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Abstract. Robust robot motion planning in dynamic environments requires that actions be selected under real-time constraints.
Existing heuristic search methods that can plan high-speed motions do not guarantee real-time performance in dynamic envi-
ronments. Existing heuristic search methods for real-time planning in dynamic environments fail in the high-dimensional state
space required to plan high-speed actions. In this paper, we present extensions to a leading planner for high-dimensional spaces,
R∗, that allow it to guarantee real-time performance, and extensions to a leading real-time planner, LSS-LRTA∗, that allow it to
succeed in dynamic motion planning. In an extensive empirical comparison, we show that the new methods are superior to the
originals, providing new state-of-the-art heuristic search performance on this challenging problem.
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1. Introduction

As autonomous robots increasingly become incor-
porated into everyday human activities, they will need
to move reliably among humans and other dynamic
objects. When dynamic obstacles are present, a robot
must plan around their present and predicted future
trajectories, updating its plan in real time at a high
enough frequency to remain reactive to its surround-
ings. Current search-based methods do not directly ad-
dress this problem. In this paper, we present two new
algorithms for this problem and perform an empirical
evaluation comparing them to several of the leading
real-time and motion planning algorithms from AI and
robotics. Our first algorithm, Real-time R∗ (RTR∗), is
a real-time adaptation of the motion planning algo-
rithm R∗ [15], which has been shown to work well
for high-dimensional motion planning problems. Our
second algorithm, Partitioned Learning Real-time A∗

(PLRTA∗), is an adaptation of the state-of-the-art real-
time search algorithm LSS-LRTA∗ [7] that allows it to
handle state spaces like those encountered in motion
planning with dynamic obstacles. Our empirical eval-
uation shows that RTR∗ and PLRTA∗ are significant
improvements over the original algorithms, perform-
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ing as well and often better than several current motion
planning and real-time search algorithms, with the rel-
atively simple PLRTA∗ offering the best performance.

2. Background

The problem of motion planning can be formulated
in several different ways [2,12]. In this paper, we want
to find plans that are fast to execute, so we consider
kinodynamic motion planning, in which actions must
obey the acceleration and deceleration constraints of
the specific robot being used. This means that the state
representation of the planner must include the robot’s
current heading and speed to ensure that it doesn’t, for
example, try to turn sharply at high speed. The pres-
ence of moving obstacles raises additional issues. The
easiest approach is to treat moving obstacles as station-
ary. This has the advantage that time need not be part
of the state space, but it can result in highly suboptimal
plans or even render problems unsolvable. To avoid
this, we follow Kushleyev and Likhachev [10] and in-
corporate time as part of the state space. This is be-
cause the current and future locations of dynamic ob-
stacles are dependent on time. We assume that the cur-
rent locations of dynamic obstacles are known but that
their future locations are unknown and are represented
as a time-parameterized probability distribution.
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Fig. 1. Generating the search space using (b) discretization, (c) motion primitives and collision checking and (d) dynamic obstacles. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140604.)

2.1. The state space

In the example domain used in this paper, the robot
is a non-holonomic differential drive vehicle. The ca-
pabilities of the robot are represented by a set of
motion primitives, each of which specifies a possible
change in the robot’s state over a fixed time duration
(in our work, 0.5 s). The environment is represented as
a grid of fixed-size cells, with obstacles represented as
blocked cells. Moving into a blocked cell is not permit-
ted and, as detailed below, moving into a cell that in-
tersects the predicted position of a dynamic obstacles
incurs extra cost. Figure 1 illustrates how the motion
primitives, the environment, and the dynamic obstacles
give rise to the search space of the planner. Panel (a)
shows an environment with the robot and two static
obstacles. In Panel (b), the environment is discretized
and the static obstacles are inflated by the radius of the
robot, allowing us to treat the robot as a point. Panel (c)
shows the motion primitives as arrows, along with the
cells that they intersect, which must be checked for col-
lisions. (In our implementation, the relative positions
of these cells are pre-computed for each primitive to
save time during planning.) Finally, in Panel (d), the
remaining actions are assigned costs, with higher costs
for those that intersect the predicted future location of a
dynamic obstacle, depicted by the orange circular gra-
dients.

2.2. The planning problem

A planning problem P is defined as a tuple {S, sstart,
G,A,α,O,D} where

• S is the set of states, where a state is the tuple
〈x, y, θ, v, t〉 corresponding to location, heading,
speed, and the current time.

• sstart is the starting state, sstart ∈ S.
• G is the set of goal states, where each state g ∈ G

is underspecified as 〈x, y, θ, v〉 because it is un-
known when the robot will be able to arrive there.

• A is the set of motion primitives available to the
robot. A primitive action is a function a :S → S
that maps states to states and has a duration of
ta. In our work, all actions have the same ta. The
function α :S → Q, Q ⊆ A maps states in S
to the subset of actions in A that can safely be
applied from that state.

• O is the set of static obstacles whose locations are
known and do not change.

• D is the set of dynamic obstacles, each repre-
sented as a function d : t → N from time to a bi-
variate Gaussian distribution over x and y repre-
senting the object’s location. These functions can
change across planning episodes as the robot ac-
quires more observations of an obstacle.

A real-time planning algorithm must always return an
action a ∈ α(sstart) for a given problem P within the
planning time-bound tp. tp is the maximum amount
of time allowed per planning step. The value tp must
be less than or equal to the duration of the currently
executing motion primitives, ta, so that the robot will
always have the next action to execute by the time it
completes its current action. Figure 2 illustrates the in-
teraction in more detail. When the robot (or more pre-
cisely, the simulator) starts executing action at at time
t, it sends the planner its prediction of the state of the
world at t+1. The planner selects an appropriate action
using whichever planning algorithm it implements, but
must report its selection in time to be executed at t+1.

Our problem setting models a physically embodied
robot that does not disappear once it reaches a goal.
For example, it is undesirable to reach the goal safely
but then undergo a collision a moment later. To capture
this ‘lifelong planning’ setting, the planner attempts to
minimize the cost of the agent’s trajectory over a fixed
time horizon. The total cost of a path is simply the sum
of the costs of each action taken along the path. The
cost of an action is based on two components, the cost
of time passing, Ctime, and the cost of a collision, Ccol.
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Fig. 2. The interaction between the robot simulator and each
planner. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-140604.)

Given an action that transitions between two states, the
total cost of the action, C, is defined as:

C ≡ P (col) · Ccol + status · Ctime, (1)

where P (col) is the probability of a collision occur-
ring with any of the dynamic obstacles and status is
zero if the start state of the action is a goal and one
otherwise. Following Kushleyev and Likhachev [10],
the probability P (col) is computed assuming that the
events of not colliding are independent. In this way,
both dynamic costs (P (col) · Ccol) and static costs
(status · Ctime) are considered in our cost function. To
create the probability distributions representing the dy-
namic obstacles’ trajectories, we simply used linear in-
terpolation based on previous recorded states of each
dynamic obstacle. This method is very fast to compute
and performed adequately for our experiments. More
advanced methods such as Kalman filters [10] could
certainly be used.

3. Previous work

Previous approaches to this problem in AI and
robotics can be classified into four major categories.

3.1. Potential fields

Potential field approaches treat the robot as a point
charge and the world as a potential field. The goal at-
tracts the robot while obstacles repel. The robot takes
the action that lowers its potential the most. This ap-
proach works well in environments with few obstacles

and is very fast to compute. It suffers from the fatal
flaw that the robot can become trapped in local min-
ima [8].

3.2. Random sampling

Randomized sampling techniques attempt to gain
speed at the cost of optimality by greatly reducing
the number of states that need be explored. Rapidly-
exploring Random Trees (RRT) [11] are a popular
planning technique that works by growing a tree ran-
domly outwards from an initial state. The tree is biased
towards unexplored regions of the state space. While
RRTs are sometimes able to solve very hard problems
quickly, their main drawback is that no guarantees are
made on solution quality and in practice, their solu-
tions are often poor.1 Since RRTs are not real-time, a
modified version was used in our experiments where
the number of tree expansions is limited to a constant.
The action along the path to the node with the lowest
heuristic value is then chosen [13].

3.3. Heuristic search

Heuristic search methods solve planning problems
by considering them as shortest-path problems in
graphs. While Dijkstra’s algorithm [3] can usually be
used to solve shortest-path problem, motion planning
is similar to other problems in AI in that the graph is
too large to explicitly instantiate and is instead gener-
ated lazily. We call the process of generating a node’s
successors expanding the node. Furthermore, heuristic
search uses a heuristic function h(n) that provides a
lower bound on the cost from node n to a goal. While
Dijkstra’s algorithm uses g(n), the cost of arriving at
n, to order its expansion of nodes, heuristic search al-
gorithms such as A∗ [4] compute a lower bound f (n)
on the cost of any plan passing through node n, as
f (n) = g(n)+h(n), and order their node expansion on
f (n). A∗ finds optimal solutions and is not suitable for
real-time or dynamic settings.

D∗ Lite [6] is an incremental heuristic search algo-
rithm developed for path planning in dynamic environ-
ments. It repeatedly plans backwards from the goal to
the current state of the robot, allowing it to reuse work
from previous iterations, greatly speeding up planning.
However, it is not obvious how to apply this algorithm
to kinodynamic motion planning where time is part of

1The RRT∗ variant [5] eventually converges to optimality but re-
quires expensive ‘re-wiring’ steps after each sample.
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the state, as it is unknown what time the robot will ac-
tually arrive at the goal.

The Safe Interval Path Planning algorithm (SIPP)
[16] allows for bounding the number of distinct time
steps seen by the search. It is a method for reducing the
size of the search space by not searching over distinct
values of time but instead distinct safe intervals. A safe
interval for a given location is the period of time such
that there is no dynamic obstacle in the location for the
entire interval, however there is an obstacle in the lo-
cation at one time step before the interval and one time
step after the interval. A∗ search is used to generate
plans over the state space discretized by time intervals
and has been shown to visit many fewer nodes. There
are two assumptions that this algorithm relies on that
may or may not be true for a given robot. First, it is as-
sumed that the robot is capable of waiting in place for
an arbitrary amount of time. This may not be the case
if the robot requires movement to remain in a stable
state, such as a motorcycle or an airplane. Second, it is
assumed that the acceleration of the robot is negligible,
i.e. robot can speed up or slow down instantaneously.
SIPP is not constrained to generate paths that are dy-
namically feasible for the robots simulated in this pa-
per, so it is not considered in our empirical evaluation.

The Time-Bounded Lattice algorithm (TBL) [10]
was designed for the problem representation we con-
sider in this paper. The idea is to do weighted A∗

search [17] in the full state space out to a specific time
bound. After that, the search proceeds in the two di-
mensional (x, y) space, greatly reducing the number of
states that need to be explored. With this approach, dy-
namic obstacles “disappear” after the time bound cut-
off is reached. Because weighted A∗ is not real-time,
TBL is not real-time either. However, because it takes a
search-based approach similar to our work, we include
it in our experimental evaluation. We modified TBL to
always plan at least to the time bound to ensure that it
remains reactive to dynamic obstacles while on or near
the goal. This resulted in a considerable performance
improvement.

3.4. Real-time heuristic search

In this paper, we address the problem of ‘hard real-
time’ planning, in which an action must always be se-
lected within a prespecified amount of time, as op-
posed to ‘soft real-time’ planning, in which one is sat-
isfied with an algorithm that often executes quickly
but that may sometimes take longer, which may be
sufficient in some contexts to give the appearance of

responsive behavior. Thus, in this paper, a real-time
search method can only perform a bounded number of
node expansions before it must return a plan. This has
the consequence that a complete path to a goal node
may not have been computed. A real-time search re-
turns only the single next action to take, rather than a
complete plan to a goal in the way that A∗ does. Be-
cause they may lead the agent down a blind alley or
into a cycle, real-time searches must be able to learn
from their experience and improve their choices if they
return to a previously visited state. One way to view
this behavior is as ‘filling in’ heuristic values that are
too low by learning more accurate values.

Real-time A∗ (RTA∗) [9] forms the basis of many
other real-time algorithms. It works by first initializ-
ing the search tree with the agent’s current state as the
root node. This root node is assigned a g value of zero.
The algorithm then generates the successors of the root
node and then does some form of limited lookahead
search to determine which of these successors to move
to. The key step is to update the search’s heuristic func-
tion after picking the best successor to move to. The
cached h value of the current state is set to the f value
of the second-best successor. The intuition here is that
if the algorithm ever returns to that state, its h value
would have to be at least the f of the second best suc-
cessor since it had already moved to the best succes-
sor and returned. In the limit of search iterations, this
guarantees completeness in domains where there exists
a path to the goal from every state. This means that it
is able to overcome admissible yet misleading heuris-
tic functions that may lead the agent into local minima.
However, this may take a very long time as only one
state’s h value is updated per search iteration.

4. A Sampling-based approach: R∗

In this paper, we investigate two approaches to solv-
ing the real-time robot motion planning problem: mod-
ifying a leading motion planning algorithm to be real-
time, and modifying a leading real-time algorithm to
be better suited for motion planning. In the first case,
we use the R∗ algorithm because it has been shown to
work well on hard motion planning problems involving
high-dimensional state spaces [15].

R∗ attempts to quickly solve problems in high di-
mensional state spaces and avoid heuristic local min-
ima by using random sampling paired with heuristic
search. R∗ performs an interleaved two-level weighted
A∗ search consisting of a high-level graph and a low-
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Fig. 3. The nodes in Γ (large, white) and the nodes in the low-level
state space (small, yellow) that are explored by an R∗ search with
k = 3. (The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-140604.)

level graph, where the higher level states are generated
randomly and sparsely over the state space. To com-
pute the cost and the actual path between two high-
level states, a low-level search is performed in the
original state/action space. This has the advantage of
splitting the problem up into smaller, easier to solve
subproblems, while not forfeiting the guaranteed fea-
sibility provided at the low-level search space.

When expanding a node s at the top level, R∗ selects
a random set of k states that are within some distance Δ
of s. These states will form a high-level, sparse graph
Γ that is searched for a solution. The edges computed
between nodes in Γ represent actual paths in the under-
lying state space. To find the cost between two nodes
s and s′ in Γ , R∗ does a weighted A∗ search from s
to s′ in the underlying state space (see Fig. 3). If the
low-level weighted A∗ search does not find a solution
within a given node expansion limit, it gives up, label-
ing the node as AVOID, and allowing R∗ to focus the
search elsewhere. R∗ will only return to these hard-to-
solve subproblems if there are no non-AVOID labeled
nodes left. In this way, R∗ solves the planning problem
by carrying out searches that are much smaller than
the original problem, and easier to solve. Note that R∗

finds complete paths to the goal on every search, and
the time that this takes is not bounded.

Pseudocode of the R∗ algorithm is shown in Algo-
rithm 1. The main loop of the R∗ algorithm is similar
to a best-first search such as A∗. First, the best node
on the open list is removed (line 5). The ordering func-
tion for the open list first prefers nodes that have not
been labeled AVOID. It then prefers nodes with lower
f value, with ties broken on lower h value.

In R∗, there are two types of nodes in Γ that can be
popped off the open list: the node can either be lack-

Algorithm 1. Pseudo-code for the R∗ algorithm

R∗(sstart, sgoal)
1. OPEN ← ∅, CLOSED ← ∅
2. g(sstart) ← 0
3. insert sstart into OPEN
4. while OPEN 
= ∅ and

pri(sgoal) � arg mins′∈OPEN (pri(s′))
5. remove s with the smallest priority from OPEN
6. if s 
= sstart and path(pred(s), s) = null
7. reevaluate(s)
8. else
9. expand(s)
10. return incumbent solution if found,

impossible otherwise

Re-evaluate(s)
11. path(pred(s), s) ← wA∗(pred(s), s)
12. if path = null or

g(pred(s)) + path.cost) > w · h(sstart, s)
13. avoid(s) ← true
14. pred(s) ←

arg mins′|s∈SUCCS(s′) (g(s′) + pathcost(s′, s))
15. g(s) ← g(pred(s)) + pathcost(pred(s), s)
16. insert/update s in OPEN

Expand(s)
17. if is_goal(s) and g(s) < g(incumbent)
18. incumbent ← s
19. insert s into CLOSED
20. SUCCS(s) ← k random states a distance Δ from s
21. if distance(s, sgoal) � Δ
22. SUCCS(s) ← SUCCS(s) ∪ sgoal
23. SUCCS(s) ← SUCCS(s)−

SUCCS(s) ∩ CLOSED
24. for all s′ ∈ SUCCS(s)
25. pathcost(s, s′) ← h(s, s′)
26. if s′ hasn’t been generated before or

g(s) + h(s, s′) < g(s′)
27. pred(s′) ← s
28. g(s′) ← g(s) + pathcost(s, s′)
29. insert/update s′ on OPEN

ing a low-level path from its parent or already have one
computed. In the first case, in which a path hasn’t been
found, R∗ uses a bounded weighted A∗ search to find
one (line 11). If the search succeeds, then the g cost of
the node is updated to reflect the cost of the path that
was found (line 15), the node is updated in OPEN, and
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the search continues. If a path is not found, this is be-
cause the node expansion limit was reached, indicating
that this subproblem may be hard to compute (line 13).
In this case, the weighted A∗ search will return the cost
of the best node on the frontier. This cost is used to
update the g value of the node with a better estimate
of the true path cost. In the second case in the main
loop (line 8), in which a low-level path already exists
to the node, the node is just expanded. This involves
randomly generating k successors that are a distance Δ
away (line 20). The goal state is also added to the list of
successors if it is within this distance (line 22). These
nodes and edges are then added to the sparse graph Γ
(line 29) and the search continues.

It is worth mentioning that in R∗, the g values of the
nodes in Γ are conceptually made up of two parts. Let
n and n′ be two nodes in Γ where n is the parent of n′.
The first portion of the g value of n′ consists of the g
value from the start state to n. Since n is guaranteed to
have a low-level path to it, this value represents a real
cost, not an estimate. The second portion of the g value
of n′ is the portion that represents the cost of the edge
from n to n′ in the high-level graph. Initially, the true
cost of this edge is unknown because a low-level path
has not been computed. In this case, the cost is esti-
mated by using a heuristic. Note that the heuristic used
must be capable of admissibly estimating the cost of
the path between any two nodes, not just from any node
to the goal node. Once R∗ computes the low-level path
between n and n′, this estimated porion of the g value
will be updated (line 15). If a low-level path is found,
then the g value will be updated to be the cost of the
path. If a path is not found, due to the expansion limit,
then the g value will be updated to be the f value of the
best low-level node that was on the open list when the
low-level search was terminated, since this will be a
lower-bound on the true cost of the complete low-level
path.

5. Making R∗ real-time

R∗ has advantages over traditional real-time heuris-
tic search algorithms that make it attractive as a foun-
dation for a real-time planning algorithm. Real-time
heuristic search algorithms deal with the problem of
not being able to plan complete paths to the goal by
using information gathered from previous search iter-
ations to escape from heuristic local minima and find
a path to the goal. In the case of the robot motion
planning domain, where there is a large search space

and a high branching factor, the lookahead performed
by traditional A∗ style real-time search, such as LSS-
LRTA∗, may not by able to see far enough into the fu-
ture to make informed decisions about what action to
take. One way to increase the depth of the A∗ looka-
head used would be to reduce the branching factor
of the search space by limiting the number of actions
available to the robot. This however reduces the qual-
ity of plans returned, since fewer actions may be used,
possibly even making the problem unsolvable. The size
of the state space may also be reduced by increasing
the size of the discretization used, for example in the
size of the static obstacle or cost grid. This also has
the adverse effect of reducing the quality of the plans
returned and again possibly making the problem un-
solvable. R∗ is able to deal with high dimensional state
spaces by splitting the problem up into smaller, easier
to solve subproblems. This does not reduce the size of
the action set available to the robot, nor does it increase
the size of the problem discretization.

While R∗ has been shown to perform well in many
hard domains, it is not a real-time algorithm. R∗ must
find complete paths to the goal on every search, and the
time that this takes is not bounded. We made five major
changes to transform R∗ into real-time R∗ (RTR∗). We
will discuss each in turn.

5.1. Limiting expansions

To meet the real-time constraint, we begin with the
traditional approach of limiting the number of node
expansions to a constant. In R∗, there are two types
of node expansions: nodes in the sparse graph are ex-
panded by generating a set of random successors, while
nodes in the low-level state space undergo regular ex-
pansion using α from P . The former occur relatively
infrequently, but take more CPU time due to the cost
of setting up the weighted A∗ search. The latter oc-
cur much more frequently, but each expansion is much
faster. In our implementation, we count each high-level
expansion as equivalent to thirty low-level expansions
to account for this difference. Once the expansion limit
is reached, the best action to execute is returned, as ex-
plained below. Also different from R∗, RTR∗ does not
terminate when a goal state is found. It only terminates
when the expansion limit has been reached. This is be-
cause it isn’t sufficient to just reach the goal state. In
domains with moving obstacles, it may be necessary to
move off the goal state after it has been achieved to get
out of the way of a dynamic obstacle.
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5.2. Action selection

After each iteration of RTR∗, an action to perform
must be selected. As in other real-time searches [9],
RTR∗ chooses the first action along the most promising
path that has been generated. In traditional real-time
searches, this corresponds to the best node on the open
list. This approach cannot be taken directly in RTR∗,
because the nodes on the open list in the sparse graph
may not all have low-level paths to them. We prefer
nodes with complete paths to them, and of these, we
prefer nodes with smaller weighted f values. If there
are no nodes in the sparse graph with complete paths
to them, then nodes with partial paths to them are con-
sidered. These are nodes for which the weighted A∗

search failed to find a complete path due to the node
expansion limit. Again, nodes with smaller weighted f
values are preferred.

5.3. Geometrically increasing expansion limits

In R∗, if the path to a node is not found due to the
node expansion limit, that node is labeled as AVOID
and it is inserted back onto the open list. If the node is
ever popped off of the open list again, another attempt
is made at computing the path, this time with no node
expansion limit. This subproblem could be very hard
to solve, violating our real-time constraint. In RTR∗,
each time a search fails due to the expansion limit, the
limit is doubled for that node the next time it is re-
moved from the open list. (Note that this node-specific
limit is different and secondary to the overall real-time
search limit.) In this way, RTR∗ will not focus all of its
effort on computing paths to hard subproblems unless
completely necessary, and even then, the paths to the
easier of these hard problems will be computed first.
Since the expansion limit for computing the path to a
node is doubled each time, the total amount of extra
searching that may need to be done is bounded by a
constant factor in the worst case. In practice, it should
actually cause the search to expand many fewer nodes.

Theorem 1. The total number of extra node expan-
sions that must be done by RTR∗ because of doubling
the expansion limit of a sparse node instead of solving
the problem outright is bounded by a constant factor.

Proof. Suppose there is a state s and its successor state
s′ in the sparse graph Γ . Suppose that R∗ must com-
pute the path between s and s′ to reach the goal. Let
the number of low-level nodes that must be expanded

by weighed A∗ to compute this path be n. In the worst
case, the series of weighted A∗ searches that uses a
node expansion limit that doubles will expand n − 1
nodes on its second to last iteration before expanding
n nodes on its last iteration. In addition to these last
two searches, the total number of nodes expanded by
weighted A∗ on all previous iterations will be:

n

2
+

n

4
+

n

8
+ · · · ≈ n.

So in total, n + (n − 1) + n ≈ 3n nodes will be ex-
panded. Since a weighted A∗ search that does not use
an expansion limit will visit n nodes, the overhead of
using the doubling technique is bounded by a constant
factor of approximately three in the worst case. Now
suppose that there are k of these paths that must be
computed in the whole problem. The number of nodes
expanded using doubling will be 3nk in the worst case,
versus nk when not using doubling, so the constant
factor remains the same. �

5.4. Path reuse

Because real-time search interleaves planning and
execution, RTR∗ attempts to leverage previous plan-
ning effort by caching information after each iteration.
The only issue is that the costs of the edges in the
search graph can change between search iterations due
to the unpredictability of the moving obstacles. RTR∗

only saves the nodes in the sparse graph that are on the
best path found. This allows the RTR∗ search to seed
the sparse graph Γ with nodes that appeared promis-
ing on the previous iteration. Figure 4 shows an exam-
ple of how the path saving mechanism works across it-
erations. On the left, RTR∗ has reached its expansion
limit and calculated the best node on the frontier and
the corresponding action to take along the path (shown
in red). The nodes in Γ that exist along the path (green)
are added to the initial sparse graph in the next iteration
of searching, shown on the right. The gray dashed lines
between the nodes on the right show the edges in the
sparse graph and indicate that a low-level path between
them has not yet been computed. The low-level paths
will be recomputed as necessary during the next plan-
ning cycle. If the costs of the graph have not changed
much, then these nodes will most likely still be favor-
able. If costs have changed, then RTR∗ is free to re-
compute a better path, possibly not even using those
nodes or edges in the sparse graph at all.
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Fig. 4. Path saving across iterations of RTR∗. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140604.)

Fig. 5. The log of the number of nodes needed by weighted A∗ to solve problems with and without a goal radius allowed. The x axis is the
distance between the start and goal locations.

5.5. Making easily solvable subproblems

One of the key insights of the R∗ algorithm is that di-
viding the original problem up into many smaller sub-
problems makes it generally easier to solve than solv-
ing the original. During node expansion, R∗ generates
successors by randomly sampling the state space at
some specified distance Δ away from the node being
expanded. Likhachev and Stentz [15] do not mandate a
certain distance metric, although Euclidean distance or
heuristic difference are often used. In certain domains,
such as robot motion planning, shorter distance does
not necessarily correspond to easier problems. Due to
the constraints of the vehicle, it could actually be quite
difficult to move to a state that is only a small Eu-
clidean distance away. (An intuitive example of this

phenomenon is the task of parallel parking a car.) We
found that requiring RTR∗ to plan paths to the exact
nodes in the sparse graph was prohibiting the search
from exploring further into the search space. The rea-
son is that, although the start and goal nodes of these
subproblems were close, it was often very hard to ma-
neuver the robot precisely onto a given state. To illus-
trate this, we ran an experiment in a small world with-
out any static or dynamic obstacles. Despite these ideal
conditions, these problems were still quite difficult to
solve, with only minuscule correlation between the dis-
tance from the start to the goal node and how many
node expansions were required to solve the problem
(Fig. 5(a)). To make these problems easier, the goal
condition used for the low-level weighted A∗ searches
was relaxed to allow any state within some distance
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0.5 meters of the actual goal state and with any head-
ing and any speed to be considered a goal. Figure 5(b)
shows the log of the number of nodes taken to solve
a collection of small problems with random start and
goal states and no obstacles both with and without the
relaxed goal condition. The relaxed goal condition re-
duced the mean number of nodes expanded to solve the
problems by over a factor of 7. This relaxed goal con-
dition allows RTR∗ to solve subproblems much more
quickly.

6. A real-time search approach: LSS-LRTA∗

In the previous section, we developed RTR∗ by al-
tering a leading motion planning search algorithm to
be real-time. In this section, we pursue the opposite ap-
proach: adapting a state-of-the-art real-time search al-
gorithm, LSS-LRTA∗ [7], to the problem of robot mo-
tion planning with dynamic obstacles.

Recall the basic RTA∗ algorithm from Section 3.4: it
performs a depth-limited lookahead to assess the value
of each next action, then updates the heuristic value
of the current state as it transitions to the next state.
Local Search Space Learning Real Time A∗ (LSS-
LRTA∗) extends these ideas into a state-of-the-art real-
time heuristic search algorithm. Pseudo-code for the
algorithm is sketched in Algorithm 2. It works by first
performing a node-limited A∗ search [4] from the cur-
rent state towards the goal, in contrast to RTA∗’s depth-
bounded lookahead. This is illustrated graphically in
Fig. 6. The search frontier contains all nodes that have
been generated but not yet expanded. Once the node
expansion limit has been reached, the first action along
the path to the lowest f node on the open list is re-
turned. Next, a variant of Dijkstra’s algorithm is per-
formed from the nodes on the open list back to all the
nodes on the closed list to update all their h values, this
is the part of the algorithm responsible for “learning”

Algorithm 2. Local search space learning real-time A∗

LSS-LRTA∗(sstart, lookahead)
1. open = {sstart}
2. closed = {}
3. ASTAR(open, closed, lookahead)
4. g′ ← peek(open)
5. LEARN H VALUES(open, closed)
6. return first action along path from sstart to g′

Fig. 6. The local search space and frontier of an iteration of
LSS-LRTA∗. The best node on the frontier and the corresponding
action to take are shown. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-140604.)

the improved h values. This is in contrast with RTA∗,
which only updates one h value per iteration.

To our knowledge, LSS-LRTA∗ had previously been
tested only on simple grid world path finding tasks.
However, we believe real-time search should also find
applicability in more realistic motion planning. There
are two problems with LSS-LRTA∗ that prevent it from
being effectively applied to our problem. First, after
an iteration of search, LSS-LRTA∗ moves the agent
along the path to the best node found, until that node
is reached or until costs along the path rise. Only then
will LSS-LRTA∗ run another iteration of search. This
means that LSS-LRTA∗ will be incapable of recogniz-
ing when shorter paths become available, e.g. from a
dynamic obstacle moving out of the way [1]. Second,
the h values learned for nodes will never decrease [7].
This means that if LSS-LRTA∗ learns that a node has
a high h value by backing up a high g value due to a
dynamic obstacle, it is unable to later discover that the
node has low h cost if the dynamic obstacle were to
move away. In this way, the g values in this domain
can be seen as inadmissible, breaking a fundamental
assumption of previous heuristic search algorithms. To
see this, note that the g values along a path are esti-
mates of the costs for future actions, which can be over-
estimates if they include costs due to predicted colli-
sions with dynamic obstacles that might move away
before the agent reaches their location. This makes this
problem domain fundamentally different than the do-
mains these algorithms have been applied to in the past.
As we show in the evaluation below, LSS-LRTA∗ can
struggle in motion planning.
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7. Partitioned learning real-time A∗

Our central modification to LSS-LRTA∗ is to sepa-
rate components of the cost function to make learning
more effective in this domain. In order to more effec-
tively learn heuristic costs, we partition g and h val-
ues into static and dynamic portions. The static por-
tion refers to only those costs that are not time depen-
dent, that is, the cost incurred due to static obstacles
in the world, e.g. walls. The dynamic portion refers to
only those costs that are dependent on time, such as the
locations of the dynamic obstacles. Because the loca-
tions of the static obstacles do not depend on time, we
can cache these static h values and use them for any
search node representing the same pose 〈x, y, θ, v〉, re-
gardless of time. Dynamic values, by their definition,
will change with time and thus can only be cached for
specific time-stamped states 〈x, y, θ, v, t〉.

For each search node encountered, we track the
static costs (gs), dynamic costs (gd), static cost-to-go
(hs) and dynamic cost-to-go (hd). The evaluation func-
tion is now:

f (n) = gs(n) + gd(n) + hs(n) + hd(n).

Tie-breaking prefers higher gs values. The static costs
(both gs and hs) are those that assume a world with no
dynamic obstacles, only static obstacles. The dynamic
costs (both gd and hd) assume a world with no static
obstacles, only dynamic obstacles.

We call the resulting algorithm Partitioned Learning
Real-time A∗ (PLRTA∗). PLRTA∗ generalizes static
costs across states with the same pose. Although
one could certainly design generalization policies that
propagate dynamic costs to nearby times, in this study
we simply keep dynamic costs specific to individual
time-stamped states. Like LSS-LRTA∗, PLRTA∗ per-
forms a limited lookahead A∗ search forward from the
agent. It then selects the minimum f node in the open
list and labels it g′. We then update heuristic values in
a manner much like LSS-LRTA∗, described in detail in
the next section. The planning iteration ends by taking
the first action along the path from s to g′. An overview
of PLRTA∗ is shown in Algorithm 3.

7.1. Partitioned learning

We now describe the partitioned learning technique
in more detail. For simplicity, we divide heuristic
learning into separate steps for hs and hd. Both steps
are closely modeled on the heuristic update procedure

Algorithm 3. Partitioned learning real-time A∗: main loop
and hs learning

PLRTA(sstart, lookahead)
1. open = {sstart}
2. closed = {}
3. ASTAR(open, closed, lookahead)
4. g′ ← peek(open)
5. LEARN STATIC(open, closed)
6. LEARN DYNAMIC(open, closed)
7. return first action along path from sstart to g′

Dijkstrahs
(Closed, Open)

8. Closed, Open ← InitDijkstrahs
(Closed, Open)

9. while Closed 
= ∅ and Open 
= ∅
10. remove a state s with minimal hs from Open
11. if s ∈ Closed
12. Closed ← Closed \ {s}
13. for p ∈ predecessors(s)
14. if p ∈ Closed and hs(p) > cs(p, s) + hs(s)
15. hs(p) ← cs(p, s) + hs(s)
16. if p /∈ Open
17. Open ← Open ∪ {p}

InitDijkstrahs
(Open, Closed)

18. Closed′ = {}
19. for n ∈ Closed
20. if n /∈ Closed′

21. hs(n) ← ∞
22. Closed′ = Closed′ ∪ {n}
23. for all n ∈ Open
24. if n ∈ Closed′

25. remove n from Open
26. return Closed′, Open

of LSS-LRTA∗. The main difference between the two
learning steps is in the setup phase. The static learning
phase (function LEARN STATIC) is used to learn the
hs values of the world. To do this, it makes use of the
Dijkstrahs function. We start by sorting the open list
by lowest hs. The pseudocode for this is shown in Al-
gorithm 3 (lines 18–26). We set the hs of all nodes in
the closed list to ∞. States that are duplicates when ig-
noring time will, by definition, share the same hs, and
are therefore reduced to a single representative node
by combining their parent pointers to a single list. We
then perform the learning step of LSS-LRTA∗, using
the hs of a state and the static cost (gs) incurred by
moving from one state to its successors. This is shown
in the Dijkstrahs function (lines 9–17). Unlike in LSS-
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LRTA∗, the Dijkstra procedure can be terminated when
either the open or closed list is exhausted, not simply
when the closed list has been emptied. The following
Theorem explains why.

Theorem 2. If the static learning step terminates due
to an empty open list, it is because the remaining nodes
in the closed list are those nodes whose successors lead
to dead ends.

Proof. The proof is by contradiction. Assume there is
some node n in the closed list when the learning al-
gorithm terminates that has some successor that does
not exclusively lead to a dead-end. The algorithm must
have terminated due to an empty open list as the al-
gorithm only terminates when either the open list or
the closed list becomes empty. This means that n must
have had a descendant (either a direct successor or a
node along the path going through a direct successor)
on the open list at some point during the search. If there
did not exist a descendent of n on the open list then we
have a contradiction that n’s descendants do not lead
exclusively to dead ends. Therefore, let us call this de-
scendent that was on the open list m. Because of the
termination condition, we know that m was removed
from the open list as the smallest hs value at some point
during the learning step. Once removed from the open
list, m is removed from the closed list if it appears in
it, signifying that we have updated its hs value. Then,
all of m’s predecessors are generated, and those which
appear on closed list and have hs values greater than
the cost of moving to m plus hs(m) are inserted into
open. The condition:

hs
(
pred(m)

)
< cs

(
pred(m),m

)
+ hs(m)

will hold for any of the predecessors, pred(m), on the
closed list at least once, as all nodes on the closed list
have their hs values set to ∞ in line 21 of Algorithm 3.
Therefore, m must have at least one predecessor in the
closed list which gets inserted into the open list, oth-
erwise, m would not be in the open list. It then fol-
lows that at some point in the future that predeces-
sor of m would be removed from the open list and re-
moved from the closed list, its predecessors generated
and placed on the closed list. Ultimately, because n is
an ancestor of m, n would have to be inserted onto
the open list and sometime in the future removed from
both the open list and the closed list. But this is a con-
tradiction, because we stated that n was on the closed
list at termination. Thus, it cannot be true that n has

some descendent who does not lead exclusively to a
dead-end. Therefore, n must exclusively lead to dead-
ends. �

In fact, the hs learning step is so similar to the learn-
ing step of LSS-LRTA∗ that we inherit their result
that values will never decrease during the successive
searches.

Theorem 3. The hs value of the same pose is mono-
tonically nondecreasing over time and thus remains
constant or becomes more informed over time.

Proof. We rely on the proof of Theorem 1 shown by
Koenig and Sun [7]. One simply substitutes their use
of h with hs and their notion of a state with pose. We
have assumed our hs values to be consistent and we
use the same Dijkstra style learning rule, which are the
necessary assumptions for their proof. This means that
all the preconditions for their proof have been met and
so their proof follows directly. �

Theorem 4. The hs values remain consistent and thus
also admissible.

Proof. We rely on the proof of Theorem 2 shown by
Koenig and Sun [7]. Once again the substitutions in
our proof for Theorem 3 are used and meet all the nec-
essary assumptions for their proof. This means that all
the preconditions for their proof have been met and so
their proof follows directly. �

Theorems 3 and 4 together ensures that if using an
admissible heuristic, our heuristic will remain admis-
sible, yet become more informed as subsequent search
iterations are performed.

7.1.1. Dynamic heuristic learning
Developing accurate heuristics for predicting the

cost-to-go due to dynamic obstacles is a hard prob-
lem that, to our knowledge, has not been addressed in
the literature. For this reason, we use hd = 0. While
this is very weak, our partitioned values can improve
it during the search using the dynamic learning step.
This is a key advantage of PLRTA∗: because we track
dynamic and static costs separately, we can learn hd
values through our gd costs. This will allow future
searches to avoid areas of high cost caused by dynamic
obstacles. Thus the hd values of a state can change
over time as predicted obstacle trajectories change. The
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learning rule for the hd values is:

h′d(n) =
(

min
n′∈succ

gd
(
n′
)
+ hd

(
n′
))

− gd(n),

where h′d is the new learned dynamic h value. The intu-
ition here is that a node n’s hd value should be the best
gd + hd of its children, minus the cost to get to n. The
hd values are computed using a Dijkstra-style traver-
sal of the local search space analogous to that used in
the static world learning step. We may only prune du-
plicates with identical times, as the time of the state is
important in determining its hd value. The termination
condition, however, is the same as in the static learning
step.

7.2. Heuristic decay

The gd costs in the search space, and hence hd costs,
increase or decrease depending on the movements of
dynamic obstacles and their predicted future locations.
As in LSS-LRTA∗, the learning step of PLRTA∗ will
always only raise the heuristic estimate of a state. How-
ever, there must be a way to lower a high cached
heuristic value if the dynamic obstacle that caused the
high value moves away. To accomplish this, we decay
the cached dynamic heuristic values of all states over
time. This allows the algorithm to “unlearn” dynamic
heuristic values that turn out to be overestimates.

Whenever an hd value is learned and cached, we
note the current planning iteration pi. Then at some fu-
ture planning iteration pj , where i < j, the value of the
cached hd is decayed linearly so that after some con-
stant td � 0 number of iterations, the value is back to
zero. This encourages the search algorithm to poten-
tially re-evaluate the node when it is next generated in
some future planning phase instead of using the possi-
bly stale cached value.

This has a few obvious drawbacks. First, we do
not decay based on any additional information about
the dynamic obstacle; we simply linearly decay the
learned value. Second, we are at the mercy of the ob-
stacle prediction model. In this paper we use a sim-
ple linear projection. This can be inaccurate and can
cause us to learn high hd values for states that are in
reality much safer. Third, we only learn these values
for specific timestamped states. These updated states
will represent a very small fraction of the overall space
and thus do not help guide the search as much as they
would if their values were generalized to more neigh-
boring states. It is certainly likely that more sophisti-

cated heuristic decay techniques could be leveraged to
improve the performance of the search.

It is important to note that, like any real-time search,
PLRTA∗ can only guarantee completeness when there
are no dynamic obstacles in the world. It is impossible
for any algorithm that myopically optimizes our cost
function using a naive opponent model to be able to
guarantee completeness. To see this, consider a situa-
tion in which a robot has two possible paths to reach
a goal. Whenever it begins to take the shorter path, a
dynamic obstacle blocks its path. As the robot reverts
to the longer path, the obstacle moves away, luring the
robot back to attempt the shorter path again. This end-
less cycle is inevitable whenever a optimizing planner
lacks the ability to estimate future obstacles accurately.
In this way, no algorithm can guarantee completeness
in the presence of adversarial obstacles. However, this
does not diminish the usefulness of developing meth-
ods that are effective in practical situations.

In a static world, PLRTA∗ inherits the same com-
pleteness guarantees of LSS-LRTA∗, which in turn in-
herited the completeness guarantee of LRTA∗ [9].

Theorem 5. In a finite problem space with no dynamic
obstacles, positive edge costs, and finite heuristic val-
ues, in which a goal state is reachable from every state,
PLRTA∗ will find a solution if one exists in the dis-
cretized search space.

Proof. We rely on the proof of Theorem 1 shown by
Korf [9]. Note that, with no dynamic obstacles, gd = 0
for all states and thus g = gs and h = hs. One simply
substitutes Korf’s use of h with hs and their notion of
a state with pose. When dealing with poses, time has
been removed from the state and so our problem space
becomes finite. We have no negative edge costs. This
means that all the preconditions for his proof have been
met and thus his proof follows directly. �

Of course, the algorithms discussed in this paper are
intended for use in worlds with dynamic obstacles, and
so we now turn to an experimental evaluation of their
performance.

8. Experimental evaluation

Given the many relevant approaches to motion plan-
ning, we evaluate our two new algorithms in a simu-
lated environment against five previous proposals. We
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compared RTR∗ and PLRTA∗ with LSS-LRTA∗ [7],
R∗ [15], RTA∗ [9], our modified version of Time-
Bounded Lattice [10] described above, and our real-
time version of the RRT algorithm [11]. To our knowl-
edge, this is the first time that these diverse algorithms
have been empirically compared.

We used a custom simulator capable of supporting
multiple, physically realistic robots. The simulator has
a distributed architecture, allowing planners to run in
parallel on remote machines. By having each planner
use its own machine, we realistically simulated each
robot actively planning while the simulator carried out
their previous actions (as depicted earlier in Fig. 2). In
our tests, the planners controlled simulated differential
drive robots from start to goal locations while avoid-
ing static and dynamic obstacles in trials lasting one
minute. Their objective was to minimize the cost func-
tion, balancing both their need to avoid obstacles while
attempting to stay on their goal position as much as
possible. The cost of a time step passing was 5 while
not on the goal and 0 while on the goal. The cost of
a collision was 1000. Note that robots will incur colli-
sion penalties even while in the goal state. Algorithms
that are capable of doing look-ahead past the goal state
should strive to leave the goal to let an obstacle pass
and then return to it. Algorithms that are incapable of
this look-ahead may be penalized for collisions that oc-
cur on the goal.

The parameters for each algorithm were chosen to
offer the best performance based on pilot experiments.
The lookahead used was determined by empirically
testing how many nodes the algorithms could expand
within the given time limit of 0.5 s. PLRTA∗ was run
with a lookahead of 1000 nodes, and a decay steps
value of 4. LSS-LRTA∗ was run with a lookahead of
1000 nodes. RTA∗ was run with a lookahead depth
limit of 4. Time-Bounded Lattice was run with a time-
bound of 4 s and a weight of 1.1. RRT was run with
a sampling limit of 500 samples. RTR∗ was run with
an expansion limit of 5000 nodes and an avoid limit of
1000 nodes. The value of k was set to 10 and w was
set to 3. The Δ parameter was set to 0.4 meters. RTR∗

and R∗ both need a heuristic from any arbitrary node
to any other arbitrary node: the straight line heuristic
was used because of its speed of computation. Specifi-
cally, the heuristic is the straight-line distance, divided
by the maximum distance the robot can travel in a sin-
gle time step, multiplied by the per-time-step penalty
of not being on the goal.

We ran two different kinds of problems. The first
were synthetic problems with random state and goal

locations and varying numbers of dynamic obstacles.
The second were small handcrafted scenarios designed
to test whether the planners could find specific desired
behaviors. We will cover each type in turn.

8.1. Randomized runs

The random synthetic experiments used a single
fixed environment (Fig. 7). We used 36 different ran-
dom pairings of start and goal positions. The number
of dynamic obstacles was varied from zero to ten ob-
stacles for each of the different start and goal combi-
nations. The paths that the obstacles follow were ar-
bitrary paths traced by a human with a pointer device
and then stored for reuse. The robots have no knowl-
edge about the future actions of the dynamic obstacles.
They can only estimate their trajectories based on the
obstacles’ past observed states. The heuristic used was
the 2D Dijkstra heuristic [14]. It is made admissible by
dividing each value reported by the Dijkstra search by
the maximum distance the robot can travel in a single
time step, and then multiplying this value by the per-
time-step penalty for not being on the goal. The map
was discretized into 4 cm square cells. The size of the
map was 500 by 500 cells, corresponding to a 20 by

Fig. 7. The simulator used showing the dynamic obstacles (filled
circles), the robot (red filled circle), and the goal (light red filled
circle with arrowhead, near robot). Hollow circles indicate prob-
ability distributions over predicted future trajectories of obsta-
cles. (The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-140604.)
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20 meter map. An example run with one planning bot
and 10 dynamic obstacles is shown in Fig. 7.

Figure 8 shows a line plot of the mean total cost
accrued for each algorithm as the number of dy-
namic obstacles increases. Error bars show 95% con-
fidence intervals around the mean (offset for legibil-
ity). Although all algorithms perform well when no dy-
namic obstacles are present, clear differences emerge

Fig. 8. Experiments of length 60 s. Shows actual cost accrued ver-
sus number of dynamic obstacles for each algorithm with 95% con-
fidence intervals. (Colors are visible in the online version of the arti-
cle; http://dx.doi.org/10.3233/AIC-140604.)

as they are added. RTR∗ clearly surpasses the origi-
nal R∗ in these tests, and PLRTA∗ surpasses the orig-
inal LSS-LRTA∗. Overall, PLRTA∗ performs the best,
with RTR∗ and LSS-LRTA∗ performing comparably
and second best.

Figure 9 shows a subset of the data (0, 1, 4, 6, 8
and 10 dynamic obstacles) in a more detailed box plot
format. The y axis denotes the actual cost accrued by
the agent running the algorithm. Each box encloses
the middle 50% of the data, with a line at the me-
dian, whiskers extending to the sample minimum and
maximum, and outliers plotted with circles. Gray rect-
angles (sometimes too small to discern) indicate 95%
confidence intervals on the mean. From these plots, we
again see that PLRTA∗ is clearly the best across the
board, with the exception of instances with no or few
obstacles where many algorithms perform well. Its par-
titioned heuristic and learning scheme seem to offer
it a great advantage when compared to LSS-LRTA∗.
RTR∗ performed much better than R∗ and compara-
bly to LSS-LRTA∗ and TBL. RTR∗ performs relatively
poorly on the experiment with no dynamic obstacles.

From our observations, RTR∗ is able to avoid hit-
ting moving obstacles fairly well, but it is unable to
quickly get to the goal, even if there are no dynamic
obstacles. R∗ and the real-time version of RRT per-
form the worst on all the experiments, not being able to
plan low cost paths to the goal with no dynamic obsta-
cles and having a high collision rate when dynamic ob-

Fig. 9. Total trajectory cost over 60 s when traveling to a goal with varying numbers of dynamic obstacles.
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stacles are present. Time-Bounded Lattice (TBL) per-
forms well when there are few dynamic obstacles, and
performs the best of all algorithms when there were
no dynamic obstacles. Not being real-time however,
it is unable to reliably avoid collisions in the pres-
ence of many obstacles. Likewise, RTA∗ is able to per-
form well when there are no dynamic obstacles, but its
learning does not scale and it is unable to avoid col-
lisions as the number of dynamic obstacles increases,
performing about as badly as RRT. We found that in
the 10 dynamic obstacle case, the mean cost accrued
by PLRTA∗ was 5.5–25 times less than that of the other
algorithms tested.

PLRTA∗ is the only algorithm to collide with less
than 1 obstacle on average. In our challenging bench-
marking suite, 1000 is the cost of a collision and
PLRTA∗ stays lower than this over all configurations.
To help determine which aspect of the algorithm most
contributed to its performance, we tested a variant in
which heuristic decay was not used and found that
it achieved the same cost. We believe this is because
the learning performed during the dynamic learning
stage will only raise the value for specific time stamped
states that lead exclusively to states that have high dy-
namic cost. Because our hd function is so weak, a node
will maintain a hd of 0 unless all the paths through its

descendants have high dynamic cost. In an infinite state
space, this is a very small number of nodes and has lit-
tle effect on the search, despite its theoretical impor-
tance in ensuring completeness.

8.2. Handcrafted scenarios

We also compared our best algorithm, PLRTA∗,
against the two best competitors, LSS-LRTA∗ and
TBL, on six handcrafted challenge scenarios. The sce-
narios are shown in Fig. 10, numbered from 1 to 6, left-
to-right starting in the upper left corner. Each scenario
lasts only 30 s. The static environments tested in the
scenarios are smaller than those of the random runs in
order to isolate performance on these single scenarios.

Table 1 shows the results of all these runs. The table
shows the actual cost incurred, the number of expan-
sions performed, and a qualitative assessment of how
each agent behaved while acting in each specific sce-
nario. This is qualified with three possible assessments:
good, OK and bad. As we can see in Table 1, not all
those plans that have low cost necessarily look good.
As a human observer, it can sometimes be hard to un-
derstand why the agent is behaving in a certain way.
For example, in Scenario 1, the Time-Bounded Lattice
algorithm freezes numerous times, as it takes too long

Fig. 10. Handcrafted challenge scenarios, showing movement of the obstacles and the optimal behavior for the agent. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/AIC-140604.)
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Table 1

Experimental results on the handcrafted challenge scenarios

Algorithm Actual cost Nodes expanded Look

Scenario 1

tb lattice tb:4000 w:1.0 29 272,349 ok

tb lattice tb:4000 w:1.1 30 290,356 ok

plrta lh: 1000 37 60,000 ok

lsslrta lh: 1000 60 60,000 bad

Scenario 2

tb lattice tb:4000 w:1.0 30 1,420,197 good

tb lattice tb:4000 w:1.1 41 137,395 ok

plrta lh: 1000 60 60,000 ok

lsslrta lh: 1000 60 60,000 bad

Scenario 3

tb lattice tb:4000 w:1.0 60 797,715 bad

tb lattice tb:4000 w:1.1 60 669,209 bad

plrta lh: 1000 32 60,000 good

lsslrta lh: 1000 60 54,003 bad

Scenario 4

tb lattice tb:4000 w:1.0 3000 60 bad

tb lattice tb:4000 w:1.1 3000 60 bad

plrta lh: 1000 26 60,000 good

lsslrta lh: 1000 54 60,000 ok

Scenario 5

tb lattice tb:4000 w:1.0 22 115,827 good

tb lattice tb:4000 w:1.1 22 123,933 good

plrta lh: 1000 60 60,000 bad

lsslrta lh: 1000 60 60,000 bad

Scenario 6

tb lattice tb:4000 w:1.0 60 651,882 bad

tb lattice tb:4000 w:1.1 60 600,860 bad

plrta lh: 1000 41 60,000 ok

lsslrta lh: 1000 46 60,000 ok

to compute the action to take. Even once unimpeded
paths to the goal are present, it sometimes takes multi-
ple planning phases to pass before an action to take is
returned. Also, PLRTA∗ oscillates back and forth be-
tween plans while moving to the goal, giving it a look
of indecisiveness.

In Scenario 2, the Time-Bounded Lattice finds the
long path around the static obstacle and reaches the
goal fairly quickly, although it does freeze a few times
along the way. LSS-LRTA∗ never makes it around the
static obstacle and instead moves indecisively around
the starting area. PLRTA∗ finds the path around the
static obstacle and reaches the goal quickly, yet strug-
gles in trying to arrange itself perfectly on the goal
state.

Table 2

Totals over all the handcrafted challenge scenarios

Algorithm Actual cost Nodes expanded Look

tb lattice tb:4000 w:1.0 3201 3,258,030 ok

tb lattice tb:4000 w:1.1 3213 1,821,813 ok

plrta lh: 1000 256 360,000 good

lsslrta lh: 1000 340 354,003 bad

PLRTA∗ really shines in Scenario 4, as it waits on
the goal as long as it can before moving out of the way,
letting the dynamic obstacle pass, and then returning
back to the goal. LSS-LRTA∗ moves out of the way
on this scenario as well, yet never returns to the goal
afterward.

In Scenario 4, the Time-Bounded Lattice agent fails
to move off of the goal, even though a dynamic ob-
stacle was known to be coming towards it. This is
again because of the fact that Time-Bounded Lattice
was designed to run until it expands the goal during the
search. Thus, it was not entirely clear how to convert
this into an algorithm which plans beyond the goal. As
explained earlier, we simply expand one node if the
agent begins on the goal state and move to the child
with the lowest f . This is clearly not enough lookahead
for the agent to escape and as such, it decides to con-
tinue sitting on the goal. Clearly, this is not a desirable
result.

To summarize the performance in these scenarios,
Table 2 shows the accumulated total cost. Obviously,
the cost of the Time-Bounded Lattice’s performance in
Scenario 4 skews these results. Ignoring them, how-
ever, you can see it did not outperform PLRTA∗ or
LSS-LRTA∗by a significant margin. Also notable is the
significant amount of additional work Time-Bounded
Lattice has to perform in terms of nodes expanded to
achieve these costs. The Time-Bounded Lattice with a
weight of 1.0 does nearly 10 times as many expansions
as PLRTA∗, even though it only does one expansion
per planning iteration once it reaches the goal.

Table 2 also gives an aggregate qualitative assess-
ment of each algorithm’s performance. The Time-
Bounded Lattice agents work well in most cases, yet
cannot deal with the situation of needing to leave their
goal location. This resulted in a collision in Scenario 4.
LSS-LRTA∗ performs the worst overall despite never
colliding with any obstacles. This is because it made a
large number of seemingly unintelligent moves is most
scenarios. PLRTA∗ performs the best, never colliding
with dynamic obstacles, and coming up with reason-
able looking plans.
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This is a positive result as even though PLRTA∗ is
only doing a limited amount of lookahead search, it is
still able to react well to the dynamic obstacles around
it and find intelligent looking plans to reach the goal.

9. Future directions

Some real-time algorithms for static environments
have been proven to be complete, in that they are guar-
anteed to eventually reach a goal. This requires that,
to compensate for their limited-lookahead, the algo-
rithms update (or ‘learn’) cost-to-go estimates to states
they have visited. This allows them to avoid falling
into cyclic behavior. While, as discussed previously,
dynamic environments are inherently incomplete, it
would be interesting to develop a complete version of
RTR∗ for use in static worlds.

PLRTA∗and RTR∗both performed comparably or
better than previous state-of-the-art algorithms on this
domain. However, one deficiency of all the algorithms
tested is the lack of a heuristic that can effectively pre-
dict costs due to dynamic obstacles. Currently, the only
way that these costs are discovered by the algorithms is
through search. In the very dense state space that is be-
ing explored, a heuristic that could model the expected
costs due to dynamic obstacles could greatly improve
the efficiency of all the algorithms tested. One possi-
ble way to accomplish this would be to abstract the
state space to only three dimensions, x location, y lo-
cation, and time. These would have to be discretized
to be coarse enough to allow the heuristic to be calcu-
lated quickly. Each time the predictions of the dynamic
obstacles changes, the heuristic could be computed as
follows: Create a 3D matrix representing the three di-
mensions x, y and t where the cost in each cell is the
cost associated with the dynamic obstacles in that loca-
tion and that time. Then perform Dijkstra’s algorithm
starting at the goal location. This will compute mini-
mum cost paths to all other locations at all other times.
The cost of these paths could then be used as a heuristic
during search. While this heuristic would of course be
inadmissible, it might well increase algorithm perfor-
mance. However, developing such heuristics lies out-
side the scope of this paper.

10. Conclusion

We have presented the first two real-time heuristic
search algorithms for kinodynamic motion planning

with dynamic obstacles. We introduced two
approaches, RTR∗ and PLRTA∗, based on previous
successful motion planning and real-time search algo-
rithms, respectively. In the first comprehensive
comparison of sampling-based and real-time heuris-
tic search-based methods, the two new algorithms per-
formed equal to or often better than their original pro-
genitors, and PLRTA∗ surpassed all other algorithms
tested. We hope this work furthers the applicability of
real-time heuristic search-based methods for fully em-
bodied agents working among humans.
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