
Jordan Thayer (UNH) Optimistic Search – 1 / 45

Faster than Weighted A*:
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■ Finding optimal solutions is prohibitively expensive.
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■ Finding optimal solutions is prohibitively expensive.
■ Greedy solutions can be arbitrarily bad.
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■ Finding optimal solutions is prohibitively expensive.
■ Greedy solutions can be arbitrarily bad.
■ Weighted A* bounds suboptimality.
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■ Finding optimal solutions is prohibitively expensive.
■ Greedy solutions can be arbitrarily bad.
■ Weighted A* bounds suboptimality.
■ Optimistic Search: faster search within the same bound.
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■ Algorithm Overview
Run weighted A∗ with a weight higher than the bound.
Expand additional nodes to prove solution quality.

■ The Greedy Search Phase
■ The Cleanup Phase
■ Empirical Evaluation
■ Further Observations
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■ A best first search expanding nodes in f order.
■ f(n) = g(n) + h(n)

If h(n) is admissible, returns optimal solution.
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■ A best first search expanding nodes in f ′ order.
■ f ′(n) = g(n) + w · h(n)

Solution quality bounded by w for admissible h(n).
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1. Run weighted A∗ with a high weight.
2. Expand node with lowest f value after a solution is found.

Continue until w · fmin > f(sol)
This ’clean up’ guarantees solution quality.
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1. Run weighted A∗ with a high weight.
2. Expand node with lowest f value after a solution is found.

Continue until w · fmin > f(sol)
This ’clean up’ guarantees solution quality.
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■ Algorithm Overview
■ The Greedy Search Phase

Weighted A∗ becomes faster as the bound grows.
Weighted A∗ is often better than the bound.

■ The Cleanup Phase
■ Empirical Evaluation
■ Further Observations
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■ wA∗ returns solutions faster as the bound increases.
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■ wA∗ returns solutions better than the bound.

Four-way Grid Pathfinding (Unit cost)
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■ Algorithm Overview
■ The Greedy Search Phase
■ The Cleanup Phase

Expand additional nodes in f order.
Quit when the solution is provably within the bound.

■ Empirical Evaluation
■ Further Observations
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■ p is the deepest node on an
optimal path to opt.

■ fmin is the node with the
smallest f value.
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■ p is the deepest node on an
optimal path to opt.

■ fmin is the node with the
smallest f value.

f(p) ≤ f(opt)
f(fmin) ≤ f(p)

fmin provides a lower bound on solution cost.

Determine fmin by priority queue sorted on f
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■ p is the deepest node on an
optimal path to opt.

■ fmin is the node with the
smallest f value.

f(p) ≤ f(opt)
f(fmin) ≤ f(p)

fmin provides a lower bound on solution cost.

Determine fmin by priority queue sorted on f

Optimistic Search: Run a greedy search
Expand fmin until w · fmin ≥ f(sol)
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■ Algorithm Overview
■ The Greedy Search
■ Guaranteeing solution quality
■ Empirical Evaluation

Results in several domains.
■ Further Observations
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■ Sliding Tile Puzzles
Korf’s 100 15-puzzle instances (add date)

■ Traveling Salesman
Unit Square
Pearl and Kim Hard (add date)

■ Grid world path finding
Four-way and Eight-way Movement
Unit and Life Cost Models
25%, 30%, 35%, 40%, 45% obstacles

■ Temporal Planning
Blocksworld, Logistics, Rover, Satellite, Zenotravel

See paper for additional plots.
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Korf’s 15 Puzzles: h = Manhattan Distance
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TSP: Pearl and Kim Hard

N
o

d
e 

G
en

er
at

io
n

s 
R

el
at

iv
e 

to
 A

*

0.9

0.6

0.3

0.0

Sub-optimality bound

1.21.11.0

wA*
Optimistic



Performance of Optimistic Search

Introduction

Algorithm Overview

1: Greedy Phase

2: Cleanup Phase

Empirical Evaluation

■ Performance

Further Observations

Conclusion

Jordan Thayer (UNH) Optimistic Search – 27 / 45

Four-way Grid Pathfinding (Unit cost)
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logistics (problem 3)
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■ Algorithm Overview
■ The Greedy Search
■ Guaranteeing solution quality
■ Empirical Evaluation
■ Further Observations

Strict vs. Loose Expansion Policy
Bounded Anytime Weighted A∗
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Strict Expansion Order:

■ Algorithms like
wA∗, A∗

ǫ
, Dynamically Weighted A∗

■ Any expanded node can be shown to be within the bound at
the time of their expansion

■ Quality bound comes from this

Loose Expansion Order:

■ Algorithms like
Optimistic Search

■ No restriction on the nodes expanded initially.
■ Quality bound requires node expansion beyond the initial

solution.



Bounded Anytime Weighted A
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■ Anytime Heuristic Search:
Running weighted A∗ with a high weight
Continue node expansions after a solution is found
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■ Anytime Heuristic Search:
Running weighted A∗ with a high weight
Continue node expansions after a solution is found

■ Bounded Anytime Weighted A∗:
Running weighted A∗ with a high weight
Continue node expansions after a solution is found
Add a second priority queue allows us to converge on a

bound instead of on optimal.
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1. Run weighted A∗ with a high weight.
2. Expand node with lowest f value after a solution is found.

Continue until w · fmin > f(sol)
This ’clean up’ guarantees solution quality.
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1. Run weighted A∗ with a high weight.
2. Expand node with lowest f ′ value after a solution is found.

Continue until w · fmin > f(sol)
This ’clean up’ guarantees solution quality.
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Pearl and Kim Hard
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Optimistic Search:

■ Simple to implement.
■ Performance is predictable.
■ Current results are good, tuning could help.

Optimal greediness is still an open question.
■ Consistently better than Weighted A∗

If you currently use wA∗, you should use Optimistic
Search.
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Tell your students to apply to grad school in CS at UNH!

■ friendly faculty
■ funding
■ individual attention
■ beautiful campus
■ low cost of living
■ easy access to Boston,

White Mountains
■ strong in AI, infoviz,

networking, systems,
bioinformatics
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■ wA∗ returns solutions better than the bound.

Four-way Grid Pathfinding (Unit cost)
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Weighted A
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f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)

w · g(opt)

Therefore, g(sol) ≤ w · g(opt)



Weighted A
∗ Respects the Bound and Then Some
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f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)

w · g(opt)

g(p) + w · h(p) ≤ w · g(p) + w · h(p)
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Four-way Grid Pathfinding (Unit cost)
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Duplicates can be delayed during the greedy search phase.
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Optimistic Search(initial, bound)
1. openf ← {initial}

2. open
f̂
← {initial}

3. incumbent←∞
4. repeat until bound · f(first on openf ) ≥ f(incumbent):

5. if f̂(first on open
f̂
) < f̂(incumbent) then

6. n← remove first on open
f̂

7. remove n from openf

8. else n← remove first on openf

9. remove n from open
f̂

10. add n to closed

11. if n is a goal then
12. incumbent← n

13. else for each child c of n

14. if c is duplicated in openf then

15. if c is better than the duplicate then
16. replace copies in openf and open

f̂

17. else if c is duplicated in closed then
18. if c is better than the duplicate then
19. add c to openf and open

f̂

20. else add c to openf and open
f̂
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