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Abstract

Beam search is a popular satisficing heuristic search algo-
rithm, but increasing the beam width sometimes causes the
algorithm to return a worse solution. A recent variant of
beam search, monobead, guarantees nonincreasing solution
cost with increasing beam width. However, the monotonic-
ity of monobead sometimes comes at the price of increased
cost and time for small beam widths. In this paper, we ex-
plore two algorithmic variants that lie between beam search
and monobead. We find that, as hoped, our hybrids of beam
and monobead can often find solutions with better cost than
monobead and typically have more monotonic behavior than
bead. This work improves our understanding of the price of
monotonicity in beam search.

Introduction
Beam search (Bisiani 1987) is a popular satisfying heuristic
search algorithm that can be used to solve problems that are
too large to solve with more exhaustive best-first search al-
gorithms. It proceeds as breadth-first search, except that at
every depth level of the search, given a width parameter w,
beam search selects the w best children of the nodes at the
previous level and discards all the rest. This leads to an al-
gorithm that is neither complete nor optimal, but can often
find solutions to problems that would be infeasible to solve
with more exhaustive search methods.

However, beam search also suffers from the problem that
providing a wider beam may lead the algorithm to discard
nodes that were explored at smaller beam widths and re-
turn a solution that is worse than may have been found with
a smaller beam. This behavior is demonstrated in Figure
1 (drawn from (Lemons et al. 2022)), where we see beam
search providing very inconsistent solution cost on a 15-
puzzle instance as the beam width varies.

This non-monotonic behavior can be caused by cuckoo
nodes, (Lemons et al. 2022) which are nodes whose heuris-
tic values are incorrectly low. They will be selected for the
beam over nodes which may lead to better solutions, and
since there is limited space on the beam, those nodes leading
to better solutions may be lost from the search altogether.

Cohen and Beck (2019) studied the degradation of solu-
tion quality in beam search in the specific domain of neural
sequence models and address it in a domain-specific man-
ner. Vadlamudi, Aine, and Chakrabarti (2013) proposed an
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Figure 1: Solution cost as beam width varies (unit cost.)

algorithm, Incremental Beam Search, which attempts to re-
turn monotonically improving solutions in an anytime fash-
ion, but which relies on an additional parameter of a maxi-
mum depth and which is not monotonic across multiple ex-
ecutions of the algorithm with different maximum widths or
maximum depths.

Lemons et al. (2022) introduce the monobeam algorithm,
which performs a beam-style search but in a way guaran-
teed to return solutions with monotonically improving so-
lution quality as beam width increase. The set of nodes at
each level is considered to be ordered; each indexed posi-
tion is called a beam slot. The algorithm expands from and
fills the beam slots one at a time, preventing the nodes found
in higher beam slots from affecting the search order in lower
beam slots. Because of this, the algorithm is guaranteed, for
any beam width w, to return a solution with cost less than
or equal to what would be returned by monobeam with any
width less than w. In Figure 1, we see this behavior as the al-
gorithm finds a solution at a given beam width, then retains
that quality of solution for later beam widths until a better
solution is found.

It has been shown in other settings (Thayer and Ruml
2009) that in non-unit cost domains, it can be beneficial
for best-first search algorithms to search using distance-to-
go estimates (d), as opposed to cost-to-go estimates (h) in



ordering the search. Lemons et al. (2022) show that beam
search can also benefit significantly from ordering the search
on l(n) = depth(n)+ d(n) instead of f(n). They introduce
the bead and monobead algorithms, which perform signif-
icantly better than beam and monobeam in non-unit cost
domains (and are equivalent to them in unit cost domains).
Thus we focus on these algorithms in this paper.

The guarantee of monotonicity, while making beam
search easier to use, often comes with a price in terms of
solution cost. We can see in Figure 1 many points at which
bead search returns a better quality solution than monobead,
and this is true across the wide range of experiments reported
by Lemons et al. (2022). In this paper, we explore whether
it is possible to attain some of the benefits of monotonicity
while reducing the penalty paid in terms of solution cost.
An obvious approach is to select only some elements of the
beam using a monotonic selection policy. We present two
new algorithms that each embody a different way of doing
this. First, mono-floor selects the first portion of the beam
(beam slots 1 through w−n, where w is beam width) mono-
tonically but then selects the remainder of the beam using
the regular bead selection rule. And second, mono-onward
selects the first n slots of the beam as in bead but then the
remaining slots are selected using monotonic slot-based se-
lection. We study the properties and the empirical perfor-
mance of these variants on four popular search benchmarks,
using a variety of cost models in two of those domains. We
find that, as hoped, mono-onward and mono-floor often find
solutions with better cost than monobead and typically have
more monotonic behavior than bead. This work helps illumi-
nate the design space between regular and monotonic beam
searches, illustrating what is possible, providing practition-
ers with additional tools for satisficing search problems, and
clarifying possible tradeoffs between monotonicity and so-
lution cost.

Background
The reason why beam search often shows non-monotonic
behavior is because when the width is increased, new nodes
are encountered and expanded, and the children of those new
nodes may have incorrectly low cost-to-go estimates. The
children of these new nodes look more promising than others
generated lower in the beam and take a position in the next
beam, pushing out the children of the other nodes. These
nodes are termed cuckoo nodes. If such cuckoo nodes are se-
lected for the beam, the search may lose access to good qual-
ity solutions that were found by beam searches with lower
widths.

Monobeam is a beam search algorithm that, unlike regular
beam search, provides guarantees on monotonicity, i.e., the
solution found with a beam width w2 is never worse than
any solution found with a beam width w1 < w2. Its main
difference with regular beam search is that after expanding
the i-th node of the current beam, it selects the best child
among all children of the first i expanded nodes, to be in
the next beam. This selection procedure guarantees that the
nodes picked for the next beam resulted from parents in the
corresponding beam slot or lower, preventing the appearance
of cuckoo nodes and thus guaranteeing monotonicity. Proof

Algorithm 1: monobeam(start,width)
1 solutionCost←∞;
2 beam[1]← start;
3 while at least one slot in the beam has a node with f

value < solutionCost do
4 candidates← ∅, nextBeam← [];
5 for each beam slot c from 1 to width do
6 if beam[c] is a node then
7 for each child of beam[c] do
8 if f(child) < f(beam[c]) then
9 f(child)← f(beam[c]);

10 if child is a goal and f(child) <
solutionCost then

11 store as solution;
12 solutionCost← f(child);
13 else
14 add child to candidates;
15 if candidates is nonempty then
16 nextBeam[c]← remove min f -value

node from candidates;
17 beam← nextBeam;
18 return solution;

of this property of monobeam was given by Lemons et al.
(2022). Algorithm 1 shows the main core of monobeam,
where duplicate detection and solution cost pruning have
been intentionally left out to improve readability.

Duplicate detection and solution cost pruning need to
be handled with care to preserve monotonicity. Removing
a node from further consideration because it was previ-
ously encountered with a better f value might introduce
non-monotonic behavior if the node previously seen were
generated in a higher beam slot. Neither beam search nor
monobeam are complete algorithms and thus, there is no
guarantee that we will fully explore the paths available from
the first time we encountered the node. Removing the du-
plicate may cause us to fail to find a solution that can be
reached through it. Consequently, when a good solution can
be found with a beam width low enough to prevent the gen-
eration of the node at the shallower level, incrementing the
beam width might prevent finding the same solution. How-
ever, if the node previously seen at the shallower level was
generated in a lower beam slot, then the duplicate can be
safely removed because doing so does not remove any solu-
tion found through the node at the shallower level.

When a solution is found in non-unit cost domains,
there is still a possibility that a better solution may have
been available at a greater depth in the search space. Stan-
dard beam search implementations can exploit or ignore
this fact without loss of their important features. However,
monobeam must continue searching until it is certain there
are no better solutions available, because one of those deeper
solutions may have been found by a lower width search.
Monobeam can, however, use the cost of the incumbent so-
lution to prune away nodes with an f value greater than that
incumbent’s cost, so long as the heuristic is admissible and



Algorithm 2: mono-floor(start,width,n)
1 solutionCost←∞;
2 beam[1]← start;
3 while at least one slot in the beam has a node with l

value < solutionCost do
4 candidates← ∅, nextBeam← [];
5 for each beam slot c from 1 to width do
6 if beam[c] is a node then
7 for each child of beam[c] do
8 if l(child) < l(beam[c]) then
9 l(child)← l(beam[c]);

10 if child is a goal and l(child) <
solutionCost then

11 store as solution;
12 solutionCost← l(child);
13 else
14 add child to candidates;
15 if c ≤ width− n and candidates is nonempty

then
16 nextBeam[c]← remove min l-value node

from candidates;
17 for each beam slot c from width− n + 1 to width

do
18 if candidates is nonempty then
19 nextBeam[c]← remove min l-value node

from candidates;
20 beam← nextBeam;
21 return solution;

the algorithm is selecting nodes based on f values. This is
because no node will be pruned away which could lead to a
better solution, and we will still select for the same slots any
node with f value lower than the incumbent cost. However,
when searching on l values (recall l(n) = depth(n)+d(n)),
we cannot use the incumbent’s cost for pruning. We would
have to prune on f value to insure that we give the best so-
lution (not just the shallowest, which l optimizes), but our
node selection would be disrupted because we may lose
some of the nodes which would have been selected by a
lower width search based on having the best l value.

Because of the demonstrated performance of distance-to-
go in this setting, we focus our discussion and experiments
henceforth on the d-based variants of beam, monobeam, and
our new algorithms. In unit cost settings, the d-based and
h-based variants are equivalent, but we will use the names
with ‘d’ in them (bead, monobead, etc.) throughout.

Unfortunately, monobead can sometimes produce worse
solution costs than bead search for a specific beam width.
Monobead is forced to choose from a limited subset of the
nodes when filling a specific slot, rather than being able to
consider all of the nodes. While this prevents the appearance
of cuckoo nodes, it also sometimes prevents the selection of
nodes that are more promising.

Mono-Floor
We first present a hybrid approach, called mono-floor, which
merges the slot-based monotonic approach with a non-
monotonic beam-style search. (Pseudocode is presented in
Algorithm 2.) It takes two arguments: the beam width w and
a non-monotonicity parameter n. For a beam width w, beam
slots 1 through w−n are selected monotonically, that is, the
node from a given slot is expanded, its children added to a
priority queue called candidates, and the corresponding slot
in the next beam is filled using the best node in candidates
at that time. This allows us to ensure that, in this portion of
the beam, we maintain search order through each slot s as if
a search of width s were being performed, for all s ≤ w−n.
In this way, we avoid the influence of cuckoo nodes and en-
sure that we will not lose any solution that would have been
found by a search with a narrower beam width. However,
once we reach the upper n slots of the beam, we proceed to
expand all nodes from slots (w−n)+1 onward, adding their
children to candidates and then select for slots (w−n)+1
through w the minimum l−value nodes now on candidates .
This portion of the beam acts more like a standard beam
search, optimizing for l value and taking no measures to pre-
serve solutions that would have been found by a search with
a narrower beam width.

The careful preservation of search order in the first portion
of the beam means that a mono-floor search of width w will
return no worse of a solution than could have been found by
a monobead search of width w − n. It may find better so-
lutions than this bound in the non-monotonic portion of the
beam, but there is no certainty that these will be maintained
when the beam width changes. While this is not true mono-
tonic behavior across beam widths, it allows us to have some
kind of fall-back guarantee of solution quality when the up-
per portion of the beam is ill-behaved. This floor on solution
quality is what gives rise to the name mono-floor.

Figure 2 shows the behavior of mono-floor where n =
30 relative to bead search on a single instance of the 15-
puzzle. It is clear that mono-floor is not strictly monotonic.
However, there are many sequences of beam widths where
the solution quality is stable, which beam search does not
have in this instance. When a solution is found in the lower
portion of the beam, that solution is maintained in searches
with larger beam widths. However, the solution cost does
lower at some single beam widths without maintaining that
solution quality for subsequent beam widths. These are cases
where a new solution was found in the upper, non-monotonic
portion of the beam but then lost at higher beam widths.

Similar to monobeam and monobead, duplicate elimina-
tion can be done without loss of monotonicity if it is done
with attention to the slot in which a duplicate was expanded.
If we only eliminate duplicates from slots greater than or
equal to the slot at which the node was previously seen, this
will still guarantee that search order in lower slots will not
be affected by search done in higher beam slots. The imple-
mentations tested in unit cost domains used both duplicate
elimination and solution cost pruning, while the implemen-
tations using distance-to-go in non-unit cost domains used
only duplicate elimination but not pruning based on solution
cost.
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Figure 2: Solution cost as beam width varies (unit cost.)

Also like monobead, in non-unit-cost domains mono-floor
cannot terminate immediately upon finding a solution, as
it might find a shallower solution with greater cost than a
mono-floor search with a narrower beam width. It can ter-
minate only when there are no nodes remaining that have
an f value lower than the cost of the current incumbent so-
lution. An f-based search could prune nodes with f values
greater than or equal to the cost of the incumbent solution.
The pruning would still be guaranteed not to remove a solu-
tion that would be found at a lower beam width. However,
when using distance-to-go, we cannot prune in this way.

Experimental Results
We implemented all algorithms in C++ 1 and tested their be-
havior on several classic search benchmarks. Each algorithm
was run with beam widths 30, 100, 300, 1000, 3000, 10000,
30000, and 100000 for results shown in Figures 4 and 5, and
all widths 1 through 1000 for results in Table 1. Algorithms
were given a memory limit of 7.5GB. We tested mono-floor
with n values of 30, 100, 300, and w

2 , where beam width is
w.

The sliding tile puzzle experiments use five cost models:
unit cost, where the cost of moving any tile is 1; heavy cost,
moving tile numbered t costs t; sqrt cost, moving tile t costs√
t; inverse cost, 1/t; reverse cost, moving tile t costs 16− t.

The cost-to-go heuristic was a weighted version of the Man-
hattan distance in which each tile’s Manhattan distance is
multiplied by the cost of moving that tile. Our implemen-
tation expands nodes at a rate of approximately 1.5 million
nodes per second. The standard Korf (1985) 100 15-puzzles
were used in all cost models.

For testing on the pancake problem, 50 random instances
of pancake problems with stacks of 20, 50, and 70 pancakes
were used. The gap heuristic (Helmert 2010) was used by all
algorithms.

In the blocks world domain, we tested on 100 random in-
stances with 20 blocks total, with two different action mod-
els: one in which blocks are directly moved to a stack as

1Code available at https://github.com/snlemons/search.

an action (‘blocks world’) and one in which picking up
and putting down blocks each use an action, so therefore
the branching factor is smaller and plans are longer (‘deep
blocks world’).

Across nearly all domains tested (displayed in Figure 4),
mono-floor with all values of n provided solutions with av-
erage costs between those provided by bead and monobead.
This includes finding solutions better than bead in the heavy
cost 20-pancake problem, and some mono-onward configu-
rations giving the best solutions overall at a few beam widths
in 50-pancake and 70-pancake problems. Given that the only
guarantee on mono-floor’s solution quality is that it will re-
turn solutions at least as good as monobead run with width
w−n, this demonstrates that a significant benefit in solution
quality is being provided by the non-monotonic portion of
the beam.

Solutions provided from the non-monotonic portion of the
beam can reduce the monotonicity of mono-floor at least
some of the time, as seen in Figure 2. To quantitatively
measure the monotonicity of each algorithm, we ran the al-
gorithms using beam widths of 1 through 1000 and then
computed Kendall’s τ rank correlation statistic between the
beam width used and the solution cost returned (Kendall
1955). This statistic compares the solution costs at all pairs
of beam widths and computes the probability that a pair is in
non-increasing order.1 We then calculated the mean of these
measurements across all instances tested in that domain. Ta-
ble 1 presents the results of this analysis. For bead search in
most domains, there is significant non-monotonic behavior.
The general trend of increasing solution quality leads to a
generally positive correlation, and in some settings it is very
high, such as unit and heavy pancake and heavy and square
root cost tiles. Across all domains, mono-floor with n = w

2
provided as good a rank correlation as bead or higher. Mono-
floor with n = 30 consistently provided near-perfect rank
correlation, indicating a very high amount of monotonic-
ity. When n = 100, mono-floor often provided significantly
higher monotonicity than bead, but occasionally was equal
to bead or slightly lower, such as in heavy and square root
cost tiles and the unit 20-pancake problem. Mono-floor with
n = 300 is even less consistent and in several settings has
a lower rank correlation than any of the algorithms, show-
ing that there is a limit to how far we can safely extend the
non-monotonic portion of the beam.

Mono-Onward
It is likely that a practitioner does not need monotonicity
throughout the entire range of beam widths. For example,
perhaps the minimum beam width that will be considered is
100. There is no reason, then, to pay the price of monotonic-
ity for those first 100 slots. This leads us to mono-onward,
in which the first n slots of the beam are selected from all
children of the first n parents, as in standard beam search,
and then the remainder are expanded and selected one slot

1That is to say, we compute a variant of τ in which ties are
counted as concordant rather than discordant. Furthermore, we
counted the cost of a run that fails to find a solution as the max-
imum solution cost of any width + 1.



bead mono-floor mono-onward
n=w

2 n=30 n=100 n=300 n=w
2 n=30 n=100 n=300

tiles (unit) 0.76 0.83 0.98 0.90 0.78 0.77 1.00 0.98 0.93
tiles (heavy) 0.93 0.95 0.98 0.93 0.91 0.95 1.00 0.99 0.98
tiles (sqrt) 0.95 0.95 0.99 0.94 0.91 0.95 1.00 0.99 0.98
tiles (reverse) 0.88 0.95 0.99 0.96 0.89 0.91 1.00 0.99 0.97
tiles (inverse) 0.84 0.94 0.99 0.95 0.89 0.91 1.00 0.99 0.97
20pancake (unit) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20pancake (heavy) 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20bw 0.84 0.88 0.96 0.90 0.82 0.80 1.00 0.98 0.93
20bwdp 0.77 0.87 0.97 0.90 0.82 0.75 1.00 0.98 0.88

Table 1: Rank correlation measurements across domains.
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Figure 3: Solution cost as beam width varies (unit cost.)

at a time for the remainder of the beam. (As in mono-floor,
n refers to the number of slots selected non-monotonically.)
Pseudocode is presented in Algorithm 3. Mono-onward is
guaranteed to be monotonic for widths ≥ n but, like regu-
lar beam search, has no guarantee on performance for widths
below n. The algorithm can benefit from the effectiveness of
standard beam search in the lower beam slots, while being
careful not to lose good solutions for beam widths greater
than n. This could allow a practitioner who knows that a
solution can often be found by standard beam search with
width n, to then assign more resources to the search and
know it will improve upon what would be found by beam
search with width n.

Figure 3 shows the behavior of mono-onward for a fixed n
of 50, as compared to standard beam search. We see that for
beam widths lower than 50, it is as non-monotonic as regular
beam search. However, for beam widths higher than 50 it
demonstrates perfectly monotonic behavior. It is noteworthy
that there are beam widths lower than 50 where it returns
solutions better than the one returned at beam width 50. If
the n value were set to one of these, that solution would
provide the value for the starting flat portion of the graph,
but that value could be different for each problem instance
and is not necessarily known in advance.

For duplicate elimination, mono-onward treats all slots 1

through n as being the same slot so duplicates can be elim-
inated based on a past node found anywhere in this range.
For slots n + 1 through w, the usual monobead duplicate
elimination rules are applied, where a duplicate can only be
eliminated based on a node which was expanded from a slot
less than or equal to the current one.

As with monobead and mono-onward, in non-unit cost
domains mono-onward cannot terminate after finding the
first solution, but must continue until no nodes remain with
f value less than the incumbent solution’s. Likewise, prun-
ing nodes based on the cost of an incumbent solution could
be done without losing monotonicity guarantees if the algo-
rithm was ordering nodes based on f values, but is not used
when ordering nodes on l values.

Experimental Results
We tested mono-onward on all domains listed in the previous
section, with n values of 30, 100, 300, and w

2 . Results are
displayed in Figure 5 and Table 1.

Mono-onward with all values of n generally provides so-
lutions with costs between those of bead and monobead
across all domains tested, with one exception where it is
worst and one exception where it is best. In the unit cost
20-pancake problem (Figure 5f), there are two beam widths
where mono-onward with n = w

2 provides the worst solu-
tion qualities and at one of these beam widths mono-onward
with n = 100 ties with it for these worst quality solutions.
At the lowest beam width (30), mono-onward with n = w

2
likely suffers from not having a large enough width devoted
to either of its search strategies to provide a good solution.
At the third beam width (300), there may be some instances
where the non-monotonic portion of the beam uses a width
which performs poorly for standard beam search, and the
monotonic portion is too constrained by its selection rules to
find a better solution. We could see this sort of stall in solu-
tion quality due to the n value being at a poorer beam width
earlier in Figure 3, where the solution cost flattened out to
the solution found at beam width 50 (because n = 50 in that
execution), and it took significant extra width to reach a so-
lution as good as some of those found at lower beam widths.

Mono-onward with a non-fixed n value provides no guar-
antees on monotonicity, because the pool of nodes available
in the slot-based upper portion of the beam will be impacted
by the nodes in the non-monotonic lower portion of the



10 2 10 1 100

Average time (log)

102

6 × 101

2 × 102

Av
er

ag
e 

co
st

 (l
og

)

monobead
mono-floor(n=w/2)
mono-floor(n=30)
mono-floor(n=100)
mono-floor(n=300)
bead

(a) 15-puzzle (unit cost)

10 2 10 1 100 101

Average time (log)

103

4 × 102

6 × 102

2 × 103

Av
er

ag
e 

co
st

 (l
og

)

monobead
mono-floor(n=w/2)
mono-floor(n=30)
mono-floor(n=100)
bead
mono-floor(n=300)

(b) 15-puzzle (heavy cost)

10 2 10 1 100

Average time (log)

103

2 × 102

3 × 102

4 × 102

6 × 102

Av
er

ag
e 

co
st

 (l
og

)

monobead
mono-floor(n=w/2)
mono-floor(n=30)
mono-floor(n=100)
mono-floor(n=300)
bead

(c) 15-puzzle (sqrt cost)

10 2 10 1 100 101

Average time (log)

103

4 × 102

6 × 102Av
er

ag
e 

co
st

 (l
og

)

monobead
mono-floor(n=w/2)
mono-floor(n=30)
mono-floor(n=100)
bead
mono-floor(n=300)

(d) 15-puzzle (reverse cost)

10 2 10 1 100 101

Average time (log)

2 × 101

3 × 101

4 × 101

Av
er

ag
e 

co
st

 (l
og

)

monobead
mono-floor(n=w/2)
mono-floor(n=30)
bead
mono-floor(n=100)
mono-floor(n=300)

(e) 15-puzzle (inverse cost)

10 3 10 2 10 1 100 101

Average time (log)

18.95

19.00

19.05

19.10

19.15

Av
er

ag
e 

co
st

bead
mono-floor(n=300)
mono-floor(n=100)
mono-floor(n=30)
monobead
mono-floor(n=w/2)

(f) 20 pancake problem (unit cost)

10 2 10 1 100 101 102

Average time (log)

49.0

49.5

50.0

50.5

51.0

Av
er

ag
e 

co
st

bead
mono-floor(n=w/2)
mono-floor(n=300)
monobead
mono-floor(n=30)
mono-floor(n=100)

(g) 50 pancake problem (unit cost)

10 1 100 101 102

Average time (log)

69

70

71

72

73

Av
er

ag
e 

co
st

bead
mono-floor(n=300)
mono-floor(n=100)
mono-floor(n=30)
mono-floor(n=w/2)
monobead

(h) 70 pancake problem (unit cost)

10 2 10 1 100 101

Average time (log)

25

30

35

40

45

50

55

60
Av

er
ag

e 
co

st
monobead
mono-floor(n=w/2)
mono-floor(n=30)
mono-floor(n=100)
bead
mono-floor(n=300)

(i) 20 blocks world (unit cost)

10 2 10 1 100 101

Average time (log)

50

60

70

80

90

100

Av
er

ag
e 

co
st

monobead
mono-floor(n=w/2)
mono-floor(n=30)
bead
mono-floor(n=100)
mono-floor(n=300)

(j) 20 deep blocks world (unit cost)

10 3 10 2 10 1 100 101

Average time (log)

189

190

191

192

193

194

195

196

197

Av
er

ag
e 

co
st

bead
mono-floor(n=300)
mono-floor(n=30)
mono-floor(n=100)
mono-floor(n=w/2)
monobead

(k) 20 pancake problem (heavy cost)

Figure 4: Time versus cost as beam width is varied.
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(c) 15-puzzle (sqrt cost)
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(d) 15-puzzle (reverse cost)
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Figure 5: Time versus cost as beam width is varied.



Algorithm 3: mono-onward(start,width, n)
1 solutionCost←∞;
2 beam[1]← start;
3 while at least one slot in the beam has a node with l

value < solutionCost do
4 candidates← ∅, nextBeam← [];
5 for each beam slot c from 1 to n do
6 if beam[c] is a node then
7 for each child of beam[c] do
8 if l(child) < l(beam[c]) then
9 l(child)← l(beam[c]);

10 if child is a goal and l(child) <
solutionCost then

11 store as solution;
12 solutionCost← l(child);
13 else
14 add child to candidates;
15 for each beam slot c from 1 to n do
16 if candidates is nonempty then
17 nextBeam[c]← remove min l-value node

from candidates;
18 for each beam slot c from n+1 to width do
19 if beam[c] is a node then
20 for each child of beam[c] do
21 if l(child) < l(beam[c]) then
22 l(child)← l(beam[c]);
23 if child is a goal and l(child) <

solutionCost then
24 store as solution;
25 solutionCost← l(child);
26 else
27 add child to candidates;
28 if candidates is nonempty then
29 nextBeam[c]← remove min l-value node

from candidates;
30 beam← nextBeam;
31 return solution;

beam. In spite of this, mono-onward with n = w
2 provides

greater rank correlation values than bead in the majority of
domains tested, as seen in Table 1. Even more noteworthy,
mono-onward with fixed n values (30, 100, and 300) pro-
vided consistent improvement in rank correlation over bead
search in all cases except unit 20-pancake, where all algo-
rithms had a score of 1.00. There is a typically gradual de-
crease in rank-correlation scores as the n value increases,
because of two factors. First, as n increases, more of the ex-
ecutions (all those with w < n) will be using a standard
beam search approach. Second, the solution found at beam
width n may be worse than some solution found earlier. This
will cause one or more plateaus in solution quality until the
algorithm discovers a new solution in the monotonic portion
of the beam. We can see an example of this in Figure 3 for
beam widths 50 through around 300.

Discussion
The amount of the beam dedicated to monotonic search or
standard beam search has an impact both on solution qual-
ity and monotonicty, but it is not clear in advance what the
tradeoff will be for a given value of n. Users of these algo-
rithms will likely want to be able to balance these qualities
more precisely for their specific setting. There may be useful
work to be done around tuning the n parameter or provid-
ing guidance on what n value is appropriate for a particular
problem.

It is not well known when beam search is more or less
inclined toward non-monotonic behavior. Its monotonicity
varies across domains, cost models, and even specific in-
stances. Future work should be done to better understand
what features of a domain, problem, or beam width lead to
non-monotonic behavior.

Conclusions
Given the lack of scalability of optimal heuristic search,
satisficing methods such as bead and monobead are vitally
important for enabling applications. We have shown that it
is possible to design algorithms that lie between bead and
monobead. Both mono-floor and mono-onward provide a
parameter that allows the user adjust their degree of mono-
tonicity. Our experimental study showed that this indeed re-
duces the price of monotonicity in practice, resulting in the
hoped-for tradeoff between monotonicity and cost. In the
case of mono-floor, we can be sure not to fall back lower
than the ‘floor’ of a solution found by monobead using width
w − n. And in mono-onwards, we are certain there will be
no increase in solution cost for all beam widths greater than
n. These algorithms serve as additional examples of variants
of beam search for which, unlike the original beam search,
some kind of behavior guarantee can be made.
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