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A Notation

Table 1 lists the notation used in the paper.

B Problem Complexity

If each edge e has a cost of removal c(e), the goal of Force Path Cut is to keep the
total cost of edge removal within a given budget while forcing the shortest path to
be p∗. (Cost of removal is not necessarily equal to the weight.) We can show that
the 3-Terminal Cut problem reduces to this one. In k-Terminal Cut—described
in [2]—we are given a weighted graph G = (V,E), positive edge weights w(e),
and a budget b. There are k nodes from V designated as terminals. The goal is to
find an edge subset E′ ⊂ E, where

∑
e∈E′ w(e) ≤ b, whose removal disconnects

all terminals from one another. This is shown in [2] to be NP-complete for k > 2.
We will show that the solution to Force Path Cut would solve 3-Terminal Cut,
thus proving the following theorem.

Theorem 1. Force Path Cut is NP-complete for undirected graphs.

To solve 3-Terminal Cut, we are given the graph G = (V,E), with weights
w(e) > 0 for all e ∈ E, and a budget b > 0, along with three terminal nodes
s1, s2, s3 ∈ V (following notation from [2]). We will create a new graph Ĝ from
G and use it as an input for Force Path Cut. Let wall be the sum of all edge
weights, i.e., wall =

∑
e∈E w(e). Note that if there are any edges between s1, s2,

and s3, these edges must be removed in the solution (any solution that does not
remove them does not isolate the terminals from one another). Let E′t be the set
of any such edges, i.e.,

E′t = E ∩ {{s1, s2}, {s2, s3}, {s1, s3}} . (1)
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Symbol Meaning

G graph

V vertex set

E edge set

N number of vertices

M number of edges

s source vertex

t destination vertex

p∗ adversary’s desired path in G

w(e) edge weight function w : E → R≥0

R≥0 set of nonnegative real numbers

U universe for the Set Cover problem

S set of subsets of universe U
δS binary vector representing inclusion of set S ∈ S
w edge weight vector

c(e) edge removal cost function c : E → R≥0

c vector of edge removal costs

b adversary’s budget

∆ binary vector representing edges cut

x binary vector representing edges in a path

Pp∗ set of paths from s to t no longer than p∗

(·)> matrix or vector transpose

〈k〉 average degree in G

σk standard deviation of node degrees in G

κ global clustering coefficient in G

τ transitivity in G

4 number of triangles in G

ϕ number of connected components in G
Table 1. Notation used throughout the paper

Since any edges between the terminals must be removed, the budget for removing
the remaining edges must be reduced, yielding a new budget

b̂ = b−
∑
e∈E′t

w(e). (2)

Finally, we add edges between the terminal nodes with specific weights: an edge
between s1 and s2 and one between s2 and s3, each with weight wall + 2ε for
some ε > 0, and an edge between s1 and s3 with weight 2wall + 3ε. Let Ê be the
edge set with the new edges added and ŵ be the new set of edge weights (with all

other weights retained from the original graph). The new graph Ĝ =
(
V, Ê

)
will

be an input to Force Path Cut, with budget b̂, starting node s = s1, destination
node t = s3, and target edge p∗ = (s1, s3). Pseudocode for this procedure is
provided in Algorithm 1.
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Algorithm 1 Create Force Path Cut input graph

Input: Graph G = (V,E), weights w, budget b ≥ 0, terminals s1, s2, s3 ∈ V
Output: Graph Ĝ, weights ŵ, unused edges E′t
wall ←

∑
e∈E w(e)

E′t ← E ∩ {{s1, s2}, {s2, s3}, {s1, s3}}
Ê ← E \ E′t
for all e ∈ Ê do
ŵ(e)← w(e)

end for
e12 ← {s1, s2} 〈〈create new edges〉〉
ŵ(e12)← wall + 2ε
e23 ← {s2, s3}
ŵ(e12)← wall + 2ε
e13 ← {s1, s3}
ŵ(e12)← 2wall + 3ε
Ê ← Ê ∪ {e12, e23, e13}
return Ĝ =

(
V, Ê

)
, ŵ, E′t

Lemma 2. Let G = (V,E) be an undirected graph. For any node subset Vs ⊂ V ,
if E can be partitioned E = Es∪Es̄, Es∩Es̄ = ∅, such that (1) all edges between
nodes in Vs are in Es and (2) there is no path between any two nodes in Vs
within Es̄, then all simple paths between nodes in Vs use only edges in Es.

Proof. Suppose a simple path existed between two nodes u, v ∈ Vs that included
edges in Es̄. Let d be the number of edges in this path and let ei ∈ E for
1 ≤ i ≤ d be the sequence of edges starting from u and ending at v. Let j be the
sequential index of the first edge in Es̄ that appears in the path. This edge goes
from a vertex in Vs to a vertex in V \ Vs. (Any edges occurring beforehand are
in Es, so only connect nodes within Vs, and ej is in Es̄, so at least one vertex is
outside of Vs.) Let ej = {uj , vj}, where uj ∈ Vs and vj ∈ V \ Vs. Finally, let ek
be the first edge after ej that connects a node from V \Vs to a node from Vs, i.e.,
the minimum k > j such that ek = {uk, vk} where either uk ∈ Vs or vk ∈ Vs.
We note that such an edge must exist, since the final node in the sequence is in
Vs. Note also that ek ∈ Es̄, since one of its vertices is in V \ Vs. Without loss of
generality, let uk ∈ V \Vs and vk ∈ Vs. The edges in the sequence ei for j ≤ i ≤ k
form a path from uj ∈ Vs to vk ∈ Vs using only edges in Es̄. By the assumption
of the lemma there is no path between any two nodes in Vs using edges in Es̄,
this means that uj and vk must be the same node, which contradicts the premise
that the path is simple. This completes the proof. ut

Lemma 3. Existence of a solution to 3-Terminal Cut implies existence of a
solution to Force Path Cut in the graph modified by Algorithm 1.

Proof. Let E′ ⊂ E be a solution to 3-Terminal Cut, i.e., a set of edges such that∑
e∈E′ w(e) ≤ b and in the graph G′ = (V,E \ E′) there is no path connecting
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Algorithm 2 Solve 3-Terminal Cut via Force Path Cut

Input: Graph G = (V,E), weights w, budget b ≥ 0, terminals s1, s2, s3 ∈ V
Output: Boolean value indicating whether the 3 terminals can be separated

Ĝ =
(
V, Ê

)
, ŵ, E′t ← output of Algorithm 1

b̂← b−
∑

e∈E′t
w(e)

if b̂ < 0 then
return false 〈〈budget is too small〉〉

end if
s← s1
t← s3
p∗ ← (s1, s3)

return ForcePathCut
(
Ĝ, ŵ, ŵ, b̂, p∗, s, t

)

any of the terminal nodes s1, s2, and s3. Any edges from G that directly connect
the terminals must be in E′ or such a path would exist. Letting E′t be the set of
any such edges (as in (1)), this means that E′t ⊂ E′.

The graph as modified by Algorithm 1 includes edges

Ê = (E \ E′t) ∪ {e12, e13, e23},

with weights w(e12) = wall + 2ε, w(e23) = wall + 2ε, and w(e13) = 2wall + 3ε. By
the assumption of the lemma, removing all edges in E′ disconnects the terminals
from one another. Algorithm 1 starts by removing E′t and adds 3 new edges to
the graph, resulting in the graph Ĝ. Consider a partition of Ê—the edges in
Ĝ—into 3 subsets:

E1 = {e12, e23, e13} (3)

E2 = (E′ \ E′t) (4)

E3 = E \ E′. (5)

Note that Ê = E1 ∪ E2 ∪ E3 and

E1 ∩ E2 = E2 ∩ E3 = E1 ∩ E3 = ∅, (6)

so (3)–(5) describe a proper partition. Suppose the Force Path Cut procedure
removes the edges in E2 from Ĝ. Note that∑

e∈E′
w(e) ≤ b⇒

∑
e1∈E′t

w(e) +
∑

e2∈E′\E′t

w(e) ≤ b (7)

⇒
∑

e2∈E′\E′t

w(e) ≤ b−
∑

e1∈E′t

w(e) (8)

⇒
∑

e2∈E2

ŵ(e) ≤ b̂, (9)
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with b̂ as defined in Algorithm 2. This implies that the edges in E2 would be
within the budget allocated to Force Path Cut.

After removing the edges in E2, the remaining edges in Ĝ would be E1 ∪E3.
The set E1 only includes edges among terminals and, by the assumption of the
lemma, E3 does not include any path between any two terminal nodes. Thus, by
Lemma 2, any path from s1 to s3 after removing E2 includes only edges in E1.

There are therefore two possible paths from s1 to s3: s1 → s3 and s1 → s2 →
s3. The latter path has weight

ŵ(e12) + ŵ(e23) = 2(wall + 2ε) > 2wall + 3ε = ŵ(e13), (10)

and thus the former is the shortest path from s1 to s3 in Ĝ. Since p∗ = (s1, s3),
the shortest path from s = s1 to t = s3 is p∗, meaning that if there is a solution
to 3-Terminal Cut in G, there is a solution to Force Path Cut in Ĝ. ut

Lemma 4. A solution to Force Path Cut in the graph modified by Algorithm 1
implies a solution to 3-Terminal Cut in the original graph.

Proof. Given a graph G = (V,E), weights w, a budget b, and terminals

s1, s2, s3 ∈ V,

use Algorithm 1 to compute Ĝ, ŵ, and E′t. As in Algorithm 2, compute b̂, set
s, t, and p∗ and solve Force Path Cut. Let Ê′ be the edges that are cut when
solving the problem, meaning (1) the shortest path from s = s1 to t = s3 is p∗

and (2)
∑

e∈Ê′ ŵ(e) ≤ b̂.
After removing the edges, consider a partition of the remaining edge set into

{e12, e23, e13} and its complement

Êt̄ = (Ê \ Ê′) \ {e12, e23, e13}. (11)

Within Êt̄, there is no path between any two terminal nodes. If there were any
such path, it would have length at most wall, since∑

e∈Êt̄

ŵ(e) ≤ wall. (12)

Existence of such a path would have at least one of the following implications:

– If such a path p existed between s1 and s2, then p followed by e23 would be
a path from s1 to s3 with length at most

wall + ŵ(e23) = 2wall + 2ε < ŵ(e13). (13)

This implies that s1 → s3 is not the shortest path from s1 to s3, thus
contradicting the assumption of the lemma.

– The analogous case for a path from s2 to s3 yields an analogous contradiction.
– If such a path existed between s1 and s3, its length would be at most wall <
ŵ(e13), again contradicting the assumption that s1 → s3 is the shortest path
from s1 to s3 in Ĝ′.
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Thus, if we remove Ê′ from Ĝ, the only edges connecting the terminal nodes are
e12, e23, and e13. In other words, removing Ê′ and {e12, e23, e13} from Ê will
result in the terminals being disconnected from one another. Note that E and
Ê are the same after removing nodes between the terminals, i.e.,

E \ E′t = Ê \ {e1, e2, e3} (14)

This means that

(Ê \ Ê′) \ {e1, e2, e3} = (Ê \ {e1, e2, e3}) \ Ê′ (15)

= (E \ E′t) \ Ê′ (16)

= E \ (E′t ∪ Ê′). (17)

Thus, removing E′t and Ê′ from the original graph results in a graph with no path
between any two terminals. Recall that the assumption of the lemma requires:∑

e∈Ê′
ŵ(e) ≤ b̂ = b−

∑
e∈E′t

w(e) (18)

⇒
∑

e1∈E′t

w(e1) +
∑

e2∈Ê′
ŵ(e2) ≤ b (19)

⇒
∑

e∈E′t∪Ê′
w(e) ≤ b. (20)

Removing these edges is, therefore, within the budget allocated. ut

We have now proven that Algorithm 2 is a polynomial-time reduction from
3-Terminal Cut to Force Path Cut, as Lemmas 3 and 4 have shown. Since 3-
Terminal Cut is NP-complete, this implies Force Path Cut is NP-complete as
well.

C Datasets

Our experiments were run on several synthetic and real networks across dif-
ferent edge-weight initialization. All networks are undirected. We described the
edge-weight initialization schemes in Section 4.2 of the paper. Table 2 provides
summary statistics of the synthetic networks.

We ran experiments on both weighted and unweighted real networks. In cases
of unweighted networks, we added either Poisson, uniformly distributed, or equal
weights as was the case of synthetic networks. Below is a brief description of each
network used. Table 3 summarizes the properties of each network.

The unweighted networks are:

– Wikispeedia graph (WIKI): The network consists of Web pages (nodes)
and connections (edges) created from the user-generated paths in the Wik-
ispeedia game [6]. Available at https://stanford.io/3cLKDb7.
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Networks Nodes Edges 〈k〉 σk κ τ 4 ϕ

ER 16, 000 159, 880 19.985 4.469 0.001 0.001 1, 326 1
±0 ±38 ±0.05 ±0.02 ±0.0 ±0.0 ±39 ±0

BA 16, 000 159, 900 19.987 24.475 0.007 0.006 17, 133 1
±0 ±0 ±0 ±0.3 ±0.0 ±0 ±500 ±0

KR 16, 337 159, 595 19.537 16.537 0.003 0.005 8, 492 1.18
±22 ±94 ±0.02 ±1.32 ±0 ±0.002 ±2, 234 ±0.38

LAT 81, 225 161, 880 3.985 0.118 0 0 0 1
±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0

COMP 565 159, 330 564 0 1 1 29, 900, 930 1
±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0

Table 2. Properties of the synthetic networks used in our experiments. For each ran-
dom graph model, we generate 100 networks. Note that the number of edges across
the different networks is ≈ 160K. The table shows the average degree (〈k〉), standard
deviation of the degree (σk), global clustering coefficient (κ), transitivity (τ), number
of triangles (4), and the number of components (ϕ). The ± values show the standard
deviation across 100 runs of each random graph model.

– Oregon autonomous system network (AS): Nodes represent autonomous sys-
tems of routers and edges denote communication between the systems [4].
The dataset was collected at the University of Oregon on 31 March 2001.
Available at https://stanford.io/3rLItfN.

– Pennsylvania road network (PA-ROAD): Nodes are intersections in Penn-
sylvania, connected by edges representing roads [5]. Available at https:

//stanford.io/31Jnb7W.

Networks Nodes Edges 〈k〉 σk κ τ 4 ϕ

GRID 347 444 2.559 1.967 0.086 0.087 40 1

LBL 3186 9486 5.954 25.515 0.099 0.005 1821 10

WIKI 4,592 106,647 46.449 69.878 0.274 0.102 550,545 2

AS 10,670 22,002 4.124 31.986 0.296 0.009 17,144 1

PA-ROAD 1,088,092 1,541,898 2.834 1.016 0.046 0.059 67,150 206

NEUS 1,524,453 1,934,010 2.537 0.950 0.022 0.030 37,012 1

DBLP 1,836,596 8,309,938 9.049 21.381 0.631 0.165 26,912,200 60,512
Table 3. Properties of the real networks used in our experiments. For each network,
we are listing the average degree (〈k〉), standard deviation of the degree (σk), global
clustering coefficient (κ), transitivity (τ), number of triangles (4), and the number of
components (ϕ).

The weighted networks are:

– Central Chilean Power Grid (GRID): Nodes represent power plants, sub-
stations, taps, and junctions in the Chilean power grid. Edges represent
transmission lines, with distances in kilometers [3]. The capacity of each line
in kilovolts is also provided. Available at https://bit.ly/2OjqCPO.
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– Lawrence Berkeley National Laboratory network data (LBL): A graph of
computer network traffic, which includes counts of the number of connec-
tions between machines over time. Counts are inverted for use as distances.
Available at https://bit.ly/2PQbOsr.

– Northeast US Road Network (NEUS): Nodes are intersections in the north-
eastern part of the United States, interconnected by roads (edges), with
weights corresponding to distance in kilometers. Available at https://bit.
ly/2QWcug9.

– DBLP coauthorship graph (DBLP): This is a co-authorship network [1]. We
invert the number of co-authored papers to create a distance (rather than
similarity) between the associated authors. Available at https://bit.ly/

3fytXFS.

D Number of Constraints

In Figure 1, we illustrate the number of constraints used by PATHATTACK and
the baseline algorithms. In over 99% of experiments, the number of constraints
used by PATHATTACK is less than 5% of the number of edges, and in the largest
graphs (PA-ROAD, NEUS, DBLP) it is tens of thousands of times smaller.
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Fig. 1. Total number of constraints used to approximate the optimal solution to Force
Path Cut. Results are shown for the two variants of PATHATTACK and the two baselines.
Bar height indicates the number of paths explicitly considered as a proportion of the
number of edges in the graph. Error bars denote standard errors. Results are shown for
synthetic networks (top row), real networks with randomly generated weights (middle
row), and real weighted networks (bottom row). In all cases, the number of constraints
used by PATHATTACK is less than 10% of the number of edges, and in most cases is several
orders of magnitude smaller. A small number of constraints has positive implications
for both the running time and the approximation bound.


