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Abstract

Unusual events, such as sporting events, road works, and nat-
ural disasters, can overwhelm city infrastructure such as traf-
fic networks, which have limited capacity. Recent work on
automating traffic flow to reduce congestion and its effects,
such as pollution, has formulated the problem of responding
to sensed congestion using hybrid domain-independent plan-
ning. This approach employs complex domain-independent
solvers and requires them to formulate a complete multi-
step plan to eliminate the congestion before the first re-
sponse to the congestion can be initiated. In this short pa-
per, we present a much simpler, domain-dependent solver that
uses a receding-horizon approach based on real-time heuristic
search to select appropriate actions incrementally. Empirical
results comparing this approach to previous work are encour-
aging, demonstrating reasonable behavior and much better
scalability. These results suggest that smart cities can lever-
age real-time planning to control traffic signals on a city-wide
scale.

Introduction

The internet of things has the potential to change how cities
respond to unexpected events like natural disasters which
can easily overwhelm existing infrastructure such as traffic
networks. Traffic signals have been automated in the past,
however, typical signals are limited to react only in prede-
fined patterns according to local sensors such as inductive
loops. This is often adequate to adapt behavior to typical
changes in traffic flow. Commuters, for example, can ex-
pect traffic signals to work in their favor during rush hour.
With the rise of networked sensing and signaling infrastruc-
ture, we should now expect intelligent decision-making to
be able to take the entire state of the traffic network into
account. There has been recent work in automating traffic
signal networks using approaches from automated planning,
which promise more flexible solutions to atypical events. In
the case of unexpected events, these approaches may be bet-
ter at relieving congestion and avoiding its consequences
than predefined solutions. Networked signals have the ad-
vantage of being able to observe the current state of the en-
tire network and respond accordingly. Smart cities can com-
bine these kinds of traffic signaling systems with planning to
control the entire network in an emergency to promote the
most efficient flow in real-time as the state of the network

evolves.

There has been significant previous work in this direction
already. We take as our starting point the work of McCluskey
and Vallati (2017). In a simulated demonstration, they col-
lect data in real time from the road network to assess its
current state, compile it into a hybrid planning problem (ex-
pressed in the language PDDL+), and then use an off-the-
shelf domain-independent hybrid planning system (UPMur-
phi) to create a plan to relieve any congestion. The time
spent planning is on the order of minutes, because their
solver is very general and the approach is inherently off-line,
that is, it finds a complete plan to the entire problem before
executing a single signal control action. While McCluskey
and Vallati (2017) demonstrate interesting results on a net-
work with seven signals, their approach is not currently scal-
able to a city-sized problem or real-time response latencies.
Recall that congestion can be caused by a myriad of unan-
ticipated events. Ideally, as soon as congestion is observed,
the network should try to alleviate it, using all the informa-
tion and resources at its disposal, and adapting its actions as
the situation evolves. In this short paper, we present a pre-
liminary exploration of the potential of real-time planning
as a scalable approach to solving large traffic signal control
problems like this.

Other approaches with the potential to scale to city-sized
problems have been proposed. SURTRAC (Smith et al.
2013) uses a distributed network of interacting signal agents,
and it has been shown in simulation and in the field to re-
duce delay during normal conditions which include normal
changes like rush hour, but it has not been tested on excep-
tional conditions like we are interested in. Mixed integer
linear programming has the potential to be used to optimize
travel time over a large network by modeling the problem
at a lower resolution but it has not been shown to scale to a
city-scale problem (Guilliard et al. 2016).

Real-time planning is promising for two reasons. Firstly,
it has been shown to scale not in the size of the problem
but in the size of the solution (Korf 1990). In other words,
as the number of intersections we want to control grows,
the time reserved for planning does not necessarily need
to change. SURTRAC’s distributed approach seeks to avoid
this issue but sacrifices the ability to consider the long-range
effect of one signal on another. A real-time approach should
allow us to scale to a city-sized problem controlling hun-



dreds of signals. Secondly, real-time planning has the po-
tential to begin moving the network toward normal again
in the order of seconds. It is guaranteed to be able to re-
spond with at least a partial plan in a constant amount of
time (Koenig and Sun 2009; Kiesel, Burns, and Ruml 2015;
Sharon, Felner, and Sturtevant 1992; Sturtevant and Bulitko
2011).

In this paper, we propose that real-time planning is a com-
petitive approach to control a large network of traffic sig-
nals in response during an exceptional event. We begin by
formalizing the problem of alleviating a traffic network that
has become overwhelmed; we show how we formulate this
problem as a planning problem and how real-time heuristic
search can be applied to it. While our efforts are still prelim-
inary, our first empirical results are encouraging. We show
that, given the realistic problem addressed by McCluskey
and Vallati (2017), a basic real-time planning approach ex-
hibits good behavior, outperforming a fixed signal policy,
and has the potential to scale, returning control decisions
within seconds. These promising results suggest that a real-
time planning approach is worthy of consideration for intel-
ligent decision-making in smart city infrastructure.

Problem Formulation

In this section we define the key elements of the problem we
are interested in and map them to a planning problem.

A traffic network is made up of intersections and the roads
(streets, highways, etc.) that link them. The amount of traffic
on a link can be measured in terms of passenger units and is
represented by a queue. Traffic signals control the flow of
passenger units from one queue to another, which is given
as a flow rate in terms of the number of passenger units per
second. A flow from one queue g; to another g; is considered
active when a traffic signal is in a given phase. The sequence
of transitions from one phase to another forms a cycle, which
in our problem is determined by the domain modeler. There
is only one legal ordering of phases however the time spent
in each phase may vary within a given minimum and maxi-
mum number of seconds. Similarly, queues have a maximum
capacity (minimum capacity is 0) also given by the domain
modeler. The total number of passenger units moving into a
queue from any source may never exceed the queue’s maxi-
mum capacity. Phases may control multiple flows simultane-
ously. Between phases there is short period where no traffic
may flow.

In this paper we are interested in the kind of problem
when part of the network is initially overwhelmed — in
other words, a subset of queues are initially considered over
capacity; the goal is to move traffic through the network in
such a way as to reduce the load on these initially over-
whelmed queues to within their maximum capacity. A so-
lution to such a problem describes when each traffic signal
should activate the next phase in its cycle until all queues are
within their capacity.

A planning problem is defined by a set of states, a set of
actions, and a transition function that maps an action appli-
cable in a state to a successor state. A solution is a sequence
of actions that maps the initial state to the goal state via the
transition function.

To model the above traffic problem as a planning problem,
we take a macro approach, defining the state of the network
in aggregate in terms of queues and phases. A traffic net-
work state is a set of queues, Q, and traffic signals. Each ¢;
in Q represents the current load on that queue in terms of the
number of passenger units on the queue. Each signal repre-
sents the current phase the signal is in and how long it has
been in that phase. The set of states in the problem is there-
fore all possible combinations of loads and phase assign-
ments. An action applicable in a particular traffic network
state is the set of phase assignments we could change to,
consistent with its minimum and maximum allowable phase
times. We assume a fixed time step between a state and its
successors (10 seconds in the experiments below). The tran-
sition function from one state to another records how the
phase assignments change at each signal and simulates how
each queue changes over the time interval according to the
signaled phase and the flow rates specified by the domain
model. The flows between queues depend on the capacities
of the links in a non-trivial way, and are computed using a
flow model described below. The model is constrained to re-
spect the capacity limits on each link (except for those that
are initially overloaded). For our purposes, an initial state is
a set of queues and phase assignments in which a subset of
queues are above their maximum capacity. A goal state is
one in which all queues are at or below their maximum ca-
pacity. A solution is a sequence of a set of phase assignments
that map the initial set of queues and phase assignments to
the goal state in which all constraints queue capacities are
honored.

Flow Modeling

In our implementation, we compute how queues change
from one state to another in our transition function using
a linear program (LP). The input into our transition function
is a state of the network, made up of a set of queues () and a
set of signals, at time ¢ and a set of phases to apply to the net-
work over an interval. It should return the new state of the
network, its set of queues and signals, at time ¢ + interval.
Constants given to the LP are maximum flow rate for each
phase at each intersection, maximum capacity of each link,
current count on each link, and the time interval. The maxi-
mum rate(g;, g;) represents a constant defined by the set of
phases given as input to the transition function and may vary
from network state to the next. Similarly the count of passen-
ger units in each queue in the network at time ¢, current(q),
is a constant given as input to the LP. The maximum capac-
ity of each link, capacity(q), is a constant given in the prob-
lem instance and therefore never changes from state to state.
interval is constant given as a parameter to our planner rep-
resenting the resolution of the problem; we model changes
to the network in 10 second intervals.

An easy but inaccurate way to model this problem is for
each queue ¢ in @) calculate its maximum flow, the current
count of passenger units in ¢ x the flow rate from ¢ to its
downstream queues g;, current(q) x flow(q, ¢;), subtract-
ing the maximum flow from ¢ and adding it to the down-
stream queue ¢;. However this approach does not take into
account the effect of shockwaves on the capacity of gq. A



shockwave occurs when limits on the capacity of a down-
stream queue ¢; prevent the upstream queue ¢ from moving
its maximum flow; downstream queues have become satu-
rated. The effect propagates backward to upstream queues
reducing their maximum flow as well. Consequently the
above model would overwhelm downstream queues putting
the network into an unrealistic state which fails to honor
queue capacities. The LP we use in our experiments, how-
ever, allows us to model flows more accurately by taking into
account shockwaves. We use this model to simulate the ef-
fect of each action during execution. We also take advantage
of it during planning in the evaluation of possible actions.
The set of equations below describe our LP.

In the LP the objective function maximizes the effective
flow, modeled as the number of passenger units moving from
queue i to queue j, flow(g;, ¢;), aggregated across all of the
active flows in the network:

max Z flow(gs, q5)
i,J

Note that the decision variables flow(qg;,q;) are real-
valued, rather than integer. We had originally designed
our transition function to optimize the maximum integer,
rather than continuous, count of passenger units for each
flow(gs,q;) however in the benchmark problem, where
35% of flows had a maximum flow rate below 0.1 passen-
ger units per second, an ILP at a 10 second resolution would
preclude considering these flows in constructing a solution
— their flow(g;, q;) would always be rounded to 0. Using
an LP instead allowed the planner when searching to a depth
more than 1 step away to consider the cumulative effect of
these flows in the future, a flow(q;,q;) > 0. The period
between phase changes when rate(g;, ¢;) = 0 is designed
to allow vehicles to clear the intersection (McCluskey and
Vallati 2017). Alternatively, another way to interpret these
real-valued counts is as expected values.

Our first constraint is that all active flows from one link
to another link through an intersection over the time interval
must respect the constraints of the traffic dynamics given the
infrastructure.

flow(qi, q;) < rate(q;, q;) - interval

Note a flow(g;,q;) is considered active when a signal
is assigned a phase that activates the flow; its flow rate
rate(g;, q;) > 0 passenger units per second. Inactive flows
have a rate(q;, ¢;) = 0 therefore an inactive flow is always
flow(gi, q;) =0

The capacity of a queue governs the effective flow of all
connected queues since no link on the network (other than
the initially overloaded queues) can ever exceed its capacity.
The flow into a queue minus the flow out of a queue can
never exceed the queue’s maximum capacity:

Z flow(qi7q)—z flow(q, q;)+current(q) < capacity(q)

J

The effective flow out of a queue can never exceed the
load on the queue at beginning of the interval:

Zflow(qi,qj) < current(q;)
J

Reversing the direction of a flow is never allowed. To re-
verse direction traffic would need to flow through the appro-
priate phase.

flow(qi,q;) >0

The resulting maximizing flows found by the MILP solver
are then used to update the count of passenger units in each
queue in the network at time ¢ + interval. Subtracting the
flow from ¢ and adding it to the downstream queue g; will
never push a downstream queue over capacity.

Real-Time Planning

Heuristic state-space search is one of the most popular ap-
proaches to planning. In this approach, states of the system
being controlled are modeled as vertices in a large graph,
with outgoing arcs from a state representing applicable ac-
tions that can be taken. A path through the graph corre-
sponds to a sequence of actions chosen by the planner to
take the system from its current state toward a more desir-
able state or goal. The graph is defined implicitly by a star-
ing state and a transition function that lazily instantiates the
successor states of a given state only when necessitated by
the exploration of the graph. Many exploration strategies ex-
ist, the most famous of which is A* search (Hart, Nilsson,
and Raphael 1968), which finds optimal plans but can take
enormous amounts of time and memory to do so. A* is con-
sidered an off-line planner, because it returns only after a
complete optimal plan has been found.

An alternative to off-line optimal planning is on-line real-
time planning, in which the planner is guaranteed to return
with a fixed pre-specified time bound. The catch is that, be-
cause it may not be possible to find a complete plan with the
specified time bound, the planner need return only the next
action for the system to execute. Each action is executed as it
is returned, and then a new round of planning is initiated. In
this sense, the plan is constructed incrementally as succes-
sive calls to the planner return successive actions. The plan-
ning is on-line, in that it is interleaved with action execution
and can take newly discovered information into account if
necessary. This style of operation is also known as receding
horizon control. Well-known real-time search algorithms in-
clude LRTA* (Korf 1990) and LSS-LRTA* (Koenig and Sun
2009).

In this short paper, we explore very simple real-time
methods based on limited lookahead. Because our transition
function allows traffic to leave the network but not to enter, it
is very unlikely that the network will ever transition back to
a previous state. Thus, the complex learning strategies that
are necessary to prevent real-time planners from looping are
unnecessary in our domain.

One challenge in formulating traffic signal control as a
search problem is the large branching factor. If each of k
signals can decide to advance to the next cycle, this yields 2"
possible actions for the system as a whole at each time step.
In the experiments below, we try three different approaches
for dealing with this large branching factor.

The first approach is a simple one-step lookahead, which
we also call ‘one step, all signals.” It selects which set of



phase assignments to set the network to in the next 10 sec-
onds by generating a list of up to 2¥ possible ways to set the
k intersections at the next time step. There are at most 2*
possible ways to change the network in the next 10 seconds:
for each traffic signal, we may either keep the signal in the
current phase or change it to the next phase in the cycle, as-
suming that it has been in the current phase longer than the
phase’s minimum length but not longer than its maximum.
In many cases this set is smaller than 2* but it will never be
more than 2¥, thus ensuring real-time performance for fixed
k. The best set of assignments is determined using a domain-
specific scoring function: the sum of the squared overloads,
where the overload of a link is the differences between its
current load and its maximum capacity.

The second approach looks more than one step ahead, but
only permits at most one signal to change at a time. We call it
‘one signal, two steps’. It can still guarantee that we can find
our next action within a constant amount of time. Searching
out to the next 20 seconds (depth=2) generates at most (k +
1)? possible ways the network might evolve. The planner
selects the best next configuration of the network that leads
to the best possible future.

Our third approach explores the potential of leveraging
planning time to look more than one step ahead while con-
sidering all signals. Beam search considers intervals out to
two steps in the future but, instead of generating all 2 possi-
ble ways to change the network in step two for all 2¥ possi-
ble ways to change the network in the first step, it scores the
first set and selects only the best ten for further evaluation
(eg, a beam width of 10).

In the final approach, called ‘dynamic cycle,” we exam-
ine what happens if we allow the planner to violate the con-
straint that the phase cycle of each signal is fixed. The prede-
fined cycles given in the benchmark problem were designed
to perform well in normal circumstances however the prob-
lem we are interested in might not fit that model. In this ap-
proach, for a problem with k intersections each of which has
p possible phases, the search was allowed to consider up to
(p 4+ 1) x k alternatives to a depth of 20 seconds (depth =
2). Like the one-signal two-step strategy, it considered only
one signal at a time but it could set it to any of its phases.
A short lookahead allowed it to measure the impact of this
change on the future state of the system and select the best
next action accordingly. However unlike the simple one-step
lookahead strategy it did not try all ((p + 1) x k)2 possible
futures. Only the phase that moved the entire network to-
ward the goal state better than any other phase change in
the first 10 second interval (depth = 1) was considered in the
next 10 second interval (depth = 2).

Experimental Results
McCluskey and Vallati (2017) kindly provided us with the
PDDL description of their benchmark problem modeling
seven intersections (k = 7) in Manchester, England, in
which three queues are significantly overwhelmed; there are
600 more passenger units on these three queues than their
maximum capacity. Each intersection can cycle through up
to seven phases (p = 7), moving multiple queues in each
phase. Flow rates from one queue to another vary between

Approach Execution Time Planning Time

Fixed 2845
Domain independent 1500
Random 4431 + 229

One step, all signals 2080 £ 94 0.5235

One signal, two steps 2177 491 0.2492
Beam 2294 £ 112 4.6559
Dynamic cycle 1138 + 38 0.8648

Table 1: Total execution time, in simulated seconds, taken
by each approach to clear congestion from the benchmark
problem. Planning time, in seconds, is per planning iteration.

0.01 and 0.8 passenger units per second, median flow rate
is 0.16 passenger units per second and interquartile range is
between 0.07 and 0.40 passenger units per second. Limits
on phase lengths span between 0 and 95 seconds. Periods
between phases, when the flow rate is 0, vary between 0 and
25 seconds, and the maximum capacity of any queue on the
network is between 13 and 218. In the problem’s initial state
few queues are completely empty and none are at capac-
ity except the initially overloaded queues which contain an
extra 600 passenger units among them. To gain more confi-
dence in our experimental results, we created 20 variations
of this problem by randomly distributing the 600 extra pas-
senger units among the problem’s original three queues. In
the resulting set of variations in some problems some queues
carried a greater percentage of the 600 extra passenger units
than others. On average these queues were set to four times
their initial capacity.

We built a real-time planner using the three approaches
outlined above. It was implemented in Python, using Gurobi
as the MILP solver. The problem was formulated as an LP
maximizing 70 flow(g;,q;) variables subject to 270 con-
straints. As a simple baseline, we also implemented a ran-
dom planner that selects a random sequence of phase as-
signments.

Table 1 presents our results. Execution time is the time
in seconds that it would take to execute the solution to the
problem, the sequence of phase changes that take the prob-
lem from its initial state when part of the network is over
capacity to the goal state when no part of the network is
over capacity. The first two rows of the table are drawn di-
rectly from (McCluskey and Vallati 2017), and show how
their domain-independent planning approach surpasses the
fixed cycle timings currently in use. Later rows in the ta-
ble represent our results, and must be compared with the
previous results with caution. While we have attempted to
replicate the flow dynamics of previous work, we have not
verified a direct correspondence. Furthermore, they present
results on a single instance, while we run on 20 variations
and present mean and 95% confidence intervals. Our results
show that all planning-based approaches easily beat random
phase assignments. Furthermore, both of our real-time plan-
ning approaches surpass the fixed strategy, and approach the
performance of the off-line method. In the last line of the ta-
ble, we see the performance that is achievable when the plan-



ner is allowed the flexibility to not only decide when a sig-
nal should change but also to which phase it should change.
In this case a real-time approach outperforms all other ap-
proaches.

Discussion

These results represent our first exploration of real-time
search for this problem. We will have additional results by
the time of the workshop. For example, one obvious next
step is to explore the trade-off between additional lookahead
and plan quality.

Our implementation can also be significantly optimized.
Currently, we use a heavyweight MILP solver inside our
transition function — a lighter one may give faster results on
the relatively small problems generated by our benchmark.

Conclusions

We have presented an approach to traffic signal control us-
ing real-time heuristic search. Although preliminary, our re-
sults suggest that this approach is competitive with other re-
cent work. Using limited lookahead, it can decide on a good
way to change the traffic network to move the entire net-
work from its initially overwhelmed state back to normal.
We show that repeating this cycle incrementally builds a
plan that is better than the benchmark used in other recent
work while promising to better scale to a realistically sized
problem.
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