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ABSTRACT

REAL-TIME PLANNING AS DECISION-MAKING UNDER UNCERTAINTY

by

ANDREW MITCHELL

University of New Hampshire, December, 2018

In real-time planning, an agent must select the next action to take within a fixed time bound.

Many popular real-time heuristic search methods approach this by expanding nodes using time-

limited A* and selecting the action leading toward the frontier node with the lowest f value. In this

thesis, we reconsider real-time planning as a problem of decision-making under uncertainty. We

treat heuristic values as uncertain evidence and we explore several backup methods for aggregating

this evidence. We then propose a novel lookahead strategy that expands nodes to minimize risk,

the expected regret in case a non-optimal action is chosen. We evaluate these methods in a simple

synthetic benchmark and the sliding tile puzzle and find that they outperform previous methods.

This work illustrates how uncertainty can arise even when solving deterministic planning problems,

due to the inherent ignorance of time-limited search algorithms about those portions of the state

space that they have not computed, and how an agent can benefit from explicitly meta-reasoning

about this uncertainty.
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CHAPTER 0

Introduction

In some AI applications, such as user interfaces or fixed-wing aircraft control, it is undesirable

for the system to exhibit unbounded pauses between actions. In real-time planning, an agent is

required to select its next action within a fixed time bound. The agent attempts to minimize

its total trajectory cost as it incrementally plans toward a goal. Many real-time heuristic search

methods have been developed for this problem setting. Many of them follow the basic three-phase

paradigm set down in the seminal work of Korf (1990): 1) starting at the agent’s current state,

expand a fixed number of nodes to form a lookahead search space (LSS), 2) use the heuristic values

of the frontier nodes in combination with the path costs incurred to reach them to estimate the

cost-to-goal the agent would incur if it selected each possible currently-applicable action, and then

3) commit to the lowest cost action and, to prevent the agent from cycling if it returns to the same

state in the future, update the heuristic values of one or more states in the LSS. For example, in

the popular and typical algorithm LSS-LRTA* (Koenig & Sun, 2008), the lookahead in step one is

performed using A* (Hart, Nilsson, & Raphael, 1968), the value estimates in step two are implicitly

calculated for each node as the minimum f value among its successors (the ‘minimin’ backup), and

the learning in step three is performed by updating h values for all nodes in the LSS using a variant

of Dijkstra’s algorithm.

However, this paradigm is not necessarily optimal. This becomes apparent when one considers

the problem from the perspective of decision-making under uncertainty. For example, Pemberton

and Korf (1994) observed that, given an LSS, the optimal decision for the agent is not, in general,

to head toward the frontier node with the lowest f value. Figure 0-1 shows their example LSS, in

which an agent located at node A must decide whether to transition to node B1 or B2. All nodes

at depth three after the Ci are goals. Recall that the principle of rationality demands that an
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Figure 0-1: Should an agent at A move to B1 or B2?

f(α)

belief about α

belief about β

f(β)

Figure 0-2: Should an agent expand nodes under α or β?

agent take an action that minimizes expected cost. All subsequent edge costs xi are unknown but

uniformly distributed between 0 and 1, so h = 0 for all nodes Ci. C1 is the node of lowest f (namely

0.79) so a typical real-time search would move to B1. However, moving to B2 minimizes the agent’s

expected cost, because in the next iteration the costs x5, ..., x8 will be revealed and the expected

minimum of these four values (0.2) yields a total expected cost for B2 (1.06) less than that of B1

(1.066, see Pemberton, (1995), eq. 1 for details). In other words, having many good-looking options

can be statistically better than a single great-looking option. This problem does not arise in the

off-line planning setting, as there the agent can discover all relevant edge costs before committing

to an action.

Furthermore, it was noted by Mutchler (1986) that A*’s policy of expanding the frontier node

with the lowest f value is not, in general, the optimal way to make use of a limited number of node

expansions. If we view the agent as facing a decision about which currently-applicable action is

best, it is sometimes beneficial to gain knowledge by expanding a different node.

For a simple example, consider the situation depicted in Figure 0-2, in which we represent the

agent’s current belief about the remaining plan cost that will be incurred by committing to an

action by a probability distribution over possible costs. The expected value is denoted by f̂(·).

2



If the agent is quite certain about the value of action α but quite uncertain about the value of a

different action β, then expanding frontier nodes under α can be less useful than expanding under

β, even if β is believed to have a higher expected cost. In other words, it can be more important

to explore the possibility that a poorly-understood option might in fact be great than to nail down

the exact value of a well-understood good-looking option. This problem does not arise in off-line

optimal search, in which every node whose f value is less than the optimal solution cost must be

expanded.

Although these insights seem powerful, they have not yet resulted in generally-applicable real-

time search algorithms. In this thesis, we advance toward practical algorithms that realize the

reasoning under uncertainty perspective. We study strategies for expanding nodes and methods for

backing up their information for decision making, culminating in a novel general-purpose method

for real-time search that we call Nancy. Experimental results in random trees and in the sliding

tile puzzle suggest that Nancy makes better use of limited node expansions than conventional

real-time search algorithms. While additional work will be required to engineer an optimized

implementation, Nancy already shows how reasoning about uncertainty can play an important role

in resource-constrained search even for deterministic domains.

0.1 Previous Work

Mutchler (1986) raises the question of how best to allocate a limited number of expansions. His

analysis considers complete binary trees of uniform depth where each edge is randomly assigned

cost 1 with probability p and cost 0 otherwise. He proved that a minimum f expansion policy

is not optimal for such trees in general, but that it is optimal for certain values of p and certain

numbers of expansions. It is not clear how to apply these results to more realistic state spaces.

Pemberton and Korf (1994) point out that it can be useful to use different criteria for action se-

lection versus node expansion. They use binary trees with random edge costs uniformly distributed

between 0 and 1 and use a computer algebra package to generate code to compute exact f̂ values

under the assumption that only one or two tree levels remain until a goal (they call this the ‘last

incremental decision problem’). As we will discuss in more detail below, this requires representing

3



and reasoning about the distribution of possible values under child nodes in order to compute the

distribution at each parent node. They conclude that a strategy based on expected values is barely

better than the classic minimin strategy and impractical to compute for state spaces beyond tiny

trees. They also investigate a method in which the nodes with minimum f are expanded and the

action with minimum f̂ is selected and find that it performs better than using f for both.

Given the pessimism surrounding exact estimates, Pemberton (1995) proposes an approximate

method called k-best. Only the k best frontier nodes below each top-level action are used to

compute their expected values, allowing a fixed inventory of equations derived in advance to be

used to compute expected values during search. Although this approach did surpass minimin in

experiments on random binary trees, Pemberton concludes that its complexity makes it impractical.

It is also not clear how to apply these results beyond random binary trees.

Our problem setting bears a superficial similarity to the exploration/exploitation trade-off ex-

amined in reinforcement learning. However, note that our central challenge is how to make use

of a given number of expansions — we do not have to decide between exploring for more infor-

mation (by expanding additional nodes) or exploiting our current estimates (by committing to the

currently-best-looking action). DTA* (Russell & Wefald, 1991) and Mo’RTS (O’Ceallaigh & Ruml,

2015) are examples of real-time search algorithms that directly address that trade-off. Both are

based on estimating the value of the information potentially gained by additional lookahead search

and comparing this to a time penalty for the delay incurred. DTA* expands the frontier node

with minimum f and Mo’RTS expands the frontier node with minimum f̂ . Furthermore, Mo’RTS

models the potential path costs through a frontier node as a belief distribution centered around f̂ ,

and assumes that any additional search will shrink the variance of this belief. Mo’RTS uses these

beliefs to determine if it is beneficial to take an identity action to allow for more search time.

Slo’RTS (Cserna, Ruml, & Frank, 2017) is another algorithm, like Mo’RTS, that decides if it

is worth trading goal achievement time for additional search. However, Slo’RTS allows this to be

done in domains where agents cannot take identity actions. Instead, the agent is allowed to execute

sub-optimal actions to give it additional time in the next search iteration. The agent essentially

slows itself down so that it can perform additional search.
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MCTS algorithms such as UCT (Kocsis & Szepesvári, 2006) share our motivation of recognizing

the uncertainty in the agent’s beliefs and trying to generate relevant parts of the state space.

However, our domain is deterministic and we have no need to sample action transitions or perform

roll-outs. Furthermore, real-time planning can arise in applications where perhaps only a dozen

nodes can be generated per decision, a regime where MCTS algorithms can perform poorly.

Tolpin and Shimony (2012) guide MCTS rollouts such that regret is minimized, a metric which

is similar to our risk metric. They use a ‘value of information’-inspired approach, using different

sampling methods at the root of their rollouts. They find that using an ε-greedy or UCB√· policy

to sample the root and UCT for the remainder of the rollout implicitly minimizes regret better than

UCB or UCT methods would alone. However, this is done only at the root of their rollouts and

their method does not explicitly estimate regret in the same way that we estimate risk. It should

also be noted that a single one of their rollouts could expand dozens or hundreds of nodes, which

as pointed out above, could lead to poor performance in situations where expansions are limited.

Work on active learning also emphasizes careful selection of computations to refine beliefs.

For example, Frazier, Powell, and Dayanik (2008) present an approach they term ‘the knowledge

gradient’ for allocating measurements subject to noise in order to maximize decision quality. More

broadly, the notion of representing beliefs over values during learning and decision-making has been

pursued in Bayesian reinforcement learning (Bellemare, Dabney, & Munos, 2017, and references

therein).

In the same vein as this thesis, Spaniol (2018) explored alternative expansion methods in the

context of domain independent planning. Specifically, his thesis focused on implementing confidence

based expansion with the fast downward planner. Confidence can be seen as an alternative but

related metric to risk, however, it ignores the expected costs of beliefs at the frontier. This is

discussed further in chapter 2, section 1.

This thesis is largely based on work that is published for AAAI-19: Andrew Mitchell, Wheeler

Ruml, Fabian Spaniol, Jörg Hoffmann, and Marek Petrik, “Real-time Planning as Decision-making

Under Uncertainty” (2019). I was responsible for the first draft of this paper, as well as all of the

experimental results. The source code, written in C++, is available on GitHub (Mitchell, 2018).
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CHAPTER 1

Decision-making from Lookahead

Real-time planning requires us to commit to one of the actions applicable at the agent’s current state

— we call these top-level actions (TLAs). The assumption behind lookahead is that the f values of

deeper nodes are more informed than those of the current state’s immediate successors. Our belief

about the total trajectory cost we will be able to achieve by moving through a node n depends on

our beliefs about n’s successors. Therefore, after generating an LSS, we want to somehow back up

the frontier f values up the tree through their ancestors to estimate the value of each TLA. In this

section, we identify and explore four distinct backup rules, each with its own assumptions about

the unexplored portion of the state space and the behavior of the agent: minimin, Bellman, Nancy,

and Cserna. Using these, we will also see how to generalize Pemberton (1995)’s k-best method to

arbitrary trees.

1.1 Theory

The following section will cover the theory behind each of the identified backup rules. Experimental

results involving these rules will then be discussed, followed by some implementation details.

1.1.1 Minimin Backups

Minimin has been used in real-time search since the seminal work of Korf (1990). It assigns a

parent node p the minimum f among its successors S(p):

f(p) = min
c∈S(p)

f(c)

The best path to a goal must go through a successor, so the parent’s f value must be at least

as large as its best child’s. It is used implicitly in the learning phase of LSS-LRTA*, as adjusting
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states’ h values so as to satisfy the minimin equation raises them as high as possible while preserving

admissibility (Koenig & Sun, 2008). While this is a desirable property for h learning, we noted

earlier that f is a lower bound rather than an expected cost, and is thus not appropriate as a basis

for rational action selection. Minimin becomes rational and optimal when there is no uncertainty

and the frontier f values are equal to the true f∗ values. While this case is sufficiently approximated

by the end of an A* search, it does not accurately model real-time planning.

1.1.2 Bellman Backups

A Bellman backup (Bellman, 1957) explicitly estimates expected value, again as the minimum over

successors:

f̂(p) = min
c∈S(p)

f̂(c)

By using expected value, the Bellman backup recognizes the uncertainty that remains between

states at the search frontier and any goals lying beyond. It is used as the basis of action selection

by Pemberton and Korf (1994) and for both action selection and node expansion by Kiesel, Burns,

and Ruml (2015). (In its usual form with stochastic transitions, it is of course also the basis for

value iteration methods for MDPs.)

The Bellman backup has two weaknesses. First, it conveys only a scalar expected value. While

this is all that is needed for selecting a TLA, we saw in Figure 0-2 and will see again below

that having a complete belief distribution available is useful both for more sophisticated backups

and for guiding lookahead expansions. The second weakness is that it assumes that no additional

information will become available as the agent traverses the LSS. In real-time search, by the time the

agent reaches a node deeper in the tree, further lookahead will have produced additional information

that can inform its choices. In Figure 0-1, for example, Bellman will backup the expected value of

C3 (or C4) to B2, ignoring the fact that by the time the agent makes a decision at B2, it will have

the best of x5, ..., x8 to choose from, rather than just the values below C3 (or C4). Backing up from

merely one child does not capture what the agent can expect to achieve. This raises a subtle point

that, to our knowledge, has not been addressed in previous work: there is a distinction between the

lowest cost of any solution through a node f∗(n), which is independent of the agent’s resources and

7



planning algorithm, and the cost that a resource-bounded agent can actually expect to achieve by

moving through n, which we notate f@. The latter depends on many factors, including lookahead

budget, expansion strategy, and backup rule, and will likely be higher than f∗ unless we have full

knowledge of the relevant remaining state space. While off-line planners compute f∗, we need to

take the agent’s information state into account and aim to estimate f@.

1.1.3 Nancy Backups

To address the first weakness of Bellman backups, lack of a full belief distribution, we introduce

the Nancy backup, which assigns to the parent the belief of the child with the lowest expected cost:

B(p) ∈ argmin
d∈{B(c)|c∈S(p)}

E(d)

Of course, this requires that we define the agent’s belief about f@ at every frontier node. This is

not hard (O’Ceallaigh & Ruml, 2015) and we will see examples below. While Nancy backups are

very similar to Bellman backups, we will see below that having full belief distributions can yield

advantages. They do share Bellman’s weakness of assuming that no more information will become

available. As such, they are only correct if this assumption holds or if the best frontier node under

a TLA is so much better than all of the others that its belief is disjoint from theirs.

1.1.4 Cserna Backups

The second weakness of Bellman backups for real-time search, insensitivity to additional informa-

tion, was pointed out by Cserna et al. (2017). Although they did not formulate it explicitly, their

work implies a new backup rule that assumes that, by the time the agent reaches a node, it will

know the true value of each successor and be able to choose the minimum among them. Thus the

probability we assign to a value for the parent corresponds to the probability that it will be the

minimum of all the successor’s values.

P
[
f@(p) ≤ x

]
= P

[
( min
c∈S(p)

f@(c)) ≤ x
]

(1.1)

We assume that the probability of a configuration of values for the children follows our current

beliefs about them and, in our implementation, that the beliefs of the successors are independent.
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We note that the Cserna backup is associative — performing a Cserna backup directly on all

the frontier nodes beneath a TLA will result in the same belief as performing Cserna backups

recursively up the tree from the frontier to the TLA:

P
[
f@(p) ≤ x

]
= P

[
min
c∈S(p)

min
d∈S(c)

f@(d) ≤ x
]

= P
[

min
d∈S(S(p))

f@(d) ≤ x
]

= P
[

min
d∈S(...S(p))

f@(d) ≤ x
]

where the set-valued S is defined as S(A) =
⋃
a∈A S(a).

Because they take into account the distributions of all children under a node, Cserna backups

will make the correct decision in the Figure 0-1, moving to B2 because of the high chance of a low

value among the x5, ..., x8 rather than to B1 toward the frontier node with minimum f . In other

words, the expected value of a Cserna backup can be lower than the expected value of the best

child distribution, which can lead to different action selection than Bellman backups.

Cserna backups assume that all of the information about the frontier will be available when it

is reached by the agent. However, in the case of real-time search, this assumption only holds if the

lookahead is large enough to exhaust the remaining reachable state space on the next iteration.

Otherwise, Cserna backups will be optimistic about a node’s value. Spaniol (2018) also finds that

using Cserna backups results in preference for nodes with higher branching factor over nodes with

lower branching factor.

1.1.5 The k-Best Strategy

With these backup strategies defined, it becomes straightforward to generalize Pemberton (1995)’s

k-best method to arbitrary trees. His closed-form analysis of the last incremental decision problem

can be seen as a specialization of Cserna backups to his random trees. We will define the k ‘best’

frontier nodes as those having the lowest f̂ values. We backup all frontier nodes using Nancy

backups, except when two or more of the best meet at the same parent, in which case we use a

Cserna backup on them. We now consider this parent one of the ‘best’ and continue up the tree.

This method interpolates between Nancy backups (k = 1) and Cserna backups (k ≥ maximum
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number of frontier nodes under any TLA) while limiting the number of expensive Cserna backups

to at most k − 1 under each TLA.

1.2 Experiments

While each of the backup strategies has cases in which it is optimal, none of these correspond to

actual real-time search. In this section, we experimentally evaluate the backup rules to see which

perform best in practice. We use as benchmarks both random trees (following Pemberton and

Korf (1994)) and the classic 15 puzzle benchmark (following Korf (1990)). The random trees were

generated lazily yet deterministically, with branching factor 2 and edge costs uniformly distributed

between 0 and 1 (so h = 0 for all nodes). The g cost of a node is equal to the sum of the edges

taken to reach it, and every leaf is a goal. We used the 100 random 15 puzzles first generated by

Korf (1985) and the Manhattan distance heuristic. We implement beliefs numerically as discrete

distributions at 100 evenly spaced values. Cserna backups use numerical integration, collapsing

nearest values when necessary to keep the size at 100.

Our first experiment tests the same last incremental decision problem studied by Pember-

ton (1995): the LSS is the first 9 levels of a depth 10 tree. After committing to its first action, the

agent observes the last level and follows an optimal path. We would expect Cserna backups to be

optimal in this setting. We used 30,000 random trees. For minimin, the frontier values are the f

costs, which equal the g costs. For Bellman, we estimate f̂(n) as g(n) + 0.23d(n), where d(n) is

an estimate of the number of actions from n to a goal (equal to h(n) in domains with unit edge

costs). In trees, d(n) can be calculated by subtracting the depth of node n from the depth of the

tree. For Nancy and Cserna, we used both the correct beliefs, derived via Cserna backups from [0,

1] uniform distributions at the lookahead frontier, and more general (they assume nothing about

the shape of the search tree nor do they assume which distribution edge costs are drawn from)

approximate beliefs represented by Gaussians centered on f̂ :

B(n) ∼ N
(
f̂(n),

( f̂(n)− f(n)

2

)2)
(1.2)

Figure 1-1 shows the mean solution cost, relative to Cserna with correct beliefs, along with
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Figure 1-1: Backup rules with one level unknown.

95% confidence intervals. The top-to-bottom order in the legend corresponds to the left-to-right

order in the plot. The results confirm our expectations that Cserna is optimal for the last incre-

mental decision problem, that 1-best is equivalent to minimin, that k-best converges to Cserna as

k increases, and that Nancy is equivalent to Bellman. They also indicate that Gaussian beliefs

behave reasonably, leading to only a small increase in cost compared with knowing the correct

belief distribution. Figure 1-2 shows the solution costs plotted as violin plots.

However, most decisions in real-time search occur far from goals. We next test the strategies in

the context of limited lookahead in 1,000 trees of depth 100 (receding horizon control). We used

both general Gaussian beliefs and, following Pemberton (1995), beliefs that assume only one level

of the tree remains below the frontier. Because the agent can make better decisions with larger

lookaheads, we used different estimates for f̂ based on the lookahead depth or node limit, derived
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Figure 1-2: Backup rules with one level unknown. Violin plots show distribution of the data as

well as a box plot with the median and quartiles. The red horizontal lines depict mean while red

vertical lines show the 95% confidence intervals.

from pilot experiments on random trees (g(n)+ ε ·d(n) where ε varied from 0.221 to 0.295). For the

15 puzzle, f̂ was estimated using the on-line learning approach of Thayer, Dionne, and Ruml (2011)

(the ‘global average’ one-step error model for h and d). Figure 1-3 plots relative solution cost as a

function of the lookahead depth for a simple bounded depth-first lookahead. Minimin, Bellman, and

Nancy perform the same, as expected. Interestingly, Cserna with Gaussian beliefs seems to perform

poorly, even though the one level beliefs are no longer correct. Figure 1-4 shows the solution costs

incurred by using each backup rule as violin plots.

Finally, Figure 1-5 uses A* lookahead, as used in real-time search algorithms such as LSS-

LRTA*. In this case, nodes on the lookahead frontier can be at different depths. Because h(n) =

12



3 7 10
Depth Limit

0

1

2

3

4

5

6

7

8
Al

go
rit

hm
 C

os
t -

 C
se

rn
a 

On
e 

Le
ve

l B
el

ie
f C

os
t

Algorithm
Minimin
Bellman
Nancy
K-Best 3
K-Best 10
K-Best 30
Cserna
K-Best 3 One Level Belief
K-Best 10 One Level Belief
K-Best 30 One Level Belief
Cserna One Level Belief

Figure 1-3: Backup rules with depth-first lookahead on trees.

0 for all nodes, minimin is essentially backing up g values and performs poorly, while Bellman

and Nancy use more sensible expectations adjusted for depth and perform well. Gaussian beliefs

outperform one level beliefs at lower lookaheads. Figure 1-6 shows the solution costs incurred by

using each backup rule paired with A* lookahead as violin plots.

Figure 1-7 shows results on the 15 puzzle. Because this state space is a graph and the agent

can return to the same state, we use LSS-LRTA* learning, which updates h values on-line and is

guaranteed complete. Figure 1-8 shows the solution costs using these methods as violins. Overall,

the results are remarkably similar to the random trees: Bellman and Nancy are better than minimin,

and Cserna performs poorly.

We conjecture that Cserna’s assumption that each child’s true value will be revealed is too

strong, and that real search trees are better approximated by Bellman and Nancy’s assumption
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Figure 1-4: Backup rules with depth-first lookahead on trees. Violin plots show distribution of the

data as well as a box plot with the median and quartiles. The red horizontal lines depict mean

while red vertical lines show the 95% confidence intervals.

that little new knowledge will be brought to bear.

To summarize, we have seen that minimin and Cserna backups perform poorly for real-time

search in practice, while Bellman and Nancy seem to work well. When we turn our attention to

node expansion strategies, we will use Nancy backups, as they provide full belief distributions for

the strategies to use.
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Figure 1-5: Backup rules with A* lookahead on trees.

1.3 Implementation

The following section will discuss implementation details pertaining to the backup methods, the

belief model, and the random tree domain.

1.3.1 Random Tree Domain

The random tree domain can be represented as a full n-ary tree of some depth, d, where edge

costs are uniformly distributed between 0 and 1. This tree is generated lazily but deterministically.

Random trees are defined by three numbers: a branching factor, a maximum depth, and a random

seed.

Lazy but deterministic generation ensures that while different algorithms may make different
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Figure 1-6: Backup rules with A* lookahead on trees. Violin plots show distribution of the data as

well as a box plot with the median and quartiles. The red horizontal lines depict mean while red

vertical lines show the 95% confidence intervals.

decisions, or expand different nodes, the tree instance is always the same. This can be achieved by

representing states as a depth and an offset where depth is the depth of the node in the n-ary tree

and offset is an integer that uniquely identifies this node. offset could be assigned in a variety of

ways, but was implemented here as the node’s order if a breadth-first traversal of the tree were to

be performed, where the root has offset = 0. With this method of uniquely numbering states in

the tree, it is trivial to find a state’s successors or predecessor given its offset.
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Figure 1-7: Backup rules with A* lookahead on 15 puzzles.

The offset of a state’s predecessor is given by:

predcessorOffset =
offset− 1

n

where n is the branching factor of the random tree. The predecessor’s depth is always one less than

its child’s. Likewise, the offset values for all of a state’s successors is given by:

successorOffset = (offset · n) + i

where i is initially set to 1, and is incremented while it is less than or equal to the branching factor

of the tree. The successor’s depth is always one more than its parent’s.

The offsets of the states are used in conjunction with the tree’s random seed to determine

which edge cost will be incurred when transitioning into the state. This is done by systematically

generating and permuting 100,000 uniform random values between 0 and 1, using the random seed
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Figure 1-8: Backup rules with A* lookahead on 15 puzzles. Violin plots show distribution of the

data as well as a box plot with the median and quartiles. The red horizontal lines depict mean

while red vertical lines show the 95% confidence intervals.

of the tree as the random generator seed, and storing them in a lookup table when the tree instance

is initialized. Edge costs are then chosen from this lookup table by modding the state’s offset by

the size of the lookup table.

edgeCost = lookupTable[offset mod lookupTable.size()]

This method allows large random trees to be generated lazily, while ensuring that edge costs

are generated deterministically regardless of the path through the tree taken by an algorithm.
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1.3.2 Beliefs

Our beliefs about the true path cost through a node are represented using discrete distributions.

These discrete distributions are formed from the continuous distributions obtained from Equa-

tion 1.2. The continuous distribution is truncated on the left and right.

We first truncate the left of the belief at a node’s f value as this is the lowest cost that can

be incurred with a path through this node, assuming admissible heuristics, and the right at three

standard deviations (where one standard deviation is f̂−f
2 ).

Finally, the truncated distribution is sampled for 100 evenly spaced values and the probabilities

associated with these values are normalized so that they sum to 1. If the continuous distribution

has a variance of 0, then only one sample is taken, f̂ , and that sample will have a probability of 1.

Random Tree Belief

Pemberton uses a different belief than our generalized belief based around f̂ in (Pemberton, 1995).

His belief takes into account that the edge costs of the random tree are drawn from a uniform

distribution between 0 and 1. While he describes the method of obtaining these beliefs mathemati-

cally in his paper, the beliefs can also be obtained at every leaf by creating n (where n is branching

factor of the tree) uniform distributions between 0 and 1, and then shifting them by the leaf’s g

value. These continuous uniform distributions are sampled in an identical way to the generalized

beliefs based around f̂ , although these are not truncated. The n discrete distributions are then

convoluted using Cserna backups to yield the belief of the leaf.

Figure 1-9 shows the belief obtained by performing the Cserna backup on n uniform distributions

in a random binary tree instance. Probability Node 1 and 2 are the uniform distributions shifted by

the leaf’s g value, while Probability Cserna is the belief of the leaf, the result of the Cserna backup.

To verify that these are the beliefs used by Pemberton, we need only to look at the cumulative

distribution functions (CDF).

Figure 1-10 shows the CDF of the distributions from Figure 1-9. CDF Cserna is the CDF of

the belief at the leaf. This plot matches those beliefs depicted in (Pemberton, 1995), indicting that

this is a valid implementation of the beliefs used in that paper, and can be used as a means to
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Figure 1-9: Obtaining the beliefs at the leaves as described in (Pemberton, 1995).

validate its claims about k-best.

Expected Value Operator

Belief distributions have an operator that takes the weighted sum of their samples to yield the

expected value of the distribution. The expected value is used by the agent to make decisions

about which TLA to execute. This value is calculated as a weighted sum rather than from a node’s

f̂ value because some beliefs do not come directly from Equation 1.2, some are the result of the

convolution of many beliefs, such as in a Cserna backup.

Expected values of discrete distributions that do come directly from Equation 1.2 will not be

exactly equal to the mean of the original distribution, f̂ . This is due to the number of samples

used, and increasing the number of samples will reduce this error at the expense of computation

time. However, we assume that this error will have no effect on our decision making as all of our
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Figure 1-10: CDF of the belief at the leaves described in (Pemberton, 1995).

beliefs will use the same number of samples, and thus contain the same sampling based error when

calculating the expected value of the belief.

Convolution Operator

The convolution operator is how k-best backups are applied to the discrete distributions that make

up the beliefs. The operator takes two beliefs and numerically integrates over all of their samples,

returning a distribution that represents the minimum potential path costs given the two available

paths. The numerical integration is performed in the same way as Cserna backups are calculated

in (Cserna et al., 2017)(also in Equation 1.1), except instead of returning an expected value, it

returns the distribution.

The operation works by integrating over both distributions, multiplying the probabilities to-
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gether and assigning that probability to the minimum of the two potential path costs in the resulting

distribution. Pseudocode is given below.

Algorithm 1 k-Best Convolution

1: procedure Convolute(x, y) . Where x and y are discrete distributions

2: result = ∅

3: for sample1 ∈ x do

4: for sample2 ∈ y do

5: resultProb = sample1.probability ∗ sample2.probability

6: resultCost = min(sample1.cost, sample2.cost)

7: result.insert(resultCost, resultProb)

The resulting discrete distribution should have a max sample size which is equal to the minimum

size of the two distributions convoluted. If duplicate costs are encountered during integration, they

are to be merged in the resulting distribution by adding their probabilities and leaving the cost

unchanged.

Convoluting two discrete distributions in a fashion as described above will almost always result

in the new distribution having a sample size that exceeds its maximum capacity. Therefore, there

must be a way to merge neighboring samples in a distribution, so as to shrink the sample size. When

the number of samples in a discrete distribution exceeds its maximum sample size, the distribution

will need to be resized. This is done by repeatedly pairing up adjacent samples, computing the

distance between them, and merging the closest samples until the desired sample size is reached.

Samples are ordered according to their cost, and adjacent samples in the resulting list are

grouped into pairs. These pairs are then sorted based on their distance, which is just the difference

between the costs of the samples in a pair. Finally, pairs are merged, starting with those with the

smallest distance. Merging a pair means that two samples are removed from the distribution, and

a new one is added. The new sample has a probability that is the sum of the two probabilities from

the pair’s samples. The new sample’s cost is the sum of the paired sample’s costs, weighted by the
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ratio of their probabilities to the new sample’s probability.

The new probability is given by:

newProbability = P (pairsample1) + P (pairsample2)

The new cost is given by:

newCost =

P (pairsample1)

newProbability
· Cost(pairsample1)+

P (pairsample2)

newProbability
· Cost(pairsample2)

When a pair is merged, any other pairs containing either of the merged samples must be updated

to now include the new sample from the merge. This process is repeated until the number of samples

no longer exceeds the distribution’s maximum sample size.

The convolution operator can be applied iteratively on pairs of beliefs if k > 2. Convolution

order is not relevant as this operation is associative.

Figure 1-11 shows the CDF of the belief that is obtained after using the convolution operator

on two leaf nodes. CDF Node 1 and 2 are the CDFs of the beliefs at the leaf nodes, using the beliefs

described in (Pemberton, 1995). CDF Cserna is the CDF of the belief obtained by the convolution,

which in this case is the Cserna backup of two frontier nodes in a binary tree. This plot is similar

to Figure 3 in (Pemberton, 1995), which indicates that the convolution operator correctly performs

k-best backups, and that k-best is just a generalization of Cserna backups.

Figure 1-12 shows the operator being used to perform a Cserna backup of two frontier nodes

where the belief is our generalized belief based around f̂ . Probability Node 1 and 2 are the beliefs

at the leaf nodes, and Probability Cserna is the belief obtained by the Cserna backup.

Squish Operator

To guide expansion, we will need to model how additional exploration under a TLA will change

our belief. We make the assumption that additional search will change our beliefs by shrinking the

variance and leaving the mean unchanged. This is because the variance is determined by heuristic

error and heuristic error is assumed to decrease as the frontier gets closer to the goal, which is a
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Figure 1-11: CDF of the belief that is obtained from the Cserna backup of two nodes using beliefs

from (Pemberton, 1995).

result of exploring deeper into a search space. The squish operator takes a discrete distribution

and a squish factor, and moves all of the costs in the distribution towards the mean according to

the squish factor.

The squish factor can be viewed as what percentage of the way the expansion will bring the

agent to the goal. It is defined as

squishFactor = min(1,
ds

dy
)

where ds is defined as

ds =
1

averageExpansionDelay

and dy is the d value (distance heuristic, or the number of actions a node is from the goal) of the
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Figure 1-12: Belief obtained from performing Cserna backup on two nodes using generalized beliefs

based around f̂ .

best node under a TLA. Expansion delay is the number of expansions between when a node is

generated and when it is finally selected for expansion. This average can be tracked using a sliding

window that averages the expansion delays of the last 100 nodes expanded.

If more than one expansion is going to be allocated under a TLA in a single iteration, then ds

can be defined more broadly as:

ds =
n

averageExpansionDelay

Where n is the number of expansions that will be allocated under the TLA during this iteration.

Expansion delay can also be viewed as how many expansions it takes before the search makes

progress towards the goal on a single path that it is currently exploring (as search can jump

between exploring multiple different paths from iteration to iteration). Given this definition of
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Figure 1-13: Belief that has been squished to estimate how additional search will effect the belief

at the TLA.

expansion delay, ds can be viewed as the ratio of allocated expansions to the number of expansions

needed to make progress towards the goal, and is therefore an estimate of how far the allocated

expansions will actually progress towards the goal. Dividing this by how much progress is actually

needed to reach the goal (the distance to go estimate from the state being expanded, dy) yields the

squish factor, which can be 1 (search progresses all the way to the goal) or some number less than

1 and greater than 0 (search makes progress towards the goal, but does not reach it).

Once this squish factor is obtained, it can be used to update all of the costs in the discrete

distribution. If the factor is equal to 1, the belief will be a spike at the mean with probability

of 1. Otherwise the distance from all costs to the mean cost are calculated. The costs in the

distribution are then shifted towards the mean by their distance from the mean, times the squish

factor. Figure 1-13 shows the result of performing a squish on the belief of a TLA.
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1.3.3 Calculating ε for f̂

The value of ε used to calculate f̂ in the experiments (where f̂(n) = g(n) + h(n) + ε · d(n)) was

determined based on the domain used, the expansion algorithm used, and the node expansion/depth

limit or by calculating the ‘global average’ one-step error.

In the random trees domain, ε values were pulled from pilot experiments using depth-first and

A* expansion strategies. The lowest average solution costs for each expansion strategy-expansion

limit pair were taken from these results (shown in Figures 1-14 and 1-15) and divided by the depth

of the tree to get an ε value to be used for that expansion strategy and node expansion limit. If

additional ε values were needed in later experiments, they were obtained by interpolation from the

pilot experiments. The results of these pilot experiments are shown in Figures 1-14 and 1-15.

Table 1-1 shows the ε values used in the experiments for random trees at different depth expan-

sion limits when depth-first expansions were used. Likewise, Table 1-2 shows the ε values used for

various node expansion limits when A* expansion was used. The values from Table 1-2 were also

used for the expansion strategies tested in chapter 2 when they were run on random trees.

Table 1-1: Random Tree ε Values With Depth-First Expansion

Lookahead Depth Limit ε Value

3 0.27

7 0.24

9 0.23

10 0.225

When calculating ε for the sliding tile puzzle, ‘global average’ one-step error was used in place

of values drawn from pilot experiments. This is done the same way as explained by Thayer

et al. (2011).

In the random tree domain, the true distance heuristic, d∗(n), was able to be computed using

the depth of the state and the maximum depth of the random tree and can be used as d(n) in the
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Figure 1-14: Pilot experiment results on random binary tree of depth 100 with A* expansion.

f̂ calculation. However, the sliding tile puzzle uses the Manhattan distance heuristic for both h(n)

and d(n). The Manhattan distance tends to underestimate the true distance by about a fifth, and

therefore we not only have to correct h(n) for our f̂ value, but also d(n). This means that we have

to obtain two ε values: εh for h(n) and εd for d(n).

The ‘global average’ one-step error model assumes that the heuristic error is equally spread

across all edges in a graph. It is calculated when expanding nodes, taking the difference between

the parent node and its best child (lowest f value) of either f(n) for εh or d(n) for εd. These

differences can be added to a running sum and divided by the number of expansions used in the
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Figure 1-15: Pilot experiment results on random binary tree of depth 100 with depth-first expansion.

sum to yield the average errors ε̄h and ε̄d.

ε̄h and ε̄d are used to correct heuristic error in both h(n) and d(n) in an attempt to better

approximate the true heuristic values, h∗(n) and d∗(n). The corrected distance heuristic, d̂(n), is

given by:

d̂(n) =
d(n)

1− ε̄d

The corrected heuristic, ĥ(n), is given by:
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Table 1-2: Random Tree ε Values With A* Expansion

Node Expansion Limit ε Value

3 0.295

10 0.26

30 0.23

100 0.225

300 0.223

1000 0.221

ĥ(n) = h(n) + d̂(n) ∗ ε̄h

These calculations are slightly more complicated when heuristic learning is involved, such as in

LSS-LRTA*. This is because in the heuristic learning step of LSS-LRTA*, h values are propagated

back from the frontier as they are closer to the goal and thus more accurate. This means heuristic

error is only present over the distance between the frontier node and the goal. As a result, the d

values of the interior nodes have to be updated accordingly, as this value is used in conjunction

with ε̄h to correct for heuristic error incurred at each hop. However, as the heuristic value of the

interior node was passed back from its successor on the frontier, the distance over which this error

is incurred is no longer equal to that node’s d value, it is equal to the d value of the successor it

inherited h from.

For example, if y is a node on the frontier and x is a node that receives an h value from y, then

f̂(x) is given by:

f̂(x) = g(x) + h(y) +
d(y)

1− ε̄d
∗ ε̄h

So x would receive the d value of whichever frontier node it receives h from (a similar example

is given by Kiesel et al. (2015) in Figure 6). However, this cannot be done by simply overwriting

d(x) because the full distance between x and the goal is still needed for calculating ε̄d and should
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also be learned in the learning step as, like h, it is calculated using the Manhattan distance and

contains error.

Therefore, we differentiate between the distance between a node and the goal, d(n), and the

distance over which its heuristic error is incurred, derr(n). Going back to the example with nodes

x and y, f̂(x) is now calculated with:

f̂(x) = g(x) + h(y) +
derr(y)

1− ε̄d
∗ ε̄h

In this example, derr(x) = derr(y) = d(y). In general, derr(n) = d(n) when a state is generated

for the first time, however after the first learning step this may no longer be the case, as a node

may receive an h value from one of its successors (and thus receive that successor’s derr value as

well).

As d(x) is now preserved, it can be corrected in the same way as h(x) is in the learning step,

and used to calculate ε̄d in later iterations of the search. It is very important that derr(x) is not

used to calculate ε̄d, as that will not yield correct one-step error values. This also means that d̂(n)

would be updated to be:

d̂(n) =
derr(n)

1− ε̄d

Thus, in general, f̂ is given by:

f̂(x) = g(x) + ĥ(x)

f̂(x) = g(x) + h(x) + d̂(x) ∗ ε̄h

f̂(x) = g(x) + h(x) +
derr(x)

1− ε̄d
∗ ε̄h

More information on the ‘global average’ one-step error model is given by Thayer et al. (2011)

and Thayer (2012).
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1.3.4 Top Level Actions

Top level actions are the actions that are immediately available to an agent from its current state.

As the TLAs are needed to guide the rest of the search, the first expansion of a search iteration is

responsible for initializing the objects that represent the TLAs.

TLA Composition

TLAs were modeled as objects with a belief, a node pointer, and a heap. The belief of a TLA

represents the agent’s belief about the true path cost through that action. We defined this belief

about f∗ as f@ in the section on Bellman backups (see section 1.1.2). This belief is pulled up to

the TLA from the frontier in a manner that is dictated by the backup rule being used. We define

the best TLA, α, as the one with the lowest expected cost, which can be obtained by taking the

expected value of its belief distribution.

The node pointer in a TLA points to the immediate successor of the current state that is

accessible via this TLA. As we are using one-step commitment, this is the state that the agent will

transition to and begin the next search iteration at if this TLA is selected for execution.

Finally, the heap of the TLA contains all of the nodes on the open list beneath this action. The

heap is a min-heap sorted by f̂ , the expected cost through a node. This heap is used by Nancy,

Cserna, and k-best backups to find the best k nodes under a TLA where these nodes are defined as

those with the lowest f̂ values. The heap is also used to identify which node (the one with lowest

f̂) would be expanded under a TLA in risk-based expansion, and is central to calculating the risk

metric.

These heaps could be used either alongside or completely in place of a traditional open list

when using minimin or Bellman backups, or any traditional expansion strategy (A*, f̂ , breadth-

first) depending on how they are sorted. Assuming there are n TLAs, the traditional open list can

be obtained through the union of the heaps of all the TLAs.

open = heapTLA1 ∪ heapTLA2 ∪ ... ∪ heapTLAn

For example, the node to expand in A* would be found by iterating over the TLAs and selecting
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the top heap node which minimizes f (assuming all heaps are sorted by f). Minimin backups could

similarly be performed by backing up the belief of the node on the top of the heap to each TLA,

and then executing the TLA with the lowest sample in its belief (as beliefs are truncated on the

left at the node’s f value).

Pruning Duplicate Nodes

Duplicate nodes were pruned from under the inferior TLA (the TLA under which the state appears

with higher g). This process is similar to how LSS-LRTA* rewires parent pointers of nodes to point

to the parent through which the newly generated node has the lowest g value, except here we are

also removing the node from the inferior TLA’s heap and placing it into the heap of the superior

TLA. This is the same behavior as algorithms that use a single open list and rewire parent pointers.

In trees, this pruning does not impact performance of Nancy, Cserna, or k-best backups. How-

ever, in graphs (where this pruning will actually take place) it will essentially prune these sub-

optimal paths from the TLA, and they will not be reflected on the backup as the pruned node

will be removed from the top k in the heap. This pruning therefore leads to an approximation of

the Cserna, Nancy, or k-best backups, as the true backups would require duplicate states under

different TLAs to be stored in different nodes and tracked separately. Instead of performing this

perhaps costly duplicate node tracking, we opted to prune.
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CHAPTER 2

Choosing Nodes to Expand

Given an agent’s current beliefs about the f@ values of the TLAs, it is not immediately obvious

which frontier node to expand.

Mutchler (1986) showed that the most common choice, the node with lowest f , is not optimal.

Kiesel et al. (2015) propose f̂ , but as Figure 0-2 showed, taking our uncertainty into account is also

important. Because we are using Nancy backups, the only node whose expansion can change our

belief about a TLA is the one with the minimum f̂ . We will consider several candidate criteria to

use for choosing which node to expand, and we optimize them myopically. We predict, for a given

TLA, how our belief about it would change if we were to expand the best frontier node under it.

(We discuss one way of forming these predictions below.) We then evaluate the resulting belief in

the context of the other TLAs’ unchanged beliefs according to a desirability criterion, and choose

the node whose expansion gives the most desirable set of beliefs. The criteria we consider are

confidence, expected advantage, and risk. Because action selection will choose the TLA with the

lowest expected value, we will call the current such TLA the ‘best action’ or α.

2.1 Theory

We define confidence as the probability, given a set of beliefs, that the best action actually has the

lowest f@ value. Said another way, this is the probability that, given samples from each TLA’s

belief, the one from α is lowest. By expanding nodes so as to maximize our confidence, we reduce the

overlap among the leading beliefs, helping us be sure that we choose the best action. In Figure 0-2,

for example, expanding under β may well increase confidence faster than expanding under α. While

this seems sensible, note that confidence can have odd behavior. For example, an action β might

have most of its belief’s probability mass below the belief for α, making β very likely to be lower,
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yet an extreme outlier in β’s distribution could cause its f̂ to be higher than α’s. The central

weakness of confidence is that, as a probability, it does not take solution cost into account. Given

two possible expansions that equally improve the probability that α is best, it cannot distinguish

which might improve the agent’s expected cost more.

To capture this, we define expected advantage, given a set of beliefs, as the difference between

the expected costs of the best action f̂(α) and the second best action f̂(β). Note that expanding

nodes to maximize expected advantage is not the same as expanding the node with lowest f̂ — it

might be the case that expanding under β moves it further from α than expanding under α moves

it away from β. There are two serious deficiencies in this criterion, however. First, it does not take

into account the uncertainty of our beliefs and cannot distinguish between two expansions that

move f̂ values equally but reduce variance differently. Second, and related to this, in practice we

will model belief change due to search as reduction in variance, leaving f̂ unchanged. So a criterion

insensitive to uncertainty is a non-starter.

Finally, we arrive at our final criterion, risk, which we define as the expected regret in those

cases in which α was not the correct choice. For two TLAs, this is

E
[
f@(α)− f@(β)

∣∣ f@(β) < f@(α)
]
,

where E is the (conditional) expectation operator. This generalizes to additional TLAs by con-

sidering every outcome where one of the βi is better than the current α. This is done with the

TLAs’ current beliefs in concert with estimates about how each belief would change if we were to

search under its corresponding best frontier node (done by squishing the belief of the TLA we are

currently simulating expansion under). Numerically, risk is computed by taking each combination

of possible values for the best TLA, α, and the other TLAs, βi, and finding a − bi where a is a

possible f@ value in α and bi is a possible f@ value in βi where bi < a, weighted by the probability

of that combination. We do this computation once for each TLA, temporarily adjusting the belief

of that TLA to be the predicted post-expansion belief. The predicted post-expansion belief about

a TLA has the same mean as the pre-expansion belief, but a smaller variance because variance is a

function of heuristic error, which we assume will decrease as additional expansions bring the search

closer to a goal. We then expand the frontier node under the TLA whose predicted post-expansion
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belief resulted in the least risk.

Risk combines the attractive properties of confidence and advantage, being sensitive both to

the probability that α is the better decision and the regret we will experience when it is not. We

will call real-time search using Nancy backups and risk-based expansion Nancy for short.

2.2 Experiments

We now turn to an experimental evaluation of node expansion strategies. To use risk-based ex-

pansion, we require a model of how beliefs change due to search. We use a variant of the scheme

presented by Cserna et al. (2017). Note that the variance of our beliefs are based on the distance

to the goal from the frontier node from which we inherited our belief (f̂ − f , Eq. 1.2). Expanding

the node will reduce our distance to goal, thus we reduce its variance by min(1, ds/d(n)) (Eq. 2

of Cserna et al. (2017)), where d(n) is the estimated number of steps to the goal and ds is the

expansion delay (a measure of search vacillation equal to the average number of other nodes gener-

ated between when a node is generated and when it is expanded). We assume the expected value

remains unchanged (its expected behavior).

We test expansion strategies in the context of Nancy backups, given their success in the exper-

iments above. Frontier nodes are given Gaussian beliefs (Equation 1.2). We compare risk-based

expansion with conventional lookahead techniques, including breadth-first, A*, and f̂ -based ex-

pansion. Figure 2-1 shows mean solution cost relative to A* on random trees of depth 100. We

see that, for lookaheads of more than 3 nodes, breadth-first is dominated by the more flexible

strategies. f̂ lookahead is often better than A*’s f -based strategy, confirming the results of Kiesel

et al. (2015). But risk-based expansion is clearly the best, showing strong benefits over the other

strategies for lookaheads of 10 nodes and greater. Figure 2-2 shows the solutions costs incurred

using these methods as violin plots.

Figure 2-3 presents results from 15 puzzles. Breadth-first is again poor, but f̂ is not clearly

superior to f . However, aside from poor performance with a 3-node lookahead, risk-guided ex-

pansion again seems superior. For comparison, we also show the performance of LSS-LRTA*, a

popular real-time search method that uses A* expansion, minimin backups, and moves toward the
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Figure 2-1: Expansion strategies on random trees.

frontier node of lowest f . The Nancy algorithm of risk-based expansion, Nancy backups, and f̂

action selection offers significantly better performance at lookaheads of 30 and higher. Although

it may appear that risk is converging back toward A* as lookahead increases, this is because both

algorithms are approaching optimal solutions. The viloin plots for these solution costs are depicted

in Figure 2-4. Figure 2-5 shows the average optimality gap (cost over optimal) of each method as a

percentage of A*’s average gap. The results show that risk has 65% of A*’s difference from optimal

at a lookahead of 1000, and even less at 300.

To summarize, we have seen that a lookahead strategy based on minimizing risk can outperform

traditional search strategies. By using the belief distributions provided by Nancy backups, it can

determine when it may be beneficial to expand nodes other than those having the best expected

value.
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Figure 2-2: Expansion strategies on random trees. Violin plots show distribution of the data as

well as a box plot with the median and quartiles. The red horizontal lines depict mean while red

vertical lines show the 95% confidence intervals.

2.3 Implementation

The following section covers implementation details that are unique to topics discussed in this

chapter. However, implementation details discussed in chapter 1 such as the random tree domain,

beliefs using discrete distributions (specifically the squish operator which is utilized by risk based

expansion), top level actions and their open lists, and heuristic error calculation are still applicable

here. These implementation details remain unchanged for the expansion strategy experiments.
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Figure 2-3: Expansion strategies on 15 puzzles.

2.3.1 Risk Based Expansion and Nancy

Nancy is our algorithm that utilizes risk based expansion and Nancy backups. Psuedocode is given

below. The only functions that aren’t expanded on below are learnHValues(), which is the typical

reverse Dijkstra function used in LSS-LRTA* to learn heuristic values, and updateTLABeliefs(),

which just pulls the belief of the best node on every TLA’s heap up as the belief of that TLA,

according to the Nancy backup rule. The function squishBelief() is also omitted, as it was explained

in a previous section how beliefs are squished to simulate how additional search would impact the

existing belief. It should be noted that the squishing of a TLA’s belief is not a permanent operation,

and is only applicable in a single iteration of the outermost loop in riskCalculation().

Nancy begins by using its first expansion to generate the top level actions and their beliefs, which

are based on the beliefs of the immediate successors of the current state. From that point forward,
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Figure 2-4: Expansion strategies on 15 puzzles. Violin plots show distribution of the data as well as

a box plot with the median and quartiles. The red horizontal lines depict mean while red vertical

lines show the 95% confidence intervals.

Nancy will expand nodes such that an approximation of risk is minimized, until the expansion or

time limit runs out. When expanding nodes, Nancy will first update the beliefs of all TLAs, so that

they reflect any changes made during the last expansion. It will then identify the TLA with the

lowest expected cost, α, which is the TLA that would be executed according to the Nancy backup

if search were to end at this moment.

Once α has been selected, Nancy will iterate over each TLA and squish its existing belief, as if

the best node under that TLA had been expanded. The value of this expansion is calculated using

risk, the expected loss if this node were expanded and α was not the optimal action to execute.

Risk is calculated by performing numerical integration over every sample in α and every sample
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Figure 2-5: Optimality gap of expansion strategies on 15 puzzles as a percentage of A*’s.

with a cost less than the current sample in α in each of the β TLAs (TLAs other than α). This

calculation is shown in lines 41 and 42 of Algorithm 2.

Once the risk of expanding each node has been calculated, the node with the lowest risk is

actually expanded. This process is then repeated until the expansion or time limit is reached, or

a goal state is expanded. Once the expansion phase ends, the agent performs Nancy backups and

executes the TLA with the lowest expected cost. It transitions into the next state (using single-

step commitment) and checks if the current state is a goal. If it is a goal, it returns a solution.

Otherwise, the process will continue with the next expansion phase.

41



Algorithm 2 A search algorithm that uses risk based expansion and Nancy backups, which we

have named Nancy for short

1: procedure Nancy(start, limit)

2: cur = start

3: while true do

4: if isGoal(cur) then

5: return solution

6: closed = ∅

7: tlas = generateTopLevelActions(cur)

8: closed.insert(cur)

9: riskExpansion(tlas, closed, limit)

10: cur = nancyBackup(tlas)

11: learnHValues()

12: procedure generateTopLevelActions(cur)

13: tlas = ∅

14: for child in successor(cur) do

15: heap = ∅

16: tlas.insert(newTLA(child, belief(child), heap))

17: return tlas
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18: procedure riskExpansion(tlas, closed, limit)

19: expansions = 1

20: while expansions < limit do

21: updateTLABeliefs()

22: chosenTLA = riskCalculation(tlas)

23: cur = chosenTLA.heap.top()

24: if isGoal(cur) then

25: return

26: chosenTLA.heap.pop(cur)

27: closed.insert(cur)

28: expansions+ +

29: for child in successor(cur) do

30: if !duplicate(child) then

31: chosenTLA.heap.push(child)

32: procedure riskCalculation(tlas)

33: alpha = lowestExpectedCost(tlas)

34: for tla in tlas do

35: squishBelief(tla.belief)

36: tla.risk = 0

37: for sampleα in alpha.belief do

38: for beta in tlas s.t. beta != alpha do

39: for sampleβ in beta.belief do

40: if sampleβ.cost < sampleα.cost then

41: prob = sampleβ.probability ∗ sampleα.probability

42: tla.risk+ = prob ∗ (sampleα.cost < sampleβ.cost)

43: return argminn(tlas[n].risk)
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44: procedure nancyBackup(tlas)

45: updateTLABeliefs()

46: return argminn(tlas[n].belief.expectedCost)
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CHAPTER 3

Conclusion

Having reviewed the theory, experimental results, and implementation details surrounding this

thesis, the only things left to discuss are the limitations and contributions of this work. Suggestions

as to how these limitations may be overcome, as well as ideas for future work will also be addressed.

3.1 Limitations

While our experimental results are promising, it is important to recognize that the methods were

compared using a fixed number of node expansions rather than CPU time. Although Nancy backups

are not particularly expensive, our implementation of risk-based expansion numerically manipu-

lates distributions and integrates over them. Such metareasoning overhead can be amortized by

performing several expansions per decision, but it would be useful to engineer an optimized method.

We believe that a lightweight approximation of risk-based expansion should be possible, perhaps

along the lines of Thomspson sampling (Thompson, 1933) or UCB (Auer, Cesa-Bianchi, & Fischer,

2002).

Although we successfully adapted previous work on belief distributions for heuristic search, the

issues of how best to represent beliefs and how to acquire them, perhaps through on-line learning,

deserve sustained attention.

It was mentioned earlier that Nancy expands nodes such that an approximation of risk is

minimized. It would be interesting for future work to explore how close to optimal Nancy comes

in regard to risk minimization.

As Nancy was implemented with methods relying heavily on numerical integration, and was

tested using node expansions as a limiting factor, it was not tested on more realistic domains.

Ideally, the algorithm can be optimized so that it is reasonable to use CPU time as a limiting
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factor, so then it can be tested in time critical domains such as traffic, where an agent has to find

its way from one end of a grid to another while avoiding collisions with other moving agents.

3.2 Contributions

It is tempting to believe that, although reasoning under uncertainty is a popular topic in research

on MDPs and POMDPs, it is not relevant for search in deterministic domains. However, this work

illustrates how uncertainty can arise even in deterministic problems due to the inherent ignorance of

search algorithms about those portions of the state space that they have not computed. Rationality

demands that an agent select an action that minimizes expected cost, but this leaves open how

to select nodes for expansion and how to aggregate frontier information for decision-making. We

examined four backup rules, including two new ones, and a new expansion strategy that attempts

to minimize risk. Experimental results on random trees and the sliding tile puzzle suggest that

the new Nancy method provides results superior to traditional approaches. This work shows how

an agent in a general real-time search setting can benefit from explicitly metareasoning about its

uncertainty.
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