Open World Planning for Robots via Hindsight Optimization

Scott Kiesel¹, Ethan Burns¹, Wheeler Ruml¹, J. Benton², Frank Kreimendahl¹

We are grateful for funding from the DARPA CSSG program (grant H R0011-09-1-0021) and NSF (grant IIS-0812141).

Open World Planning - Search and Rescue

Introduction

Open World

Search & Rescue
Previous
Approaches
Hindsight Opt
OH-wOW
Results
Conclusion

Search and Rescue Domain

Introduction

Open World

Search & Rescue

Previous
Approaches
Hindsight Opt

OH-wOW

Results

- Robot agent
- Unknown building/map layout
- Unknown victim locations
- Unknown number of victims
- Search time limit

Previous Approaches

- Talamadupula et al. (ICAPS '09, AAAI '10, TIST '10) ad-hoc assumption: $roomExists(x) \rightarrow personExistsIn(x)$
- Joshi et al. (ICRA '12)

 based on FODD approximations
 hours of offline planning
- Optimization in Hindsight with Open Worlds (OH-wOW) general principled easy to implement (and extend)

Introduction

■ Open World

■ Search & Rescue

■ Previous

Approaches

■ Hindsight Opt

OH-wOW

Results

Conclusion

Select action that maximizes expected reward.

reward = cumulative reward following optimal plan

Introduction

- Open World
- Search & Rescue
- Previous
- Approaches
- Hindsight Opt

OH-wOW

Results

Conclusion

Select action leading to states with highest expected reward.

reward = reward of plan out of all possible plans with best average reward over all configurations

$$V^*(s_1) = \min_{A = \langle a_1, \dots, a_{|A|} \rangle} E \left[\sum_{i=1}^{|A|} R(s_i, a_i) \right]$$

Introduction

- Open World
- Search & Rescue
- Previous
- Approaches
- Hindsight Opt

OH-wOW

Results

Conclusion

Select action leading to states with highest expected reward.

reward \approx reward of plan out of all possible plans with best average reward across sampled configurations

$$\hat{V}(s_1) = \min_{A = \langle a_1, ..., a_{|A|} \rangle} \frac{E}{\langle s_2, ..., s_{|A|} \rangle} \left[\sum_{i=1}^{|A|} R(s_i, a_i) \right]$$

7

. . .

Introduction

- Open World
- Search & Rescue
- Previous
- **Approaches**
- Hindsight Opt

OH-wOW

Results

Conclusion

Select action leading to states with highest expected reward.

reward \approx average reward of best plan in each sampled configuration

$$\hat{V}(s_1) = \underbrace{E}_{\langle s_2, s_3, \dots \rangle} \left| \min_{A = \langle a_1, \dots, a_{|A|} \rangle} \sum_{i=1}^{|A|} R(s_i, a_i) \right|$$

Introduction

OH-wOW

- Implementation
- Sense
- **■** Sample
- Plan
- Act

Results

Conclusion

Optimization in Hindsight with Open Worlds

OH-wOW Implementation for Search and Rescue

Introduction

OH-wOW

■ Implementation

- Sense
- Sample
- Plan
- Act

Results

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

Sensing and Observations

Introduction OH-wOW Implementation Sense Sample Plan Act Results Conclusion

- Sense
- 2. Sample
- 3. Plan
- 4. Act

- SLAM (ROS gmapping)laser rangefinder
- Topological Map rough construction
- Person Detector

Sensing and Observations

Introduction

OH-wOW

Implementation

Sense

Sample

Plan

Act

Results

Conclusion

- 1 Sense
- 2. Sample
- 3. Plan
- 4. Act

Sensed Occupancy Grid with Topological Graph Overlayed

Sampling Possible Worlds

Introduction OH-wOW Implementation Sense Sample Plan Act Results Conclusion

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

- Current Knowledge observed known to be true
- Expectation prior domain knowledge bias

Sampling Possible Worlds

Introduction

OH-wOW

- Implementation
- Sense
- Sample
- Plan
- Act

Results

Conclusion

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

Known Partial World State

Sampling Possible Worlds

Introduction OH-wOW Implementation Sense Sample Plan Act Results Conclusion

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

Sampled "Complete" World State

Planning in Sampled Worlds

Introduction OH-wOW

- Implementation
- Sense
- Sample
- Plan
- Act

Results

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

- Fully Known
- Deterministic
- Classical Planners or
- Domain Specific Planners

Planning in Sampled Worlds

Introduction

OH-wOW

- **■** Implementation
- Sense
- Sample
- Plan
- Act
- Results

Conclusion

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

A Single Sample

Acting in Sampled Worlds

Introduction OH-wOW Implementation Sense Sample Plan Act Results Conclusion

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

■ Execute Best Currently Available Action maximize expected reward

Acting in Sampled Worlds

Introduction

OH-wOW

- **■** Implementation
- Sense
- Sample
- Plan
- Act

Results

- 1. Sense
- 2. Sample
- 3. Plan
- 4. Act

Introduction

OH-wOW

Results

- Rescue
- Rescue (sim)
- Omelette (sim)

Conclusion

Results

Search and Rescue

UNH CS Offices, Pioneer 3-DX, SICK LMS500, ROS Fuerte

victims found					
deadline	0	1	2	3	
1 minute	4	6	0	0	
5 minutes	0	7	3	0	
10 minutes	0	3	4	3	

· · · atima farmal

Joshi et al:

4 hours precomputation, 3 victims constant time table lookup

OH-wOW:

no precomputation

- 0.18 sec avg max step time, 3 victims (256 samples)
- 2.7 sec avg max step time, 10 victims (256 samples)

Search and Rescue

Introduction

OH-wOW

Results

Rescue
Rescue (sim)
Omelette (sim)

Conclusion

UNH CS Offices, Pioneer 3-DX, SICK LMS500, ROS Fuerte

victims tound					
deadline	0	1	2	3	
1 minute	4	6	0	0	
5 minutes	0	7	3	0	
10 minutes	0	3	4	3	

...ationa fa...ad

OH-wOW:

- is online,
- computes the next action quickly,
- and handles the tradeoff between hard and soft goals.

Search and Rescue in Simulation

OH-wOW:

- leverages domain specific knowledge,
- and can beat a handcoded controller.

Omelette Domain in Simulation

OH-wOW

Results

Rescue

■ Rescue (sim)

■ Omelette (sim)

Conclusion

Levesque (AAAI '96)

	planning time (seconds)			
	3 eggs	step	4 eggs	step
Bonet et al (IJCAI '01)	185	-	-	-
Levesque (IJCAI '05))	1.4	-	1,681	-
OH-wOW	12.9	0.52	76.7	1.57

Levesque plans are longer than OH-wOW

OH-wOW:

- is online,
- computes the next action quickly,
- and finds cheaper cost solutions.

Introduction

OH-wOW

Results

Conclusion

- **■** Limitations
- Summary
- Advertising

Limitations

Introduction
OH-wOW
Results
Conclusion
Limitations
Summary
Advertising

- Scalability of the underlying planner leverage large body of literature
- Calls underlying planner repetitively embarassingly parallel
- Vulnerable to black swans during sampling importance sampling
- Regenerates world samples at every step reuse samples until world "changes"

(see Yoon et al. ICAPS '10 for HO Optimizations)

Summary

Introduction

OH-wOW

Results

Conclusion

Limitations

Summary

Advertising

The OH-wOW framework is a:

- Fast,
- Simple,
- \blacksquare General,
- Online,
- Approximate,
- Way of Handling Open Worlds.

The University of New Hampshire

Introduction

OH-wOW

Results

Conclusion

- Limitations
- **■** Summary
- Advertising

Tell your students to apply to grad school in CS at UNH!

- friendly faculty
- funding
- individual attention
- beautiful campus
- low cost of living
- easy access to Boston,White Mountains
- strong in AI, infoviz, networking, systems, bioinformatics