also asymptotically optimal.

VI. SIMULATION RESULTS

Both RIOT and DIRT are asymptotically optimal but their
time to find initial solutions and their convergence rates to
optimal solutions may differ. DIRT was chosen to compare
with RIOT because [12] showed DIRT outperforming other
algorithms such as SST and Rand A* [18] for kinodynamic
anytime motion planning in almost all cases. To evaluate
the performance of DIRT and RIOT experimentally, we
implemented them in C++ and in Unreal Engine 4 and tested

on a 3.40GHz Intel i5-7500 CPU.1 For our experiments
we used the same blossom number for RIOT and DIRT.
This was decided after experimenting with different blossom
numbers for each and concluding changing the blossom
number similarly effected each algorithm.

A. General Performance

The environments and results for general performance ex-
periments are shown in Fig. 1. Four 2D and 3D environments
were represented as occupancy grids. The abstraction in
these experiments matches the resolutions of the occupancy
grid. The cost function is distance and the state heuristic is
Euclidean distance to the goal. Simulations were run for 50
trials of 120 seconds each with the same start/goal pair and
random seeds. For all solution costs vs. time plots data is
only shown for times after which the algorithm has solved
all instances of the problem, allowing us to compare the
means and time to find initial solutions.

Three different vehicle dynamics were tested, all repre-
sented as points for collision checking. The first vehicle is a
dynamic car which operates in 2D space taken from code in
OMPL [22]. The state of the dynamic car is 4 dimensional:
the xy coordinates, steering angle β, and forward velocity
ν. There are two control inputs for the dynamic car: forward
acceleration, u0, and steering rate, u1. The second vehicle is
the hovercraft from [23] with a 6 dimensional state space:
the xy coordinates, heading angle φ, forward velocity u,
sway velocity v, and rotational velocity r. The hovercraft
is controlled by a thrust, Fu, and rudder angle δ. The last
robot is a generic double integrator point robot operating in
3D space. This robot is the dynamic version of the 3D case
of the point robot in [24]. This robot has a 6 dimensional
state space for the xyz coordinates and velocity and a 3
dimensional control space for accelerations in each direction.

In all experiments RIOT is able to find initial solutions
faster than DIRT. (We will discuss the RIOT+ results below
in Section VI-E.) For the large sparse 2D environment
with the dynamic car (lower left panel) and the slalom
environment with the generic 3D robot (lower right panel),
DIRT is able to find lower cost solutions than RIOT. Both
environments have a Euclidean distance heuristic similar to
an optimal solution. The DIRT blossom in simple problems
such as these can more quickly converge to optimal as the
discrete nature of the RIOT abstraction makes a larger area
share the same priority. For the other four problems RIOT
quickly found lower cost solutions than DIRT. The RIOT
abstraction was very effective for guiding the search in harder
problems with a less direct solution. The house and 3D maze
environments (upper panels) had large local minima and very
indirect paths to the goal, making the performance of RIOT
better than DIRT. The higher dimensional state space of the
hovercraft (middle panels) vs. the dynamic car (left panels)
made it much harder for both algorithms to find solutions in
the obstacle field. This difficulty lead to RIOT outperforming

1We thank Aravind Sivaramakrishnan, Zakary Littlefield, and Kostas
Bekris for sharing their code for DIRT, which informed our implementation.
Our code is available at https://github.com/mattgw10/RIOT.



Fig. 1. Environments and solution cost vs. time comparison of DIRT and RIOT for general motion planning with abstraction resolution equal to occupancy
grid resolution. Lines show average and 95 percent confidence intervals for each experiment.

DIRT as the blossom in DIRT only sorts using f values while
RIOT gives priority to states closer to the goal by using
region f̂ , region ĥ, then state f .

To ascertain whether RIOT’s performance is merely a
result of its abstraction-based heuristic, the plot for the house
with dynamic car also includes a hybrid version of DIRT that
uses the initial abstraction from RIOT as its heuristic. Using
this abstraction, DIRT hybrid was able to solve all trials faster
than regular DIRT but the solutions were of lower quality.
This shows that even with access to a heuristic that guides
around obstacles, the search strategy of DIRT does not utilize
this information as effectively as RIOT.

B. Varying Abstraction Resolution
Given that RIOT relies heavily on the abstraction to bias

its search, we conducted experiments to assess the effect of
varying the abstraction resolution. Three environments were
used (Fig. 2). The first was chosen as a difficult case for
RIOT: a 100x100 2-D ladder-like maze with thin walls. The
initial abstraction will view each wall with some probability
of going through it, thus skewing the cost of each region. The
other two maps are taken from [25]: orz100d is 395x412
and comes from the video game Dragon Age: Origins2D
and Boston 0 256 is 256x256. For these maps, we used 200
start/goal pairs specified by [25] (bins 50-69). The vehicle
is the dynamic car and the cost function is distance with a
Euclidean distance heuristic. Each trial is 120 seconds long.
Neither algorithm was able to solve every instance, so we
plot solution cost for each algorithm as the average over
those instances solved by that time.

Results are shown in Fig. 3. RIOT was able to solve more
instances than DIRT in every problem. DIRT was unable to
find solutions in any of the 2D maze instances. Abstraction
A1 is at the full occupancy grid resolution in each case and

abstraction A2 is lower resolution (maze 50x50, orz100d
103x79, Boston 128x128). For all environments, the higher
resolution abstractions resulted in better performance for
RIOT. The effect of a low-resolution abstraction was most
significant in the 2D maze. RIOT initially believes there is
some probability of going through each wall to the goal
due to the low resolution. The probability of successful
propagation to each region is updated, eventually informing
RIOT to make these edges more costly. However, RIOT still
greatly outperforms DIRT for this challenging problem. For
the other maps, DIRT initially appears to find lower cost
solutions than the lower resolution RIOT, but it is solving
significantly fewer problems and its average cost increases
over time, leading us to conclude that RIOT performs better
overall, even when the abstraction is relatively coarse.

C. Robotic Arm
While these results have demonstrated the effectiveness

of abstraction for mobile robots, it is important to assess
if RIOT can be effective for other systems, such as ma-
nipulators. Simulations were run on a dynamic robot arm
to test how RIOT performs with non-point robots which
may have a less obvious state space representation in the
abstraction. Time is used as the cost function. These ex-
periments were implemented in Unreal Engine 4 with a 5-
link robotic arm. The robotic arm is a dynamic version of
the arm in [24]. It has a 10 dimensional state space for
each angle and velocity and is controlled by accelerations
at each joint for a 5 dimensional control space. Collision
checking in these environments is done on meshes of the
robot and environment, with no defined occupancy grid. The
abstraction represents the x, y position of the end effector
using a grid with boundaries at the max extension of the
arm. The heuristic is the Euclidean distance of the end



Fig. 2. Environments used for varying abstraction resolution, dynamic arm, and scaling. From left to right 2D maze environment, orz100d environment
from [25], Boston 0 256 map from [25], arm around wall environment, and 2D example of Kink problem from [24].

Fig. 3. Percent of problems solved and solution cost vs. time comparison
of RIOT at different resolutions for the 2-D maze, orz100d map, and
Boston 0 256 map with the dynamic car.

effector position to the goal. At least 1 initialization success
is used in each region as no region is immediately known
as unreachable. For both environments the abstraction size
used was 100x100 and the regions are initialized by sampling
10,000 random linkage angles and checking if the robot is
in collision. The first robot arm environment is obstacle free
but the arm starts in a curled position and can be in collision
with itself, as in [24]. The goal is for the arm to reach
the forward extended position to reach the goal region. The
second robot arm environment shown in Fig. 2 has the arm
initially wrapped around a wall with the end effector very

Fig. 4. Percent of problems solved and solution cost vs. time comparison
of DIRT and RIOT for the dynamic arm trying to reach around obstacle to
goal and trying to extend from the curled position.

close to the goal. Due to the presence of the wall, the end
effector is unable to directly move towards the goal and the
arm must retract away from the goal to reach around the
other side.

Results are shown in Fig. 4. For both environments DIRT
and RIOT solved instances in similar times. In these envi-
ronments the heuristic for both algorithms is initially very
inaccurate. The random sampling allows both algorithms
to have a Voronoi bias to explore areas of the state space
which the heuristic implies are not valuable to explore. After
finding an initial solution the RIOT abstraction updates so the
search can be guided accordingly with the remaining time.
In the wall scenario DIRT initially finds lower cost solutions
but eventually RIOT surpasses DIRT. In the uncurling arm
scenario problem RIOT finds lower cost solutions than DIRT.

D. Scaling

[24] recommends evaluating motion planners using simple
benchmarks, such as the kink shown in Figure 2, that can be
scaled in difficulty, such as by varying the passage width and



Fig. 5. Solution cost vs. time comparison of DIRT and RIOT for the
generic point robot finding a solution varying width and dimensionality.

the state space dimensionality. We used the kink benchmark
with a double integrator point robot with passage widths 1-4
and dimensionality 2-5. Cost results are shown in Fig. 5
for times after which all instances are solved. In every
case, RIOT finds solutions faster and converges to lower
cost solutions than DIRT. The performance of RIOT and
DIRT is better for the trials with a larger path width and
lower dimensionality as expected. DIRT is more significantly
impacted by both dimensionality and path width.

E. A Less Exploratory Variant

We also performed experiments for a variant of RIOT
called RIOT+, in which lines 8 and 9 of Algorithm 1 are
omitted, so that Voronoi-biased selection is never used and
either greedy selection or abstraction-biased region selection
are always used. For domains in which the initial abstraction
accurately approximates the distance-to-go, RIOT+ found
lower cost solutions but sometimes took longer to find
solutions. Example results are shown in Figure 1. The only
domains where RIOT+ performed significantly worse than
plain RIOT was the 5-link arm.

F. Sensitivity Analysis

We also performed a sensitivity analysis of RIOT, varying
the number of controls bn in a blossom between 1 and
100. While space limitations preclude presenting detailed
results, the best value for bn depended on the vehicle and

environment, with larger values giving better performance
in higher dimensional state spaces. However, RIOT was
robust to many different values without large performance
decreases. Disabling the greedy selection showed a signifi-
cant decrease in performance, validating the decision to use
greedy selection.
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[22] A. I. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE R&A Magazine, vol. 19, no. 4, pp. 72–82, 2012.

[23] “Flight control of a hovercraft,” 2009. [Online]. Available:
\url{shorturl.at/abduU}

[24] J. Luo and K. Hauser, “An empirical study of optimal motion plan-
ning,” in IROS, vol. 117, 2014, pp. 1761–1768.

[25] N. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 2, pp.
144–148, 2012.


