
Choosing the Initial State for Online Replanning

Maximilian Fickert,*1 Ivan Gavran,*2 Ivan Fedotov,2
Jörg Hoffmann,1 Rupak Majumdar,2 Wheeler Ruml3

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Max Planck Institute for Software Systems, Kaiserslautern, Germany

3 Department of Computer Science, University of New Hampshire, USA
{fickert, hoffmann}@cs.uni-saarland.de, {gavran, ivanan, rupak}@mpi-sws.org, ruml@cs.unh.edu

Abstract
The need to replan arises in many applications. However, in
the context of planning as heuristic search, it raises an an-
noying problem: if the previous plan is still executing, what
should the new plan search take as its initial state? If it were
possible to accurately predict how long replanning would
take, it would be easy to find the appropriate state at which
control will transfer from the previous plan to the new one.
But as planning problems can vary enormously in their dif-
ficulty, this prediction can be challenging. Many current sys-
tems merely use a manually chosen constant duration. In this
paper, we show how such ad hoc solutions can be avoided by
integrating the choice of the appropriate initial state into the
search process itself. The search is initialized with multiple
candidate initial states and a time-aware evaluation function
is used to prefer plans whose total goal achievement time is
minimal. Experimental results show that this approach yields
better behavior than either guessing a constant or trying to
predict replanning time in advance. By making replanning
more effective and easier to implement, this work aids in cre-
ating planning systems that can better handle the inevitable
exigencies of real-world execution.

Introduction
After plan execution has begun, the need to replan can arise
for many reasons. Perhaps the agent’s goal has changed
(Molineaux, Klenk, and Aha 2010) or additional goals have
become known (Benton, Do, and Ruml 2007). Perhaps the
environment, or the agent’s perception of it, has changed,
possibly giving rise to better ways of achieving the agent’s
goals (Cashmore et al. 2016). Or perhaps the original plan
was constructed in haste, and now that execution is under-
way, the agent has the leisure to try to find a better plan to
switch to (Likhachev, Gordon, and Thrun 2003). Regardless
of cause, if the agent is using a planning technique such as
forward state-space search, replanning necessitates choos-
ing an initial state for the search. This small detail, often
glossed over in previous work on replanning, raises a vexing
problem: with execution underway, this initial state must be
one far enough along the current plan that the agent will not
encounter it until the replanning process has finished, to al-
low transitioning to the new plan. But choosing an initial

*These authors contributed equally to this work.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

state that is too far along the old plan risks inefficiency: the
agent’s actions will not reflect the new information until the
state is reached, possibly causing it to miss opportunities.

The most common solution in current systems appears to
be to always choose a transition point that is a fixed time
ahead in the future, either as part of system design (Gregory
et al. 2002; McGann et al. 2007) or through an estimate for
the replanning time (Likhachev, Gordon, and Thrun 2003;
Ruml et al. 2011). But this is at odds with the purpose of
automated planning, which is to enable an agent to handle a
variety of problems and situations with a single algorithm. In
this paper, we introduce a principled approach to the prob-
lem of choosing the initial state for online replanning, which
we call the Multiple Initial State Technique (MIST). MIST
integrates this choice into the search itself, as only the search
has the proper information about the necessary trade-offs.

In MIST, the open list is initialized with multiple poten-
tial initial states, rather than just one. These states represent
speculations on the state in which the agent might be once
the search is done. Open nodes are prioritized by their esti-
mated goal achievement time, taking into account both the
makespan of the resulting plan and an estimate of when the
planning process itself will finish. In this way, MIST rea-
sons online during search about which initial state is most
promising to explore.

In MIST, once the execution goes past a state, that state is
no longer viable as an initial state. We also present a variant
of MIST that allows the planner to consider initial states that
may have already been passed but that are still reachable. For
both variants, we prove that, under suitable conditions on
the heuristic functions, the first solution MIST finds is better
than any other one it might find by continuing its search.

To assess the effectiveness of MIST in a concrete yet
domain-independent way, we implement it in the Fast
Downward planner (Helmert 2006) and extend a set of
benchmarks from the International Planning Competition
(IPC) to our replanning setting. We find that MIST yields
better agent behavior, in the sense of achieving its goals
more quickly, than either using a fixed constant or trying
to predict replanning time in advance.

Previous Work
One example of the need for replanning in an industrial con-
text is on-line goal arrival in manufacturing. (Ruml et al.

2011) address printing systems, where additional pages to
print arrive asynchronously. They use a hand-tuned constant
to represent the maximum planning time and predict when
the new plan can start; if this bound is exceeded, the plan-
ning process is interrupted and re-tried later when the plant
is assumed to be less busy and easier to plan for. Similarly,
but in the context of robot navigation, (Likhachev, Gordon,
and Thrun 2003) use a predefined constant to predict the
time when a new plan will be found during an anytime
search, allowing them to select the state at which the new
plan will take control from the currently executing plan. Sys-
tems designed for spacecraft control commonly incorporate
replanning, often by fixing a latency within which the plan-
ner must react (Gregory et al. 2002; McGann et al. 2007),
thereby fixing the initial state for the revised plan. In our
work, we aim for a more principled and flexible approach
that eschews hand-tuned constants.

In some situations, it can be assumed that replanning time
will be negligible (Knight et al. 2001; Ma et al. 2017, 2019).
This again allows selection of the initial state in advance, in
particular stopping the execution as early as possible when
a new plan can be assumed to be available. We take that
approach as one of our baselines.

The setting in which replanning is driven by new goals
appearing online has been called continual online planning
(COP) (Benton, Do, and Ruml 2007; Lemons et al. 2010;
Burns et al. 2012). In that work, COP tasks are defined as
Markov Decision Processes where additional goals arrive
stochastically at each time step and so world states are ex-
tended with the current goal set. In the present paper, we
leave aside any assumptions about goal arrival distributions
and focus on the fundamental question of how the plan
search for the combination of an old goal and a new goal can
be formulated in the context of a currently executing plan.

In what is perhaps the closest work to ours, (Cashmore
et al. 2019) consider replanning in the context of plan execu-
tion. They use a feature of PDDL2.2, called timed initial lit-
erals (TILs), to represent non-interruptible commitments of
the currently executing plan and an ad hoc extension of the
domain model, called a ‘bail-out action generator,’ to pro-
vide alternatives for interruptible actions. Their approach al-
ways discards the remainder of the original plan, thus avoid-
ing the need to choose an initial state but assuming that the
system can safely idle if necessary during replanning. Fur-
thermore, their approach is inherently tied to PDDL plan-
ning, focusing on the intricacies of interrupting individual
actions, rather than a generic solution for state-space search,
as we provide in the present paper.

The concern of time passing during planning has been
addressed by (Cashmore et al. 2018), although without the
complexity of a concurrently executing plan. Their main fo-
cus lies on finding plans that respect external temporal con-
straints, such as a deadline for arriving at a bus stop. An
associated line of more theoretical work (Shperberg et al.
2019; Coles et al. 2019) takes as its objective to maxi-
mize plan feasibility, leaving aside the notion of overall goal
achievement time that we address here. There are also sev-
eral time-aware heuristic search methods, such as Bugsy
(Burns, Ruml, and Do 2013) and Deadline-Aware Search

(Dionne, Thayer, and Ruml 2011). However, these methods
do not consider concurrent plan execution and merely search
from a given static initial state.

Problem Definition
Although MIST applies to any setting in which planning oc-
curs in the context of ongoing execution, for concreteness
we investigate MIST in classical planning with online goal
arrival. The focus is on the moment when a new task arrives
while the agent is already executing its current plan. This
is equivalent to a series of arriving jobs assuming that each
task arrives after the previous planning phase is done.

Background
We consider the finite-domain representation (FDR)
(Bäckström and Nebel 1995; Helmert 2009) for classical
planning tasks:

Definition 1 A planning task is a tuple (V,A, c, s0, s∗):

• V is a finite set of state variables, each with a finite do-
main of possible values,

• A is a finite set of actions. Each action a is a pair
(prea, eff a) of partial variable assignments called pre-
conditions and effects,

• c : A→ R is a function assigning a cost to every action,
• s0 is the initial state (complete variable assignment),
• s∗ is a partial variable assignment called the goal.

We denote the set of all complete variable assignments, or
states, by S. A partial assignment p is said to be compliant
with a state s ∈ S (denoted by p ⊆ s) if there is no variable
in the domain of p to which p and s assign different values.
An action a ∈ A can only be applied to a state s ∈ S if
prea ⊆ s. The outcome of that application is state sJaK that
is the same as s, except that the variables in the domain of
the partial assignment eff a are changed accordingly.

A solution (plan) to a planning task is a sequence of ac-
tions π = 〈a1, a2, . . . , an〉 with the overall cost C(π) =∑n

i=1 c(ai) leading from s0 to a state compliant with s∗.
In what follows, the action costs c will be interpreted as

the time required to execute them.

Continual Online Planning Tasks
We express the notion of continual online planning in the
classical planning setting by extending tasks with a second
goal, assumed to arrive during the execution of the plan for
the original goal.

Definition 2 A continual online planning (COP) task is a
tuple (V,A, c, sOLD

∗ , sNEW
∗ , s0, πs0,sOLD

∗
):

• V , A, and c are as before,
• sOLD
∗ is a partial variable assignment called the old goal,

• sNEW
∗ is a partial variable assignment called the new goal,

• s0 is the agent’s state at the time when sNEW
∗ appeared,

• πs0,sOLD
∗

= 〈a1a2 . . . an〉 is a sequence of actions, taking
the agent from the state s0 to a state compliant with the
old goal sOLD

∗ (the agent’s current plan).

Note that, while s0 is not necessarily the first state of the
agent’s original plan for sOLD

∗ , we disregard all states before
the arrival of sNEW

∗ and focus on the suffix of the original
plan that can still be changed. We assume the actions to be
non-interruptible: if sNEW

∗ appeared during the execution of
an action, s0 is the state at the end of the action.

We assume for simplicity that sOLD
∗ and sNEW

∗ are not in
direct conflict, i.e., if both are defined on the same variable
then the assigned value is identical. A solution to a COP task
is a plan π consisting of two parts: a prefix of πs0,sOLD

∗
and

the newly planned extension. There must exist 1 ≤ j ≤ n
such that π = 〈a1a2 . . . ajb1 . . . bm〉. If the extension, de-
noted by b1 . . . bm, is not empty, we call the state in which
b1 will be applied the deviation state. The state to which the
plan π takes the agent must be compliant with both sOLD

∗
and sNEW

∗ . A solution is said to be optimal if it minimizes
the total planning and execution time, i.e., the time from the
arrival of the new job sNEW

∗ to the end of the execution of π.
In order to achieve sNEW

∗ , it may be useful to deviate from
πs0,sOLD

∗
early. For example, such a situation occurs if a ware-

house robot is moving back to its home base to deliver a
good for sOLD

∗ , while sNEW
∗ requires picking up another good

close to where the robot was when sNEW
∗ arrived.

Observe that such indirect conflicts can be characterized
by the degree to which πs0,sOLD

∗
is useful for the combined

goal sOLD
∗ ∪ sNEW

∗ . At one extreme end, πs0,sOLD
∗

is a pre-
fix of an optimal plan for sOLD

∗ ∪ sNEW
∗ . In this case, it is

best to complete the execution of πs0,sOLD
∗

. At the other ex-
treme end, πs0,sOLD

∗
is not useful at all, i.e., no optimal plan

for sOLD
∗ ∪ sNEW

∗ shares a non-empty prefix with πs0,sOLD
∗

. In
that case, it is best to stop πs0,sOLD

∗
immediately. However,

it is not known upfront where between the two extremes to
position the planner. Our purpose is to address this trade-off
automatically and in full generality.

The Multiple Initial State Technique
Algorithm 1 shows the pseudocode of the MIST algorithm.
Its structure closely resembles that of A∗, and the important
differences in the pseudocode are highlighted in red.

In contrast to A∗, MIST uses a set of potential initial states
that we call reference states. The reference states are sam-
pled from the plan πs0,sOLD

∗
towards the original goal, and

are passed to the algorithm as a parameter R. These start-
ing states are different “guesses” on where the agent will be
when planning finishes, and they are the potential deviation
states for the overall plan.

The open list (open) is initialized using the reference
states (line 3). Each element of open is a pair of the search
node and its corresponding reference state (a candidate for
the deviation state). Each newly created search node inherits
the reference state of its parent (line 13).

As in A∗, nodes in the open list are expanded in a best-first
order according to f , and put into the closed list afterwards.
When a node is expanded, its successors are inserted into the
open list if they are new or replaced if they are reached with
a lower g-value than before (line 14). As time passes and ex-
ecution of the current plan progresses, search nodes whose
corresponding plan deviates from the executed actions be-

Algorithm 1 MIST
1: procedure MIST(s0, sOLD

∗ , h, sNEW
∗ , πs0,sOLD

∗
, R)

2: γ ← 0; closed← ∅
3: open← {(r, r) | r ∈ R}
4: while open 6= ∅ do
5: (s, ref s)← argmin(t,ref t)∈open f(t, ref t, γ)

6: if (s, ref s) is not consistent with
the state of the execution then

7: discard (s, ref s)

8: if (sOLD
∗ ∪ sNEW

∗) ⊆ s then
9: return path to s

10: closed← closed ∪ {(s, ref s)}
11: γ ← γ + 1
12: for t ∈ successors(s) do
13: ref t ← ref s
14: if ((t, ref t) 6∈ (open ∪ closed) or

gref t
(t) < gold

ref t
(t) then

15: open← open ∪ {(t, ref t)}
16: return fail

come invalid and are discarded (line 7). Line 8 checks the
termination condition, reflecting Definition 2.

Finally, the most important difference is the open list
ordering function f . Given a state s, its reference state
ref s, and the number of expansions made by the algo-
rithm so far γ (s0 is treated as a default parameter), MIST
uses f(s, ref s, γ) = C(πs0,ref s

) + gref s
(s) + h(s) +

os(s, ref s, γ). The first part, C(πs0,ref s
), represents the

time required to move from the initial state s0 to the refer-
ence state that was used to reach s along the execution path.
The second part, gref s

(s) + h(s), is the same as in A∗: fol-
lowing our interpretation of action costs as their durations,
it combines the time needed to get from the reference state
ref s to the state under consideration s with the estimated
time to reach the goal from s. The third part, the overshot
function os , models a state becoming irrelevant (f =∞) as
the execution passes through it before the estimated end of
planning. It is defined as:

os(s, ref s, γ) =

{
0 if (γ + η(s)) · texp ≤ C(πs0,ref s

)

∞ otherwise

where η(s) estimates the remaining number of expansions
until a plan is found, texp is the time per expansion to trans-
late expansions to execution time, and C(πs0,ref s

) is the
time to reach ref s along πs0,sOLD

∗
. We will discuss below how

to obtain such estimates by adapting prior work (Thayer and
Ruml 2009; Burns, Ruml, and Do 2013).

Having γ as an argument for f has an interesting con-
sequence: it now matters when the function f is evaluated
for the relative order of the nodes in open. In practice, we
do not re-evaluate f on all the nodes in the open list each
time the best element is retrieved (line 5). Instead, we ap-
proximate the value of the f -function by keeping the search
nodes sorted only by g+h, but separately for each reference
state. Subsequently, we do the full evaluation only to select
the next reference state for which a node should be expanded

using the nodes with minimal g+h for each reference state.
This approximation is justified by the fact that a changed
value of γ affects all the nodes corresponding to the same
reference state equally. The loss of precision comes from
disregarding differences in η. In preliminary experiments,
we also tried a recomputation strategy in exponentially in-
creasing intervals as used in Bugsy (Burns, Ruml, and Do
2013) and found the difference in solution quality to be neg-
ligible compared to this approximation strategy.

Another practical consideration is that we can safely
prune a search node (s, ref s) if s is a reference state itself
that is reached by πs0,sOLD

∗
after passing through ref s and

C(πs0,ref s
) + gref s

(s) ≥ C(πs0,s) holds.

Theoretical Properties
A∗ is guaranteed to find an optimal solution, provided that
the heuristic function is admissible (and nodes can be re-
opened). A similar guarantee can not be given for MIST.
The essential difference between the two settings (and thus
necessarily between the two algorithms) is that in an offline
setting, the exploration of the state space during the planning
phase comes at no cost. On the other hand, in an online set-
ting, exploring a part of the search space that is not going to
be used in the solution can decrease the quality of the final
plan, since that time was not used effectively.

Consider a situation where the only optimal plan deviates
at the reference state r, and expanding all the nodes on that
plan takes exactly the time that the agent needs to reach r.
Expanding any other nodes will make MIST miss this path.
Hence, unless the heuristic functions h and η were perfect,
there is no guarantee that MIST will find an optimal solution.

With optimality out of reach, we can prove a simpler prop-
erty: the stopping criterion of MIST is a correct one. MIST
stops the search as soon as the first state compliant with both
of its goals is found, which raises the question of whether
there is some trade-off between continuing the search and
the quality of the solution. We show that continuing the
search can not result in a better plan, assuming the heuristic
functions h and η are admissible.

We will use h∗(s) to denote the true value of the cost
to reach the goal from s, and η∗(s) to denote the number
of expansions from s to the end of planning. Following the
same notation style, f∗(s, ref s, γs) and os∗(s, ref s, γs) de-
note the functions f respectively os calculated using h∗(s)
and η∗(s) instead of the heuristics h and η. We are using the
notation γ = γs to indicate that the third argument of the
f -function is the value of γ when the node s was explored.
Theorem 1 Let h be admissible with respect to planned ex-
ecution time and η admissible with respect to the number of
expansions. Let σ1 = s0, s1, . . . , si, p1, p2 . . . pm be the se-
quence of states corresponding to the first solution π1 found
by MIST (with the deviation state si). Assume the algorithm
continued the search and found another solution with the
state sequence σ2 = s0, s1, . . . , sj , q1, q2, . . . , qn (with the
deviation state sj). Then f∗(pm, si, γpm) ≤ f∗(qn, sj , γqn).
Proof: Our proof follows that of a similar property of
Bugsy (Burns, Ruml, and Do 2013).
f∗(pm, si, γpm

)

= C(πs0,si) + gsi(pm) + os∗(pm, si, γpm)

= f(pm, si, γpm
) (1)

≤ f(ql, sj , γpm
) (2)

= C(πs0,sj) + gsj (ql) + h(ql) + os(ql, sj , γpm)

≤ C(πs0,sj) + gsj (ql) + h∗(ql) + os∗(ql, sj , γpm
) (3)

≤ C(πs0,sj) + gsj (ql) + h∗(ql) + os∗(ql, sj , γql) (4)

≤ C(πs0,sj) + gsj (qn) + os∗(qn, sj , γqn) (5)

= f∗(qn, sj , γqn)

The true cost of the solution π1 is f∗(pm, si, γpm) =
C(πs0,si) + gsi(pm) + os∗(pm, si, γpm). Following the
search structure of MIST, at some point we chose to expand
pm. Since pm is the last state on the path and our heuristic
functions are admissible, the true cost f∗ is equal to the cost
function f (equality 1). Inequality 2 comes from our choice
of the state pm over some state ql from σ2.

From the admissibility of h and os (which follows from
the admissibility of η) with respect to h∗ and os∗, we get
inequality 3. The value of os∗ for some later point γql when
exploring ql, would be greater or equal to the value for the
same state ql and the reference state sj at time point γpm

(in-
equality 4). This follows from the definition of os∗, which is
monotonic when observed as a function of its third argument
(time passed so far).

Finally, inequality 5 comes from (a) γqn+η
∗(qn) = γql+

η∗(ql) and (b) gsj (ql) + h∗(ql) ≤ gsj (qn). Both sides of
equality (a) are equal to the overall planning time. Inequality
(b) comes from the fact that h∗(ql) is the smallest cost from
ql to a goal state. Since that goal state is not necessarily qn,
we get the inequality. �

MIST for Recoverable Tasks
Depending on how the reference states are selected among
the initially computed plan, situations may arise in which
MIST’s replanning strategy incurs a large cost. Consider the
following example of a logistics domain:

L
R1 R2

The truck is heading to location L when a new goal to pick
up and deliver a package to L appears. It may happen that
the planner is not able to find a plan before the truck has al-
ready passed the first reference state R1, which is closest to
the package. MIST requires the truck to continue following
the current plan until the next reference state R2 and only
then turn back to pick up the package. Depending on the dis-
tance between R1 and R2, this can cause an arbitrarily large
cost penalty compared to turning around at some intermedi-
ate location. Even if reference states are frequent, MIST can
still incur a large penalty if it repeatedly misses its predicted
planning time.

An engineering solution addressing these issues could be
to pause the execution for some time if planning is expected
to finish soon. Here, we instead suggest a variant of MIST,
that we call MISTrec, as an algorithmic solution for a class of
COP tasks that satisfy the following form of recoverability.

Definition 3 For a COP task (V,A, c, sOLD
∗ , sNEW

∗ , s0,
πs0,sOLD

∗
), with s0, . . . , sn being the state sequence induced

by πs0,sOLD
∗

, we denote the action subsequence taking the
agent from si to sj , with i < j, by ~αi,j . We call the task
recoverable if, for every such ~αi,j , there exists an action se-
quence ~αi,j such that every variable/value pair in si that
appears as a precondition or goal also holds in sjJ ~αi,jK.

This restriction gives the planner more room for error in
the prediction of when re-planning will terminate: When a
reference state s is passed, the planner may still finish com-
puting a plan for s, because there is a recovery sequence that
brings the agent to a state where that plan is applicable.

Many COP applications are naturally recoverable. Ex-
amples include warehouse logistics and various types of
manufacturing problems. Furthermore, recoverability re-
lates to known notions of invertibility and undoability, and
prior works have established methods to test these proper-
ties (Hoffmann 2005; Daum et al. 2016). Our solution con-
siders the recoverability sequence to be known. In our ex-
periments, we focus on domains where each action has an
immediate inverse action of the same cost.

In order to adapt Algorithm 1, two things need to be
changed. First, the states of πs0,sOLD

∗
that the agent’s execu-

tion already went through should not be discarded, because
the agent can still come back to them. Second, we have to
change the definition of the function f to reflect the possi-
bility of returning to a reference state.

Reminding ourselves, f is defined as a sum of three parts:
C(πs0,ref s

) + [gref s
(s) + h(s)] + os(s, ref s, γ), with os

being either 0 (if planning is estimated to finish before the
execution reaches ref s), or infinity (otherwise). We adapt os
to consider the possibility of using the recovery sequence to
move back to ref s, redefining it as os(s, ref s, γ) =
C(~α) + C(~α) + max((γ + η(s)) · texp − C(πs0,sOLD

∗
), 0).

Like before, os evaluates to 0 if planning is expected to fin-
ish in time. Otherwise, it now describes the additional exe-
cution time incurred by moving past the reference state (~α)
and back (~α). If planning takes longer than total execution of
πs0,sOLD

∗
, then the agent will additionally have to wait in sn,

the last state of πs0,sOLD
∗

(described by the last term of os).
Consider the following illustration:

time

current execution

γ · texp η(s) · texp

snref s

os

The red dashed bar denotes the time needed to execute the
current plan leading to sn ⊇ sOLD

∗ . The green bar labeled by
γ · texp is time spent planning so far and the dashed green
bar (η(s) · texp) shows the estimation on when the planning
will finish. In the illustration, the planning time is estimated
to exceed the time when the selected reference state ref s is
reached. The os function describes this additional execution
time, plus the time it takes to go back to ref s.
Lemma 1 Assume that η is admissible, and that for a path
α that is a prefix of a path α′ it holds that C(~α) + C(~α) ≤
C(~α′) + C(~α′) (well-behaved recovery paths). Then os is
admissible, i.e. os(s, ref s, γ) ≤ os∗(s, ref s, γ).

Proof: Let ~α be the subsequence of actions on πs0,sOLD
∗

tak-
ing the agent from the reference state ref s to the state in
which it would be at time γ + η(s) · texp , and let ~α∗ be the
subsequence of actions to the state at time γ + η∗(s) · texp .
Since η ≤ η∗, ~α must be a subsequence of ~α∗. With
the assumption of well-behaved recovery paths, we have
C(~α) + C(~α) ≤ C(~α∗) + C(~α∗), and thus os ≤ os∗. �

Since os is again admissible, the proof of Theorem 1 also
applies to MISTrec.

Consider again the logistics example at the beginning of
this subsection. While MIST must continue along the plan
until reaching R2, MISTrec will be able to finish computing
a new plan from the (already passed) reference stateR1, and
can turn around without having to go to R2 first.

Experiments
We implemented MIST in Fast Downward (Helmert 2006).
As explained earlier, in our implementation, we use a stan-
dard A∗ open list for each reference state, using the MIST
extensions to the f -function only to select the open list to
be used for the next expansion to avoid having to re-sort
the open list. For MISTrec, our implementation assumes that
each action has an inverse action with the same cost.

Like Bugsy, we estimate the remaining number of expan-
sions as η = delay ∗ d (Burns, Ruml, and Do 2013; Dionne,
Thayer, and Ruml 2011), where delay is the (moving) aver-
age number of expansions between inserting a node into the
open list and expanding it, and d is an estimation of the re-
maining steps to the goal (like h, but ignoring action costs).
The expansion delay is important to counteract search vac-
illation (Dionne, Thayer, and Ruml 2011), referring to the
search fluctuating between different solution paths and, in
our case, potentially of different reference states. For d, we
don’t use the distance estimate of the current state, but in-
stead the minimal distance of any evaluated state that corre-
sponds to the considered reference state to make the plan-
ning time estimations more stable.

Our key performance metric is the goal achievement time
(GAT), i.e. overall time for online planning and execution,
measured from the moment when the new goals appear. We
measure this time as a number of expansions to make the ex-
periments more robust. Action costs are translated into ex-
ecution time using an instance-specific factor from cost to
expansions (we give more details in the next subsection).

In all experiments, the popular FF heuristic (Hoffmann
and Nebel 2001) is used to guide the search. For the ex-
pansion delay, we use a moving average over the last 100
expansions. The experiments were run on a cluster of 2.20
GHz Intel Xeon E5-2660 CPUs. The time and memory lim-
its were set to 30 minutes and 4 GB, respectively.

Benchmarks
We adapted the IPC domains Elevators, Logistics, Rovers,
Transport, and VisitAll to our setting, as representatives of
applications where (i) goals are of an additive nature and
there are no conflicts between them and (ii) all action se-
quences ~α have a recovery sequence ~α with the same cost.
Criterion (ii) is required for our implementation of MISTrec.

We furthermore experiment with Tidybot, which we adapted
to satisfy (ii). In Tidybot, there are cases where objects are
placed behind each other, and the robot cannot reach be-
hind the object in the front. We added an un-finish action to
ensure recoverability. However, previously finished objects
must be picked up again in these cases, necessitating the
planner to falsify and re-achieve previously achieved goals.
We assume actions to be non-interruptible.

In some of our benchmark domains, recovery sequences
with lower cost can exist. For example, there could be short-
cuts to inverting the agent’s movements, and in Rovers pho-
tos would not need to be “un-taken”. In such cases, our im-
plementation of MISTrec is pessimistic and more practical
implementations may achieve lower plan costs.

The instances were adapted by splitting the set of goals
in two: the first half is available in the beginning, and the
other one becomes available later. The second set of goals
is scheduled to appear during the execution of the first com-
puted plan to obtain interesting instances.

A run of MIST on one such instance will look as follows:

time

initial planning

initial (planned) execution

reference nodes

new set of goals appears

The initially computed plan is being executed as a new job
arrives. Here, the planner considers 5 reference states as po-
tential initial states for the new plan.

time

initial planning

initial execution

second planning

second execution

selected reference node

The planner has computed an updated plan that starts from
the second-to-last reference state. The initial plan is exe-
cuted until that point before switching to the new plan. The
goal achievement time is the time from the start of the sec-
ond planning phase to the end of the overall execution.

In order to obtain interesting benchmark instances, we
tried to ensure that the second planning phase starts and
ends during the first planned execution. Thus, we gener-
ated the instances such that the second set of goals appears
after 10% of the initial plan is executed. Furthermore, we
estimated the length of the second planning phase by run-
ning the planner offline for both goals from the original start
state, and used that to generate different experimental se-
tups where the second planning phase is estimated to end
at E = 0.2, 0.3, . . . , 0.9 of the initially planned execution.
This is achieved by adjusting the factor for the translation
of the action cost to execution time, thereby changing the
duration of the initial execution.

Results
We compare MIST to the following baselines:

• finish: Finish execution and plan only for the new goals.

• stop: Stop execution and re-plan from the current state.

0 5 10 15 20 25

1.3

1.31

1.32

·104
MIST

MISTrec

Figure 1: GAT as geom. mean over all instances (Y-axis) for
MIST with different numbers of reference states (X-axis).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

MIST
MISTrec

finish
stop

approx.
FL101

FL102

FL103

FL104

FL105

FL106

FL107

oracle

Figure 2: GAT as geom. mean over all instances relative to
MIST (Y-axis) for E = 0.2, 0.3, . . . , 0.9 (X-axis).

• approximate: Approximate the duration of the re-planning
phase, and use the state where the agent is expected to
be at that time as the deviation state. We use the same
estimation for the number of expansions as MIST, i.e.
η(m) = delay ∗ d(m), using the average expansion delay
from the initial planning phase and the estimated distance
of the current state.
• fixed latency: Stop execution at a fixed point in time (we

test values of 101, 102, . . . , 107 expansions for this time
point). We also consider a theoretical oracle configuration
that chooses the best-performing time point to stop the
execution (out of the tested values) per instance.
MIST has one important parameter: the selection of the

reference states. In our implementation, we set a number
of reference states nR, which are then selected in uniform
intervals from the current plan. Figure 1 shows the goal
achievement time (in number of expansions) for different
values of nR across our full benchmark set. If there are too
few reference states, the algorithm does not have the best
starting point for the next plan available. On the other hand,
the performance also decreases if too many reference states
are used, as it becomes more difficult to settle on the most
promising one quickly (especially if the planning time esti-
mation is not very accurate). Across the tested numbers of
reference states, MIST chooses nodes for expansion corre-
sponding to the reference state which is used for the solution
38% of the time on average, more for fewer reference states
(55% for nR = 3), and less the more reference states are

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Elevators

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Logistics

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Rovers

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Tidybot

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Transport

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Visitall

MIST
MISTrec

finish
stop

approx.
FL101

FL102

FL103

FL104

FL105

FL106

FL107

oracle

Figure 3: GAT relative to MIST (Y-axis) for E = 0.2, 0.3, . . . , 0.9 (X-axis).

used (30% for nR = 24). The overall best results are ob-
tained with nR = 8 for MIST and nR = 9 for MISTrec, and
we use these settings for the remaining experiments.

Figure 2 shows the relative goal achievement time com-
pared to MIST for the considered algorithms for different
expected end points of the second planning phase. If the
planning time is very short compared to the execution time
(small values of E), stopping the execution as soon as pos-
sible works well, but loses out compared to MIST if plan-
ning is non-trivial (E > 0.2). As expected, finishing the
execution becomes better with increasing expected planning
times, though MIST always performs better. The fixed la-
tency configurations offer some interpolation between the
two extremes of stopping or finishing the execution. Given
the diversity of our benchmark set, a fixed latency can not ac-
curately predict the planning time, and these configurations
are outperformed by MIST. The approximation baseline also
works well for short planning times, but is prone to overesti-
mate. On average, MIST reduces the goal achievement time
by 8.6% compared to stopping and re-planning immediately,
by 6.8% compared to finishing the planned execution, and
by 5.1% compared to approximating the re-planning time.

Figure 3 gives more insight into the individual domains.
The observations from the overall results hold across most
domains, with minor exceptions. On VisitAll, the approxi-
mate baseline comes very close to MIST on average, beat-
ing it for some values of E. This can can be attributed to the
planning time estimation being more accurate. While that
also helps MIST to select the correct reference state to ex-
pand towards more frequently (46% of the time compared
to 35% on other domains), MIST can still suffer from the
added overhead. In the Rovers domain, MIST and MISTrec
outperform all competitors for all values ofE, and may even

beat the oracle (which can be inaccurate if the best deviation
state is between two of the considered time points). Both
stop and approximate perform particularly poorly in that do-
main, with up to 35% respectively 23% worse goal achieve-
ment time compared to MIST when considering large ex-
pected planning times. Conversely, finish comes close to
MIST, which indicates that interrupting the execution while
re-planning is particularly costly in that domain.

MISTrec and MIST exhibit similar performance. This sug-
gests two conclusions. First, the way we generate testing in-
stances averages out the edge cases in which MISTrec sig-
nificantly outperforms MIST. Second, even though MISTrec
does not prune reference nodes, it is able to effectively focus
its search effort just as well as MIST.

Conclusion
We proposed a general technique, MIST, that addresses the
problem of selecting an initial state for planning in the con-
text of an already-executing plan by planning simultane-
ously for multiple potential initial states. We investigated its
performance in the specific context of online goal arrival in
domain-independent planning and found that MIST outper-
formed both trying to predict the time that will be required
for replanning and the commonly used technique of choos-
ing an arbitrary constant.

While replanning is a popular approach to handling
changes during execution, alternatives have been consid-
ered. Plan repair methods (Gerevini, Saetti, and Serina 2003,
e.g.,) are not guaranteed to be faster than re-planning (Nebel
and Koehler 1995), yet in practice they can be (Fox et al.
2006). Exploring how MIST might be used to decide where
plan repair modifications can be made to the currently exe-
cuting plan is an interesting topic for future work.

Acknowledgments. Maximilian Fickert was funded by
DFG grant 389792660 as part of TRR 248 – CPEC, see
https://perspicuous-computing.science. We also gratefully
acknowledge support from NSF-BSF grant 2008594.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.
Benton, J.; Do, M. B.; and Ruml, W. 2007. A Simple Testbed
for On-line Planning. In Proceedings of the ICAPS-07 Work-
shop on Moving Planning and Scheduling Systems into the
Real World.
Burns, E.; Benton, J.; Ruml, W.; Yoon, S. W.; and Do, M. B.
2012. Anticipatory On-Line Planning. In Proceedings of
the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS-12).
Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic Search
When Time Matters. Journal Artificial Intelligence Re-
search 47: 697–740.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal Planning while the
Clock Ticks. In Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2018, 39–46.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2019. Replanning for Situated
Robots. In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS
2018, 665–673.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; and Rid-
der, B. 2016. Opportunistic Planning for Increased Plan Util-
ity. In Proceedings of the ICAPS-16 Workshop on Planning
and Robotics (PlanRob 2016).
Coles, A.; Shperberg, S.; Karpas, E.; Shimony, S.; and Ruml,
W. 2019. Beyond Cost-to-go Estimates in Situated Temporal
Planning. In Proceedings of the ICAPS Workshop on Heuris-
tics and Search for Domain-independent Planning (HSDIP).

Daum, J.; Torralba, Á.; Hoffmann, J.; Haslum, P.; and We-
ber, I. 2016. Practical Undoability Checking via Contingent
Planning. In Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling, ICAPS
2016, 106–114.
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
Aware Search Using On-Line Measures of Behavior. In Pro-
ceedings of the Fourth Annual Symposium on Combinatorial
Search, SOCS 2011.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
Stability: Replanning versus Plan Repair. In Proceedings of
the Sixteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS-06), 212–221.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
Through Stochastic Local Search and Temporal Action
Graphs in LPG. Journal of Artificial Intelligence Research
20: 239–290.

Gregory, N. M.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. IDEA: Planning at the Core of Autonomous
Reactive Agents. In in Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space.

Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res. 26: 191–246. doi:10.1613/jair.1705. URL
https://doi.org/10.1613/jair.1705.

Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence 173: 503–
535.

Hoffmann, J. 2005. Where ’Ignoring Delete Lists’ Works:
Local Search Topology in Planning Benchmarks. J. Artif.
Intell. Res. 24: 685–758. doi:10.1613/jair.1747. URL https:
//doi.org/10.1613/jair.1747.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.

Knight, R.; Rabideau, G.; Chien, S. A.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: Space Exploration through
Continuous Planning. IEEE Intell. Syst. 16(5): 70–75.

Lemons, S.; Benton, J.; Ruml, W.; Do, M. B.; and Yoon,
S. W. 2010. Continual On-line Planning as Decision-
Theoretic Incremental Heuristic Search. In Embedded Rea-
soning, Papers from the 2010 AAAI Spring Symposium,
Technical Report SS-10-04.

Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In
Thrun, S.; Saul, L. K.; and Schölkopf, B., eds., Advances
in Neural Information Processing Systems 16 [Neural In-
formation Processing Systems, NIPS 2003, 767–774. MIT
Press.

Ma, H.; Hönig, W.; Kumar, T. S.; Ayanian, N.; and Koenig,
S. 2019. Lifelong path planning with kinematic constraints
for multi-agent pickup and delivery. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
7651–7658.

Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and De-
livery Tasks. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017,
837–845.

McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2007. T-REX: A model-based architecture
for AUV control. In 3rd Workshop on Planning and Plan
Execution for Real-World Systems, volume 2007.

Molineaux, M.; Klenk, M.; and Aha, D. 2010. Goal-driven
autonomy in a Navy strategy simulation. In Twenty-Fourth
AAAI Conference on Artificial Intelligence.

Nebel, B.; and Koehler, J. 1995. Plan Reuse Versus Plan
Generation: A Theoretical and Empirical Analysis. Artif. In-
tell. 76(1-2): 427–454. ISSN 0004-3702. doi:10.1016/0004-
3702(94)00082-C. URL http://dx.doi.org/10.1016/0004-
3702(94)00082-C.

Ruml, W.; Do, M. B.; Zhou, R.; and Fromherz, M. P. J. 2011.
On-line Planning and Scheduling: An Application to Con-
trolling Modular Printers. Journal Artificial Intelligence Re-
search 40: 415–468.
Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019. Allocating Planning Effort
When Actions Expire. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, 2371–2378.
Thayer, J. T.; and Ruml, W. 2009. Using Distance Estimates
in Heuristic Search. In Proceedings of the Nineteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-09).

