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Open World Planning - Search and Rescue
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Search and Rescue Domain

Introduction . RObOt agent

B Open World B Unknown building/map layout
B Previous B Unknown victim locations
Approaches . .

B Hindsight Opt B Unknown number of victims
OH-wOW B Search time limit

Results

Conclusion
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Previous Approaches

I B Talamadupula et al. (ICAPS '09, AAAI '10, TIST '10)

B Open World ad-hoc assumption: roomEzists(x) — personEzxistsIn(x)
B Search & Rescue

M Previous

Approaches

B Hindsight Opt ] ’

OHWOW B Joshi et al. (ICRA "12)

Results based on FODD approximations
Conclusion hours of offline planning

B Optimization in Hindsight with Open Worlds (OH-wOW)
general
principled
easy to implement (and extend)
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Hindsight Optimization

Select action that maximizes expected reward.

Introduction
B Open World

M Search & Rescue
M Previous
Approaches

B Hindsight Opt

OH-wOW

reward = cumulative reward following optimal plan

Results

Conclusion
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Hindsight Optimization

Introduction

B Open World

M Search & Rescue

B Previous
Approaches

B Hindsight Opt

OH-wOW

Results

Conclusion

Select action leading to states with highest expected reward.

reward = reward of plan out of all possible plans with best
average reward over all configurations
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Hindsight Optimization

Introduction

B Open World

M Search & Rescue

B Previous
Approaches

B Hindsight Opt

OH-wOW

Results

Conclusion

Select action leading to states with highest expected reward.

reward =~ reward of plan out of all possible plans with best

average reward across sampled configurations
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Hindsight Optimization

Select action leading to states with highest expected reward.

Introduction
B Open World

g ooarch & Rescue reward =~ average reward of best plan in each sampled

Approaches Configu ration

B Hindsight Opt

OH-wOW |A|

Results V(Sl) — F min Z R(S’i7 a”i)

Conclusion (89,83,...) A:<CL1,...,CL|A|> i=1
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Optimization in Hindsight with Open Worlds
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OH-wOW Implementation for Search and Rescue

Sense
Sample
Plan
Act

Introduction

OH-wOW
M Sense
B Sample
M Plan

B Act

==

Results

Conclusion
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Sensing and Observations

Introduction

OH-wOW

B Implementation
B Sample

B Plan

B Act

Results

Conclusion

Sense
Sample
Plan
Act

==

B SLAM (ROS gmapping)
laser rangefinder
B Topological Map
rough construction
B Person Detector
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Sensing and Observations

Introduction

OH-wOW

B Implementation
B Sample

B Plan

B Act

Results

Conclusion

==

Sense

Sample
Plan

Act
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Sampling Possible Worlds

Introduction 1 . Sense =) Y
=0 O~®-
T 2. Sample 586 &
B Implementation 3 Plan
B Sense
4. Act
B Plan
B Act

Results

Conclusion

B Current Knowledge
observed
known to be true

B Expectation
prior domain knowledge
bias
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Sampling Possible Worlds

==

Sense
Sample
Plan
Act

Known Partial World State
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Sampling Possible Worlds

Sense
Sample
Plan
Act

Introduction

OH-wOW

B Implementation
B Sense

B Plan

B Act

==

Results

Conclusion Sampled “Complete” World State
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Planning in Sampled Worlds

Introduction 1 : Sense =) Y
=) O=(x-C)

OH-wOW 2. Sample ® ©.o ®
B Implementation 3 Plan
Bl Sense ]
W Sample 4. Act
W Plan |
B Act
Results
Conclusion

m Fully Known

B Deterministic

B Classical Planners or

B Domain Specific Planners
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Planning in Sampled Worlds

Sense - : i
Sample LEL &
Plan

Act

Introduction

OH-wOW

B Implementation
B Sense

B Sample

B Act

==

Results

Conclusion A Single Sample
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Acting in Sampled Worlds

Introduction

OH-wOW

B Implementation
B Sense

B Sample

B Plan

Results

==

Conclusion

Sense
Sample
Plan
Act

Execute Best Currently Available Action
maximize expected reward
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Acting in Sampled Worlds

Sense
Sample
Plan
Act

Introduction

OH-wOW

B Implementation
B Sense

B Sample

B Plan

WAt

Results

==

Conclusion
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Results
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Search and Rescue

UNH CS Offices, Pioneer 3-DX, SICK LMS500, ROS Fuerte

Introduction

OH-wOW . .

n victims found

deadline O 1 2 3

B Rescue (sim) .

B Omelette (sim) 1 minute 4 6 0 0

Conclusion 5 min utes O 7 3 O
10 minutes | 0 3 4 3

Joshi et al:
4 hours precomputation, 3 victims
constant time table lookup

OH-wOW:
no precomputation
0.18 sec avg max step time, 3 victims (256 samples)
2.7 sec avg max step time, 10 victims (256 samples)

Scott Kiesel (UNH) Open World Planning for Robots — 13 / 19



Search and Rescue

UNH CS Offices, Pioneer 3-DX, SICK LMS500, ROS Fuerte

Introduction

OH-wOW . .

n victims found

deadline O 1 2 3

B Rescue (sim) .

B Omelette (sim) 1 minute 4 6 0 0

Conclusion 5 min utes O 7 3 O
10 minutes | 0 3 4 3

OH-wOW:

B s online,
B computes the next action quickly,
B and handles the tradeoff between hard and soft goals.
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Search and Rescue in Simulation

Introduction o) 10 ©
OH-wOW g T l
- |
Results 8'
B Rescue “ 5 - —
g u | +
B Omelette (sim) ®) T I I
Conclusi 4(7; - BER
ncliusion O 0_ T ] ] ]
O
32 256 ctlr 32 256 ctlr 32 256 ctlr
none south southwest

OH-wOW:

B leverages domain specific knowledge,
B and can beat a handcoded controller.
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Omelette Domain in Simulation

Levesque (AAAI '96)

Introduction

OH-wOW

Results planning time (seconds)

:EZZEZ (sim) 3 eggs | step | 4 eggs | step

Bonet et al (IJCAI '01) | 185 - - _

Conclusion Levesque (I1JCAI '05)) 1.4 - 1,681 -
OH-wOW 129 | 052 | 76.7 | 1.57

Levesque plans are longer than OH-wOW

OH-wOW:

B s online,
B computes the next action quickly,
B and finds cheaper cost solutions.

Scott Kiesel (UNH) Open World Planning for Robots — 15 / 19



Conclusion

Conclusion
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Limitations

B Scalability of the underlying planner

Introduction

OH-WOW leverage large body of literature

Results B Calls underlying planner repetitively
Conclusion embarassingly parallel

Vul | lack : :

B Summary B Vulnerable to black swans during sampling
) Adieiisi importance sampling

B Regenerates world samples at every step
reuse samples until world "changes”

(see Yoon et al. ICAPS "10 for HO Optimizations)
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Summary

The OH-wOW framework is a:

Introduction

OLiSwOu B Fast
Resul .
= B Simple,
Conclusion
B Limitations . General’
B Online,
B Advertising .
B Approximate,
B Way of Handling Open Worlds.
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The University of New Hampshire

Tell your students to apply to grad school in CS at UNH!

Introduction

OH-wOW _
feculee friendly faculty
Conclusion B funding
o LSS B individual attention
B beautiful campus
B low cost of living
B easy access to Boston,

White Mountains
strong in Al, infoviz,
networking, systems,
bioinformatics
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