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ABSTRACT

STACKER CRANE PROBLEM STATE SPACE REDUCTION

by

Frank Kreimendahl

University of New Hampshire, April, 2013

Many resource delivery problems, from delivery vehicle routing to circuit board assembly,

can be expressed as stacker-crane problems (SCPs). In SCPs, a single agent must transfer

resources from their starting locations to goal locations by traversing a graph. These prob-

lems have been split into many categories based on their graph structure and other problem

properties. This thesis examines preemptive stacker-crane problems on four-connected grids,

which are common graphs in motion planning domains. A wealth of research has already

been done on motion planning on graphs, both for optimal and suboptimal solutions. This

thesis focuses on reducing the number of vertices in the graph and the number of actions

available at each vertex rather than presenting a specific solution, which allows for any

solver to be used on the reduced graph.

Two specific reductions are proposed in this thesis. Both are proven to preserve an optimal

solution so that a solution on the reduced graph can be trivially converted to a solution

on the original graph. The first reduction limits movement to a Hanan grid and resource

drops to Hanan points. The second reduction recursively removes redundant corners, which

is shown to preserve optimal paths also. This technique recognizes path symmetries and

seeks to break them without compromising optimal solutions.

vi



CHAPTER 1

Introduction

Planning in AI is difficult. In many planning domains, there are too many possible states

to explicitly instantiate them all. As a result, planning algorithms build graphs of states,

where vertices represent individual states in the domain and edges represent possible state

transitions. Rather than building a full graph before looking for solutions, algorithms grow

the graph by applying actions to a vertex, resulting in a new state in the graph or a new

edge to an existing state. This state space exploration process continues until a goal state

is reached. Many actions may be applicable in each state, there are many states, and many

paths through the graph (which correspond to sequences of actions) may reach each state.

It is difficult to find reasonable action sequences in such large graphs without being clever

about which actions to explore to achieve a goal. Reducing the number of states in the

state space can speed up a solver drastically.

1.1 The Problem

The stacker-crane problem (SCP): Given a graph G = (V,E,A,Ci), V is a set of vertices, E

is a set of edges with specific traversal costs, A is a set of (start, goal) vertex pairs that must

be visited in that order, and Ci is an agent’s starting vertex. The goal is to find a minimal-

cost sequence of edges that start at a specific start vertex, Ci and traverse all of the arcs

in A. This corresponds to a single agent, in this case a crane, moving resources from their

starting locations to specified goal locations while minimizing the total distance that the

crane has traveled. The (start, goal) vertex pair for a resource R will be denoted as (Rs, Rg).
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In the version of the problem that we consider here, there are several further speci-

fications. First, the crane can only transport one object at a time. A vertex may hold

any number of resources and those resources are not ordered. Therefore, the crane can pick

them up from the vertex in any order. The crane is confined to a rectangular four-connected

grid, and its actions at any vertex are a subset of: up, down, left, right, pickup, and drop.

Because of the nature of the graph, horizontal and vertical movements, and therefore dis-

tance, are independent. Measuring distance between two vertices on this graph is called the

Manhattan distance, and the distance between vertices v1 and v2 is denoted as ‖v1 − v2‖1.

This is equal to |v1.x− v2.x|+ |v1.y − v2.y|. The pickup action is only valid if the crane is

on the same vertex as a resource and the crane is not already carrying a resource. The drop

action is only valid if the crane is carrying a resource. Some move actions may be invalid if

the crane is at the edge of the graph (if we assume that the graph does not extend infinitely).

The crane may temporarily drop resources at intermediate locations if that action decreases

the overall distance that the crane has to travel compared to carrying the resource all the

way to its goal. These variations on the original problem require a slightly different prob-

lem formulation. Since the graph is four-connected, E can be generated from V . Allowing

intermediate drop locations for resources, called preemption, changes the requirements for

A. Resources must be picked up from their start and dropped at their goal, but they may

be dropped and picked up again at other vertices before they reach their goal. Therefore,

the problem can be specified on G = (V,A,Ci).

An example stacker-crane problem with two resources, R and T , is shown in figure 1-1.

The solution to the problem is a sequence of actions that the crane will execute to move R

to Rg and T to Tg. To get a better understanding of the size of the state space and why

we want to lazily generate its graph, we can examine this example. Each state consists

of information about all objects (location, crane state, etc.) that an action may change.

In this problem, actions can change the location of the crane, what the crane is carrying,

and the location of a resource. If we consider possible configurations for crane and resource

2
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Figure 1-1: Example stacker-crane problem on a four-connected graph.

location, the problem in figure 1-1 has 25 vertices, and the locations of R, T , and C are

all independent. This means there are 25 × 25 × 25 = 253 = 15, 625 states. This does not

account for the crane carrying a resource. The crane can hold a resource at any vertex,

and other resources may be anywhere on the graph for each crane position. This adds an

additional 25×25 = 625 possible states, for a total of 16, 250 states. We can find the general

equation by counting the number of states in which the crane is empty and the number of

states in which the crane is carrying a resource separately. For a problem with k resources

on a m × n grid, the number of possible states is (m × n)k+1 + (m × n)k. The first term

results from k + 1 independent objects (k resources and the crane) that can lie anywhere

on the grid. The second term assumes that crane is carrying one resource, so there are k

independent objects on the grid. If we double the grid’s dimensions to be a 10 × 10 grid,

the new problem has 1003 + 1002 = 1, 010, 000 states. If, instead of changing the grid size,

we add one more resource, that would result in 254 + 253 = 406, 250 states. 8 resources on

a 100 × 100 grid yields over 1032 states! This is not something that currently fits in the

memory of any computer. Many of the states are irrelevant for finding a solution, so we

wouldn’t want to generate those states anyway. The solution will ultimately be an action

sequence that transitions through some of these states. This is a tremendous combinatorics
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problem if we approach it in a näıve manner.

In this domain, we are trying to minimize the total cost of the crane’s actions to achieve

all goals. The crane may drop off a resource at an intermediate location in order to make

the entire solution cost smaller, even though it makes the cost for transporting that single

resource larger. With each intermediate vertex, the number of possible sequences to achieve

all goals increases drastically. In a four-connected graph, there are so many intermediate

points that it is difficult to find optimal solutions, even for small problems (3 resources

on a 100x100 graph) using standard heuristic-guided search techniques. This result comes

from the difficulty in determining whether an intermediate drop point is along an optimal

sequence or not until much later in the sequence. This means that many actions after non-

optimal drop actions are considered, and many optimal partial plans are considered when

only a single plan is needed. This computation wastes both memory and CPU time, and

may result in memory limits being reached before a solution is found. This thesis shows

how to reduce the number of states and actions considered to find an optimal solution. My

thesis proves that we only need to consider a small subset of all vertices on the

graph to find an optimal solution.

1.2 Importance

The SCP captures the essence of an important issue in pick-and-place domains – domains

that involve a single agent moving objects around. Making the simplification that an object

can only be dropped in its goal location may lead to longer (sub-optimal) motion plans, or

may lead to no solution. Therefore, we want to consider dropping an object at intermediate

locations and returning to it later. Consider a domain where a robot is asked to move a

box through a door and the door is currently closed and blocked by the box. To solve the

problem, the robot must move the box out of the way, open the door, and then pick up the

box and move through the doorway. The robot cannot solve the problem without dropping

the box in an intermediate location. Dropping objects at an intermediate location allows

for solutions to more problems than only carrying objects straight to their goal. A task as
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Figure 1-2: Optimal paths for non-preemptive SCP (top left) and preemptive SCP (top

right). Example SCP where preemption is very advantageous (bottom).

simple as swapping two objects requires dropping the same object twice.

Drawing on ideas from the path-planning literature, A* [Hart et al. (1968)] and its

many extensions can be applied to SCP. Considering a drop action at every possible in-

termediate location can require prohibitively large memory resources, however. Even with

strong heuristic guidance, many unnecessary drop locations will be considered for each task

ordering. Though many of these drop points lie along an optimal action sequence, we will

see that a lot of the drop locations are redundant. Reducing the graph will remove many

potential drop locations, leaving only a few that can lead to an optimal solution. This, in

turn, leads to a smaller state space and faster solution times.
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1.3 Choosing the Domain

How important is preemption? Without preemption, an SCP on a four-connected graph

can be converted quickly to a complete graph of important vertices with edge costs based

on their rectilinear distances. None of the intermediate vertices serve any purpose because

dropping a resource on them is not allowed. Thus, a grid is reduced to a complete undirected

graph with no more than 2n vertices for n resources. Using the reductions presented in this

thesis, a preemptive graph has a maximum of (2n)2 vertices for n resources (based on the

number of vertices in the corresponding Hanan grid). There is already a wealth of research

available to solve the non-preemptive SCP problem on a graph.

Although adding preemption makes finding solutions on a four-connected graph harder

as many more vertices must be considered, solutions costs to the preemptive SCP can be

considerably smaller than their non-preemptive counterparts. Figure 1-2a shows optimal

solutions on the example that we have used throughout the thesis. On the left is an optimal

solution for a non-preemtive SCP. The crane’s total pathlength is 14 units. On the right is

one of the optimal paths for a preemptive SCP given the same resource starts and goals.

Its pathlength is 11 units, 20% shorter than the non-preemptive case. Figure 1-2b shows a

simple case where preemption can decrease the crane’s total pathlength by nearly 50%.

1.4 Approach

This thesis starts, as is already evident, with a chapter that briefly introduces the stacker-

crane problem and hints at an approach to reduce its state space. The next chapter discusses

the results of related works, both presenting their conclusions and highlighting differences.

Chapter 3 is the pith of the thesis. It presents state space reductions on an SCP’s initial

four-connected graph that maintain at least one optimal solution. Each step is rigorously

proven to guarantee that optimality is preserved. In chapter 4, experimental results, along

with discussions about the reductions, limitations to this model, and possible extensions
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appear. Chapter 5 concludes the thesis.
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CHAPTER 2

Previous Work

Many variations on the Stacker-Crane Problem (SCP) have been formulated and analyzed

since it was first introduced by Frederickson et al. (1976). An overview of several SCPs

will be presented below. Several variations in graph structure and preemption lead to

interesting differences in properties between different types of SCPs. Berbeglia et al. (2007)

provides a classification scheme of delivery problems based on problem statements. In that

scheme, the SCP is one of the problems with the most rigid specifications in the problem

hierarchy. Changing constraints such as the number of cranes, capacity of cranes, and

allowing variable capacity requests all generalize the SCP. The first section of this chapter

will focus specifically on solving the SCP on various graph topologies. All of these variations

assume a single crane that can carry a single resource at a time, and that there are constant-

size resource requests. The SCPs discussed will vary in graph properties and are discussed

as both preemptive and non-preemptive problems. The second section will present other

work on grid pathfinding.

2.1 Stacker-Crane Problem on a graph

The most general SCP is presented on a graph. This section presents previous results of

both non-preemptive and preemptive SCPs on graphs.

2.1.1 Non-preemptive SCP on a graph

The Stacker-Crane Problem was named and first presented and analyzed by Frederickson

in 1976. The initial formulation required a set of arcs to be traversed in any order over

a complete graph. Each arc is a single directed edge in the graph. Three variations on

8



this problem are presented: Vs (the starting vertex of the crane) and Vg (the goal vertex

of the crane) are the same, Vs and Vg are different, and Vg is unspecified. The first is the

most similar to a circuit in the traveling salesman problem. To prove its computational

complexity, SCP is reformulated as a recognition problem: given C ∈ N, decide whether

a solution to the SCP exists with cost(solution) ≤ C. It is shown that the traveling

salesman problem can be reduced to the SCP in polynomial time and a solution to the

SCP can be verified in polynomial time. Therefore, the circuit version of SCP is NP-

complete. Frederickson further shows that the other two variations are NP-complete by

simple reductions. The third version, in which the crane can stop at any vertex, is the

version that we are most interested in. The paper also presents an approximation algorithm

for the general SCP that requires a fully connected graph. The graph is processed so that

its edge costs follow the triangle inequality and so that each vertex is either a start or goal

vertex for a single arc. This is possible by splitting vertices that are serving as more than

one arc endpoint and excising vertices that are not an endpoint of any arc. The approximate

solution is at most 9

5
larger than the optimal solution and the algorithm runs in polynomial

time.

Since this formulation is fully connected and follows the triangle inequality, the edge

between each start and goal vertex has the lowest cost and is the only edge considered in

delivery. Without considering arcs that span more than one edge, every resource is moved

directly from its start to goal vertex. If no resource moves along more than one edge,

preemption is not possible.

The motivation for the solution to this problem is given briefly as “practical applications

such as operating a crane or forklift, or driving a pick-up and delivery truck.” The paper

makes no more mention of any physical problems that its proposed solutions may be applied

to. Frederickson focuses more on the theoretical properties of the SCP than on what

problems it might help solve.

9



2.1.2 Preemptive SCP on a graph

A rigorous analysis of preemptive SCPs on a graph did not appear until recently [Kerivin

et al. (2012)]. Kerivin et al. focus on a problem related to SCPs: the Single-Vehicle

Preemptive Pickup and Delivery Problem (SPPDP). In the general SPPDP, there is still a

single delivery agent, but it is not limited to carrying one resource at a time. In addition,

different resources may be requested in different amounts. It is possible for resource R to

take up twice as much space as resource T in the vehicle, rather than in SCPs, where all

resources are the same size. The SPPDP is specified on a directed graph which may be

incomplete, and each vertex is at the end of at most one resource arc. The paper considers

the unitary SPPDP, in which the delivery agent only has space for a single resource. The

only difference between the unitary SPPDP and the preemptive SCP is that the agent in

the unitary SPPDP is only allowed to traverse each directed edge at most once. The paper

proves that, for graphs with vertices that follow the SPPDP restrictions of no more than one

arc endpoint per vertex, an optimal solution exists when traversing each directed edge at

most once. An integer linear program solution is presented for the SPPDP that can easily

be adapted to the preemptive SCP. Like the case of non-preemptive SCPs on a graph, the

traveling salesman problem can be reduced to a preemptive SCP, suggesting that it is also

NP-complete [Anily et al. (2006)].

2.2 Stacker-Crane Problem on a line

Rather than Frederickson’s introduction of the SCP on a graph, the presentation of the

SCP along a single line [Atallah and Kosaraju (1988)] has a very specific motivating appli-

cation that spurred analysis of the problem. Atallah et. al. consider a robot with a fixed

rotating base and a telescoping arm with a gripper at the end. The problem is presented

as a set of objects that the robot must pick up and move to specific locations. The two

movement actions are rotating the arm and telescoping the arm. These two actions are split

into different subproblems and considered independently. Considering an SCP with only a

10
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Figure 2-1: Example of arc augmentation on non-preemptive SCP on a line.

telescoping arm allows for movement only along a single line.

2.2.1 Non-preemptive SCP on a line

The non-preemptive stacker-crane problem was introduced independently in two papers

[Atallah and Kosaraju (1988), Ball and Magazine (1988)]. Atallah’s paper considered a

telescoping robot arm moving objects back and forth on a table. Ball’s paper is motivated

by automated chip placement on circuit boards. In this second paper, preemption is ignored

because the chips are being moved from a line of feeder trays to their sockets and cannot

be stored at intermediate locations on the circuit board. Even though the problem is over

a two dimensional space, it is assumed that the arm will be moving sequentially to each

feeder tray without returning to a previous one. When this is the case, any loop in the arm’s

path is a fixed distance (from a feeder tray to a goal and back to the feeder tray) and can

be ignored. Ball presents a polynomial-time algorithm that provides bounded suboptimal

solutions. On a Manhattan metric, the solution is optimal because of the independence of

vertical and horizontal movement.

The Atallah paper considers a properly one-dimensional telescoping arm moving objects

along a line. An example SCP on a line is shown in figure 2-1, with arcs added for two

arc augmentation steps. Since preemption is not considered, there is no advantage for any

detours and any solution will contain all arcs in the problem. These arcs are laid out over
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the line, as shown in figure 2-1b. It is not guaranteed that each goal of an arc is the start

of the next, so the required arcs must be augmented with additional edges in order to have

a fully connected tour. This is split into two steps. In the first step, all edges that are

traversed a different number of times in the two directions have antiparallel edges added to

balance out as every vertex must have the same number of edges leaving as it has coming

in (figure 2-1c). An unbalanced number of edge traversals implies that the arm stopped

somewhere along its route. This gives valid minimal paths for any subset of the line that

is covered by an arc, but there may be disjoint sections in between covered segments. To

make a feasible motion plan that reaches all of the section, minimal edges must be added

to connect all of the sections, as seen in figure 2-1d. The resulting tour is optimal, since the

graph is linear and each subsection is optimal. These augmentations are both fast, and the

running time of Atallah’s algorithm is O(m + nα(n)), where m is the number of objects,

α() is the inverse Ackermann function, and n is the number of vertices that may be start

or goal locations for the objects.

2.2.2 Preemptive SCP on a line

The robotic arm in Atallah’s paper can both rotate and telescope. He proves directly that

a preemptive SCP on a circle can be solved in polynomial time. The solution is easily

applicable to a preemptive SCP on a line, so preemptive SCPs on lines can be optimally

solved in polynomial time. This can be seen by embedding the line on a small arc of a circle,

in which a full rotation is possible but the cost is too high to be feasible. The solution for

both preemptive and non-preemptive circular SCPs will be discussed in the next section.

2.3 Stacker-Crane Problem on a circle

As mentioned in the previous section, Atallah et. al. analyzed SCPs on a circle with the

intention of planning a rotating robot’s movements. The paper finds that both preemptive

and non-preemptive SCPs can be solved in polynomial time. The proof that a preemptive

SCP on a circle can be solved in polynomial time can be easily extended to a preemptive

12



SCP on a line.

2.3.1 Non-preemptive SCP on a circle

The solution for a SCP on a circle takes a similar approach to a SCP on a line. A large

difference, however, is that it is no longer true that the number of traversals in both di-

rections along each edge must be balanced because it is possible to fully rotate around the

circle. Instead of having a balanced number of traversals along each edge, there must be

the same number of unbalanced traversals along each edge. For example, if edge e1 has 2

clockwise traversals and 4 counterclockwise traversals, a different edge e2 must have 2 more

counterclockwise traversals than clockwise. With this rule, the solution uses the same two-

step augmentation process as the solution on a line. First edges are added to the required

arcs so that all of the edges have the equal differences in traversals. Second, additional

augmenting edges are added with the observation that there is always an edge that has at

most one augmenting edge. The computation for an optimal solution runs in O(m+n log n)

time.

2.3.2 Preemptive SCP on a circle

In the case of a preemptive SCP on a circle, it shown that each object needs to be moved

in only one direction to reach its destination. Furthermore, at most one object must be

transported the long way around the circle to its destination. With proofs of these two

theorems, the calculation time for a solution is shown to be O(m+ n)

2.4 Four-connected Grids

The goal of this thesis is to present a state space reduction of a four-connected grid. Al-

though the stacker-crane problem has been studied on many topologies, it has not been con-

sidered on four-connected grids. Four-connected grids are popular in video games, as well

as being used as discretizations of rectangular rooms in robotic motion planning. Recently,

symmetry-reducing methods have been considered for path finding on video game-style grid

13
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Figure 2-2: Three of the many minimal paths from S to G.

maps.

Harabor and Botea (2010) use the intuition that there are many equivalent paths on a

four-connected grid and that parts of the grid can be pruned. Choosing the prunings wisely

still allows for optimal solutions, and the pruning process can also be completed quickly.

In the maps that Harabor analyzes, there are multiple rooms connected by thin corridors.

Interior vertices in areas with no start or goal vertices are pruned, and the gaps in between

are converted to ‘macros’ - single movements that cover multiple horizontal or vertical edges.

This results in paths that follow close to obstructions whenever possible, and only make

a few jumps across open spaces. The pruning algorithm is tailored to speed up finding a

single path using an A* search. The paper finds that this pruning works best for grid maps

with large open areas, as only a small fraction of vertices need to be considered. It provides

a speedup factor between 2 and 3 for finding single paths through the reduced search space,

including the reduction time. We will see a similar intuition for pruning nodes to reduce

the SCP state space. Figure 2-2 shows three possible paths through a graph from a start

vertex to goal vertex. While it is an interesting combinatorics problem to determine how

many optimal paths there are, we are satisfied with finding a single one. We are looking for

any simplifications that we can find to faster arrive at an optimal answer.
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Figure 3-1: Example of a set of vertices (left) and the resulting Hanan grid (right).

CHAPTER 3

Reductions

How can we pick a subset of intermediate points that is guaranteed to contain an optimal

solution, but as small as possible in order to shrink the state space? This chapter presents

incremental steps to decrease the state space of a SCP. Each step is proven to maintain at

least one optimal solution to the original problem. First, a quick summary of the steps is

given. Next, these reduction steps are presented in detail with supporting proofs. These

reductions are based on a specific property of the SCPs that we are considering: the graph

that the crane can move over is a four-connected graph.

3.1 Overview

In lemma 1, we will show that we can ignore any points outside the bounding box of

the entire set of start/goal positions because it will never be advantageous to leave that

boundary, let alone drop a resource there. Additionally, we show in lemma 4 that we can

restrict movement to a Hanan grid. A Hanan grid is a set of points with horizontal and
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vertical lines through each point. An example Hanan grid is shown in figure 3-1. Using start

and goal locations as the set of points to construct the grid, the lines form edges that are

possible crane paths. The grid is contained within the bounding box, so every crane position

on it is acceptable. We can, in fact, limit our search to only crane positions on the grid. We

know that our starts and goals all lie at cross points of the grid because we constructed the

grid that way. With all start and goal points lying only at the corners of grid cells, there

is no advantage to cutting diagonally across a grid cell. Because the crane moves over a

four-connected graph, distance between two vertices is measured with Manhattan distance.

Therefore, moving along the cell’s edges is the same distance as any diagonal path. We do

not have a risk of discounting all optimal solutions with these restrictions even though we

have reduced the search space. We can further look at where we will consider drop points

within this grid. Lemma 6 proves that if the crane is carrying a resource along an edge in

the Hanan grid, its path will contain both of the endpoints of that edge. If the crane drops

off a resource along this edge, it could also drop the resource off at one of the endpoints

without increasing the total cost of the path.

These reductions leave us with a Hanan grid, which is a subset of the original graph, as

shown in theorem 7 and lemma 8. A further reduction, theorem 9, allows us to remove ver-

tices that are provably redundant. Any optimal solution that passes through these removed

vertices can be modified to pass through other vertices while maintaining optimality.

3.2 Proofs

The following lemmas and theorems reduce the search space incrementally. They assume the

search space starts with a four-connected undirected graph with unit-cost edges and allow

for the drop action at any vertex. Resources don’t interfere with each other, so multiple

resources may occupy the same vertex and the crane can pick up any resource at its vertex

(assuming that the crane is not already carrying a resource). By proving that an optimal

solution exists with the restrictions in the following theorems, we can effectively reduce the

size of the graph we need to search over for an optimal solution. Since we are reducing the
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pathThroughVertex(V,Rs, Rg, v)

1. Move horizontally from Rs to closest vertex to v

2. Move vertically to other side of bounding box

3. Move horizontally to Rg

Figure 3-2: An algorithm that finds an optimal path from Rs to Rg that passes through v.

graph size rather than providing a specific solution to the SCP, many algorithms from the

existing literature can be applied to the updated graph.

3.2.1 Hanan Grid Reduction

Definition 1. Bounding box

A bounding box for two vertices, v1 and v2, is the set of all vertices contained in the

rectangle formed by horizontal and vertical lines passing through v1 and v2. The bounding

box contains boundary vertices, so the bounding box is never empty. For a given set of

points, the bounding box is unique. The bounding box for vertices v1 and v2 are referred

to as the “bounding box of (v1, v2)”.

Lemma 1. There exists an optimal solution within the smallest bounding box that contains

the start and goal locations of all resources.

Proof. Consider the smallest bounding box, B, that contains all start and goal locations

of all resources. If the crane moves outside of B, each movement away from B must be

paired with a movement toward B in order to reach any resource’s start or goal location.

This movement costs strictly more than an equivalent path that does not consider moving

outside of B. Therefore, the crane never considers moving outside of B.

Lemma 2. For all vertices in the bounding box of resource R, there is an optimal path from

Rs to Rg that passes through that vertex.
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Proof. This lemma can be proven by creating an algorithm that constructs a path from

Rs to Rg and proving that the algorithm always passes through v. Because horizontal and

vertical distance measurements are independent, the crane can interleave horizontal and

vertical steps toward Rg in any order. The simple algorithm in figure 3-2 constructs a path

that will always be optimal and will always pass through the desired vertex v, as long as v

falls within the bounding box. In line 1, the crane moves to the closest vertex to v that it

can through only horizontal movement. At this point, the crane is not displaced horizontally

from v. The crane moves vertically to the opposite side of the bounding box in line 2. The

crane passes through vertex v in this step because the only possible displacement between

the crane and v after line 1 is vertical, and the crane’s movement passes through every

vertex in the bounding box on this vertical line. The crane starts the last step on the same

horizontal line as Rg because it crossed the entire bounding box from the horizontal line

that passes through Rs. It moves the rest of the horizontal displacement to the goal in

line 3. In the edge cases in which v is on the same horizontal or vertical line as Rs or Rg,

one of the steps will have an actual movement of 0. The algorithm still works in these cases.

If Rs and Rg are on the same line, the crane must necessarily pass through every vertex in

the bounding box to reach Rg. The algorithm in figure 3-2 finds a path from Rs to Rg that

passes through v without specifying where v falls in the bounding box.

We must still prove that the path determined by the algorithm is optimal. This is easy

to show by examining the horizontal and vertical distances that the crane covers. The only

vertical movement is in line 2, which means that the crane has travels the least distance

possible, vertically. In line 1, the crane does not move away from Rg, because that would

cause it to leave the bounding box and v is inside the bounding box. The crane reaches Rg

in line 3, so it cannot possibly be moving away from Rg. We haven proven that the crane

moves from Rs to Rg in the three lines of the algorithm. Therefore, the total horizontal

distance is covered in lines 1 and 3. The crane does not move away from Rg in either of

those steps, so the crane must also be covering the smallest horizontal distance. If the crane

covers both the smallest horizontal and vertical distance possible using a Manhattan metric,
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Figure 3-3: Example of lemma 3: Case 1 (left) and case 2 (right).

we know that the path is optimal. This satisfies the assertion of the lemma.

Lemma 3. For all resources R, with start locations Rs and goal locations Rg, do not

consider moving R outside of the bounding box of (Rs, Rg).

Proof. Figure 3-3 shows specific examples of the two general choices: R will be dropped off

at Rg (case 1), and R will be dropped off somewhere else (case 2). In case 1, any movement

outside of the bounding box requires the opposite movement back toward the bounding

box before Rg is reached. The minimal distance is simply ‖Rs − Rg‖1 and a path with

that distance can be easily found within the bounding box as shown by lemma 3-2. The

blue and green paths in case 1 of figure 3-3 show two such paths. Also illustrated is a red

path that leaves the bounding box. On the red path, the crane’s initial movement brings it

outside the bounding box. This movement is matched with a later movement that returns

the crane to the bounding box. Each time there is a matched movement like this, the path

length is unnecessarily increased. Therefore, a strictly shorter path can be found without

leaving the bounding box.

In case 2, R is dropped off at an intermediate location, Ri. This means that the crane

is going to move at least one other resource and must later return to Ri to continue moving

R to Rg. We will call the initial position of the first other resource Os, and Og is the

last position of the resource the crane drops before returning to Ri. If the crane moves R
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outside its bounding box, the crane must later move R back to the bounding box (since

Rg is contained in the bounding box). The crane can instead drop R off on the boundary

of the bounding box and return to it without increasing its total path length. The crane’s

full path must go from Rs to Ri, Ri to Os, Os to Og, Og back to Ri, and Ri to Rg. Note

that some of these distances may be 0. We can show that picking the closest vertex to Os

inside R’s bounding box is minimal by breaking each of these paths into their component

parts and examining them. No matter where Ri is, we must move from Rs to Ri and Ri to

Rg. Since Ri is inside the bounding box, we know we can find an optimal path through it,

using lemma 3-2. We must also do a loop from Ri to Os, Os to Og, and Og to Ri. Since

we picked the closest vertex to Os in the bounding box, we can also find a minimal path

from Ri to Os to Og to Ri. This is a shortest path that starts at a specific vertex in the

bounding box, delivers the other resources, and returns to that vertex in the bounding box.

Os to Og is a fixed distance and Ri to Os is minimal. Once we have decided upon an Ri, Og

to Ri is also fixed. The two subproblems are solved minimally for their delivery ordering,

and are independent. If a different order of delivery is shorter, we will consider that order

instead. By dropping R at the boundary, the crane is carrying R for less time than if R

is moved outside of the bounding box. As the crane is carrying R over fewer vertices, that

means the crane is empty and available to carry a different resource over more vertices. It

will never be advantageous for the crane to be full longer than it has to. Therefore, we can

constrain movements and drops of R to its bounding box.

The examples in figure 3-3 are arbitrary, and the lemma holds for any two dimensional

bounding box. The lemma holds if R is dropped two times at intermediate vertices. In this

case, R will be dropped at Ri1, Ri2, and Rg. We can construct a similar problem where

R and the crane start at Ri1 rather than Rs. We have proven this lemma already for the

single drop case, so we only have to prove that there is not an advantage to move the same

resource while R is at Ri1 and Ri2. That is, we want to show that the crane’s actions are

independent while R is at different intermediate vertices. If the crane moves resource T

while R is at an intermediate vertex, there is an optimal distance that it must be moved to
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Tg. Doing part of this movement while R is at Ri1 and part at Ri2 means that the crane

must visit the same Ti twice (to drop T at Ti while R is at Ri1, and to pick up T at Ti while

R is at Ri2). There is no advantage to splitting up T ’s delivery like this. Therefore, we can

consider the crane’s actions as independent when R is at different intermediate vertices, and

this lemma holds for two intermediate drops. As the actions at every intermediate point

are independent, this argument can be extended to any number of intermediate drops.

If we consider a one dimensional case that Rs and Rg lie along the same line in the

grid, the lemma restricts R to the segment between the start and goal, and all of the same

assertions still hold as the two dimensional case.

3.2.2 Hanan grid

A Hanan grid is a graph that is constructed from a set of vertices in a plane [Hanan (1966)].

Following is a description of a Hanan grid’s construction. First, the smallest bounding box

that contains all of the start and goal vertices of resources is created. Vertices are added

at the four corners of the box (if they are not already there) and vertical and horizontal

edges are added to connect these vertices. Next, vertical and horizontal lines are drawn

to intersect every start and goal vertex, and are clipped at the bounding box. Wherever

the lines intersect, a new vertex is added to the graph. These line segments are added as

sets of edges to the graph, where each line segment is split into edges at all the vertices it

intersects. The original four bounding edges may also be replaced by multiple edges if any

interior line segments intersect them. This results in a four-connected graph with edges

that are either vertical or horizontal, which gives the Hanan grid its name. The vertices

added by this construction are called Hanan points.

By its construction, the Hanan grid has an import property: a minimal rectilinear path

between any pair of vertices lies on the Hanan grid. This can be easily shown by considering

moving a crane horizontally and then vertically from its start to goal. Given the vertex

pair (s, g), there is an unique corner point c that lies at the intersection of a horizontal line

through s and a vertical line through g. Edges exist from c to both s and g, and c is a Hanan
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point by definition. The edges that connect (s, c) and (c, g) also exist by construction of

the Hanan grid. Since the distance is measured using a rectilinear metric, these horizontal

and vertical edges are the shortest distance from s to g.

It is important to note that the size of a Hanan grid is polynomial in the number of

input vertices. Given n input vertices (which corresponds to at least n
2
resources), there is

a maximum of n2 vertices in the Hanan grid. This is achievable if all of the input vertices

lie along a diagonal.

Lemma 4. There exists an optimal solution when crane movements are restricted to a

Hanan grid constructed with all resource start and goal vertices.

Proof. Figure 3-4 illustrates an example with paths that are valid and invalid with the

Hanan grid movement restriction. The red path leaves the Hanan grid constructed from

{Rs, Rg, Ts, Tg} while the green paths stay on edges contained in the Hanan grid. In Case

2, the red path is a suboptimal solution. Firstly, this lemma is trivially true when Rs and

Rg lie on the same gridline. The bounding box contains a single line segment, which is also

on the Hanan grid. Using lemma 3, R must move along these edges.

When Rs and Rg don’t lie on the same gridline, we consider the same two cases as the

previous lemma: the crane either moves R directly to Rg or drops it at an intermediate

point, Ri. In case 1, R is moved to Rg with no drops. Using lemma 3-2, we can pick v to

be one of the corners in the (Rs, Rg) bounding box that is not Rs or Rg. Since we picked v

to be a corner point, the shortest distance from Rs to v is a straight line, and the shortest

distance from v to Rg is a straight line. Both of these lines are on the Hanan grid because

they are straight vertical or horizontal lines that pass through Ri or Rg.

In case 2, the intermediate drop case, R is dropped at Ri to bring other resources to

their destinations. We can break this into two subproblems, similarly to case 2 of lemma 3.

The crane must move from Rs to Ri to Os to Og to Ri to Rg. By lemma 3, Ri is the closest

vertex to Os in the bounding box of (Ri, Rg), we can show that all of the crane’s movements

in an optimal path lie on the Hanan grid. There are two subcases to consider: case 2a, in

which Os lies within the bounding box of (Rs, Rg), and case 2b, in which Os lies outside
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Figure 3-4: Demonstrations of lemma 4: Case 1 (top) and case 2 (center and bottom).

The red path leaves the Hanan grid constructed from {Rs, Rg, Ts, Tg} while the green paths

stay on edges contained in the Hanan grid.
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the bounding box. For case 2a, the algorithm in figure 3-2 can construct an optimal path

from Rs to Rg that passes through Os. All of the edges that it follows lie on a vertical or

horizontal line that passes through one of the three vertices, which means that its path lies

on the Hanan grid. If we set Ri to Os, we can drop R along this path we determined to

deliver R. We know that the crane can deliver the other resources between Os and Og along

the Hanan grid by applying case 1 of this lemma. If some of the intermediate resources

are also dropped, case 2 can also be applied to them. The crane can also return from Og

to Os/Ri to pick R up again by following the Hanan grid. If we had considered a vertex

besides Os as Ri, the Ri → Os → Og → Ri loop could not be a shorter distance. Choosing

a vertex closer to Og for Ri would mean that it is farther from Os by the same amount and

no advantage is gained, and choosing a vertex farther from Og makes both the (Ri, Os) and

the (Og, Ri) legs longer. We have proven for case 2a that there is an optimal path if Ri

equals Os, and that this path lies on the Hanan grid.

In case 2b, when Os is outside the bounding box, we must show that Ri is on the Hanan

grid. We have already shown that picking Ri that is closest to Os provides an optimal

solution. If Ri is on a corner of the bounding box of (Rs, Rg), we know that it must be a

Hanan point. If Ri is not on a corner, that means that the path from Ri to Os is a straight

line. Ri is a Hanan point because it lies on the line that passes through Os, and is also

along an edge of the bounding box of (Rs, Rg). So, the path in case 2b lies on the Hanan

grid and is optimal. In all cases, an optimal solution exists if the crane is constrained to

move only along the Hanan grid lines.

Theorem 5. An optimal solution exists when only considering drops at Hanan points.

Proof. The intersection of Hanan grid lines are Hanan points. Lemma 4 proves that we

can restrict the crane to movement along the Hanan grid without losing optimality, so it

can only drop a resource on a vertex on the Hanan grid. If a resource is dropped at Ri

between two adjacent Hanan points, Pi and Pj , the crane must pass through either Pi or

Pj to reach Ri while staying on the Hanan grid. An example subsection of a graph with Pi
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Figure 3-5: Demonstration of theorem 5: An example of two adjacent Hanan points(left),

with a section of the Hanan grid edges shown in green and the original four-connected edges

in black. On the right, an example with d marking all of the drop vertices that will be

considered.

25



and Pj is shown in figure 3-5(left). The crane must later pass through either Pi or Pj in

order to reach the resource at Ri and bring it to its goal. We know that the resource at Ri

is not at its goal vertex because all goal vertices are Hanan points. The crane can drop the

resource at Pi or Pj without adding any distance to a solution with a drop between Pi and

Pj . Without loss of generality, assume that the crane will pass through Pi to pick up the

resource from Ri. When the crane picks up R, it must pass through either Pi or Pj to get

to Rg. In the first case, the crane moves from Pi to Ri back to Pi. This is longer than if R

was already waiting at Pi. In the second case, the crane moves from Pi to Ri to Pj . This

is the same length as when Ri is located at Pi, so we can ignore it as a redundant solution.

Therefore, we can restrict drops to Hanan points.

Figure 3-5(right) shows all of the Hanan points on an example graph, which are the only

points that the crane will consider dropping a resource. In addition to the vertices marked

d, all of the other labeled vertices are also Hanan points. Note that some of the drop points

are immediately rendered infeasible by lemma 3.

Lemma 6. A path that is restricted to the Hanan grid and passes through a single Hanan

point twice without passing through any other Hanan point is suboptimal.

Proof. The four-connected graph is finer-grained than the Hanan grid, so it is possible for

the crane to move along several four-connected graph edges that correspond to a single

Hanan grid edge. Consider a crane path on the four-connected graph that passes through a

Hanan point H twice without passing through any other Hanan point. This means that the

crane didn’t traverse a full Hanan grid edge, or else it would have passed through another

Hanan point. By the construction of the Hanan grid, resources can only start at Hanan

points. By theorem 5, resources need only be dropped at Hanan points. Therefore, there

can never be a resource at a vertex that is not a Hanan point. If there are no resources lying

along the edges of the Hanan grid and the crane will not consider dropping resources along

those edges, there is no possible benefit to traveling part of the way between Hanan points

and turning back. The only enabled actions at intermediate vertices are move actions.
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Figure 3-6: Replacement in Theorem 7: An example of a four-connected graph(left) with

all of the potential drop points from Theorem 5 and the Hanan grid(right) that will be

constructed from the graph.

Passing through H twice without touching another Hanan point means the system is in

same state the first and second time the crane is on H. Considering this state space loop

leads to a higher path cost than not considering it, so it is suboptimal and actions that lead

to a loop can be ignored. As a result, there is only one valid action at each intermediate

vertex: to continue moving along that Hanan edge.

Theorem 7. The Hanan grid can replace the four-connected graph.

Proof. We have shown that there is an optimal solution only considering drops and, by

extension, pickups at Hanan points. In addition, we showed that there is an optimal solution

when only considering movements along the Hanan grid, and those movements will lead from

one Hanan point to an adjacent one without turning around. This means that any vertices

that are not on the Hanan grid are unreachable, and there is only one enabled action at

each vertex in the four-connected graph that lies on an edge of the Hanan grid. With

these restrictions, we can replace the four-connected graph with the Hanan grid that we

constructed.

There is one important feature missing from the Hanan grid. The edges have no assigned

costs. We can determine the cost of each edge by laying the grid over the original graph and
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seeing how many unit-cost edges in the original graph cover each Hanan grid edge. Assigning

the sum of these four-connected edge costs to the Hanan grid edges completes the Hanan

grid construction. Every action sequence on the Hanan grid can be converted in linear

time to an action sequence on the four-connected graph. This is possible by scanning the

action sequence over the Hanan grid and replacing each movement action by n of the same

move action, where n is the cost of traversing the edge of the Hanan graph. Additionally,

the cost of the sequence on the Hanan grid is equal to the cost of sequence on the original

graph because of our choice in Hanan edge costs. An example of this replacement is shown

in figure 3-6. Edge costs are shown are shown in both the four-connected graph and the

Hanan grid.

Lemma 8. A Hanan grid cannot have more vertices or edges than the original four-

connected graph.

Proof. The Hanan grid is constructed based on the start and goal locations of resources.

All of these locations are vertices in the four-connected graph. The Hanan points are also

necessarily vertices in the four-connected graph and are therefore a subset. Every edge

in the Hanan grid is comprised of at least one edge in the four-connected graph, so there

cannot be more edges in the Hanan grid than the four-connected graph. Therefore, the

Hanan grid is a subset of the four-connected graph. Unless resource endpoints are quite

dense (at least min(m,n) endpoints for an m× n graph), the Hanan grid will be a proper

subset.

Theorem 7 reduces the number of vertices on the four-connected graph in the problem.

This reduction removes extraneous graph information and makes it so that the size of

the graph depends only on |A|. For sparse graphs (graphs where most vertices are not

endpoints), this can be a tremendous advantage. After applying this reduction, the problem

size is independent of the original grid dimensions.

It is not guaranteed that the crane will start on the Hanan grid. Only a small modifi-

cation to the Hanan grid is needed to solve a problem with this property. Adding a source
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vertex for the crane with directed edges that lead to non-dominated Hanan points will fix

this issue. A dominated Hanan point is one that is reachable optimally by passing through

another Hanan point. If a solver that does not handle directed edges is being used, it is

equally valid to solve several problems with the crane moved to each non-dominated vertex

and using the minimum solution as a global solution.

There are four cases to consider for an initial crane position: on a Hanan point, on a

Hanan grid edge, inside a Hanan grid cell, and outside of the Hanan grid. These will be

cases 1, 2, 3, and 4, respectively. These cases are all demonstrated in figure 3-7. In case 1,

the crane already lies on a Hanan point so there is no further work to do. In case 2, the

crane lies on an edge of the Hanan grid and there are two non-dominated vertices. These

vertices are the endpoints of the edge the crane starts on. In case 3, the crane lies within

a grid cell and there are four non-dominated Hanan points that the crane can reach - the

four corners of that grid cell. Case 4 can be split into two cases: case 4a, in which the

crane is in between two Hanan points along one axis, and case 4b, in which there is one

non-dominated vertex on the Hanan grid. There are two non-dominated vertices in case 4a,

and only a single non-dominated vertex in case 4b. The examples of each case in figure 3-7

are generalizable. The costs of the added directed edges are determined by their rectilinear

distances.

3.2.3 Corner Removal

Thus far, we have replaced the original four-connected graph with a Hanan grid that is

constructed from the start and goal vertices of the resources. Because of the rectilinear

metric, there are many equivalent paths in the graph. The Hanan grid can be reduced

further by removing Hanan points that can be proven unnecessary. The following lemmas

reduce the search space further without sacrificing optimality.

Definition 2. Corner vertex

A corner vertex is any vertex that has exactly one horizontal edge and one vertical edge.

Definition 3. Diagonally opposite vertex

30



removeCorners(V,E,A)

1. Q← corner vertices of V

2. while Q

3. v ← Q.pop

4. if v ∈ pair in A then continue

5. if v′ does not exist then continue

6. V ← V \{v}

7. E ← E\{(v, ∗), (∗, v)}

8. foreach n ∈ v.neighbors

9. if n is a corner vertex

10. Q.push(n)

11. Return V,E

Figure 3-8: The corner-removal algorithm.

Every corner vertex v has a unique location where a diagonally opposite vertex may be.

This location is found by adding the two edges of v in a vector fashion. If a vertex exists

at this location, it is considered diagonally opposite v and is termed v′.

Theorem 9. The algorithm described in figure 3-8 maintains an optimal solution when the

original graph is a four-connected grid.

Proof. Because of symmetries, we can remove certain Hanan points and their edges using

the algorithm in figure 3-8, resulting in a reduced Hanan grid. Since the graph starts as

a grid, every pair of vertices is connected by edges with minimal rectilinear distance. We

are only interested in preserving minimal paths between start and goal vertices, which will

be referred to as ‘important’ vertices. Only corner vertices are removed, so vertical and

horizontal convexity is preserved. That is, at least one minimal path remains for important

every pair of vertices. We can prove this for both one and two dimensional cases.

In the one dimensional case, the entire Hanan grid lies along a single line. In this case,
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there are either no vertical edges or no horizontal edges. That means that there are no

corner vertices, which means no vertices are removed and the graph is unchanged.

The two dimensional case will be proven by induction. The original graph, the Hanan

grid, has an optimal path between every pair of vertices. Given a graph that has optimal

paths between every important vertex pair, consider executing lines 2-10 once on vertex c.

c has no more than two edges because only corners are added to Q. It has no fewer than

one edge because a vertex with zero edges would mean that the graph is disjoint, and the

algorithm cannot remove a vertex that causes the graph to become disjoint. There are two

cases to consider: c is not removed and c is removed. If c is not removed, the graph is

unchanged and therefore still has optimal paths between every pair of important vertices.

If c is removed, we are guaranteed that the graph is still connected because c′ exists. We

also know that c is not an important vertex. We can show that a path with equal distance

exists for any optimal path that passes through c. If c has one edge, there are no optimal

paths between important vertices that pass through it. Otherwise, all optimal paths that

pass through c can be routed through c′ instead. Passing through c′ instead of c only means

that vertical and horizontal movements are swapped, so the path length remains the same.

Examples of this case are demonstrated in figure 3-9.

It follows from this that a shortest path between every important pair of vertices is

preserved, and an optimal solution exists within the graph reduced by the algorithm in

figure 3-8.

Lemma 10. The algorithm described in figure 3-8 cannot remove vertices on a resource’s

bounding box that are closest to the start location of a resource that lies outside the bounding

box.

Proof. This lemma has a few cases to handle. First, there is only one way that a corner

of the initial Hanan grid can have this property. That is if a corner lies within a one

dimensional bounding box. In this case, the corner must also be an important vertex, as it

only has an edge on one side of it. Since it is important, it will never be removed. Besides

the case of an important corner vertex on a one dimensional bounding box, it is not possible
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for a vertex on a bounding box that is closest to another resource to become a corner. This

can be proven by contradiction. Assume vertex v is on the bounding box of (Rs, Rg) and

is closest to Ts and is a corner. We know that v is both a corner and on a bounding box.

That means that v’s edges lead to vertices that are also on the bounding box. Ts lies

outside of the bounding box, however, and there must be a path from v to Ts. The only

possible paths pass through one of v’s neighboring vertices, which means that one of these

vertices is closer to Ts than v is. Therefore, v is not the closest vertex to Ts and we have a

contradiction. Because of this contradiction, we know that if a vertex is both on a bounding

box and closest to another start vertex, then the vertex cannot become a corner. This, in

turn, means that the vertex cannot be added to Q to be removed.

Figure 3-9 shows an example run of the algorithm in figure 3-8 on the example we have

been using. 3-9a shows the input: vertices, edges, and pairs of start/goal vertices. 3-9b-3-

9k show the algorithm during execution, paused after line 3 executes. Line 3-9l shows the

graph that the corner-removal algorithm will return. In figure 3-9b, the starting corners are

added to Q and the top left corner has just been popped into v. In figure 3-9b, figure 3-

9c, and figure 3-9d, corners are popped from Q and removed from V , and their adjacent

vertices are added to Q. In figure 3-9e, v ∈ A, so the vertex is not removed from V . In

figure 3-9h, only one of the adjacent vertices is added to Q because the other one is not a

corner vertex. Removing v in figure 3-9k would cause V to become disjoint, so the vertex is

not removed. The final graph still has optimal paths between all pairs of important vertices

after redundant corners were removed.

In addition to theorem 9 maintaining shortest paths between pairs of important vertices,

we can show that it runs in O(|V | ∗ |A|) time. The loop in line 2 runs at most |V | times.

Line 4 may run as many as |A| times. Every other operation inside the while loop runs in

constant time. This may be surprising, as determining whether a graph is disjoint usually

takes more computation. In this case, however, we can take advantage of an important

property mentioned in theorem 9. Corner c is only removed if its diagonal vertex, c′ exists.

This means that checking if the graph would be disjoint without c is a single operation.
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Figure 3-9: Example of algorithm in figure 3-8 running. Light grey vertices are in Q and

the dark grey vertex is the current v being considered.
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Each corner has, by definition, two edges. On the four-connected grid, each neighbor vertex

has a maximum of four edges, so line 8 involves at most 8 edge checks. As one loop is nested

in another, we multiply their number of operations and arrive at O(|V | ∗ |A|) running time

for the algorithm in figure 3-8.
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CHAPTER 4

Discussion

This chapter provides experimental results of graph reductions on randomly generated prob-

lems, for both the Hanan grid reduction and the corner removal reduction. It also discusses

some important limitations to the ideas in this thesis as well as possible extensions to the

work.

4.1 Experiments

Using the theorems presented in this paper, we can compare the graph sizes of the original

state space versus the reduced state space. The experiments section discusses an approach

to generating SCP problems, reducing them, and comparisons of graph sizes.

4.1.1 Instance Generation

There is not a large corpus of real-world SCP instances[Cirasella et al. (2001)]. Therefore,

we need a way to generate random tests. The algorithm presented in Cirasella’s paper was

used as a reference and modified it for rectilinear space, as shown in the algorithm in Figure

4-1. The instance generator takes three parameters: the bounds of the graph, the number of

resources to move, and u. u dictates the maximum arc distance allowed, which can strongly

influence the structure of the problem. When u is small, a small percentage of the total

distance that the crane travels is along the arcs. Most of the distance that the crane travels

is travelled without carrying a resource. When u is large, more of the total distance that

the crane travels is traveled while carrying a resource.

The algorithm works as follows: A starting location for each resource is chosen randomly.

An offset for each resource (bounded by u) is chosen randomly and checked for bounds. This
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generateInstance(u, bounds, numRes)

1. A← {}

2. for i← 0..numRes

3. s← (rand(), rand())

4. do offset← (rand()/u, rand()/u)

5. while s+ offset 6⊂ bounds

6. A← A ∪ {(s, s + offset)}

7. Ci ← (rand(), rand())

8. Return A,Ci

Figure 4-1: Algorithm to generate random SCPs.

resulting offset gives the destination of the resource. A random starting location for the

crane is chosen. Finally, (source, destination) pairs of each resource are returned, along

with the initial crane location.

The input parameters allow for very different types of problems to be generated. As

u decreases and the bounds become very large, the resulting SCPs are approximable with

TSPs. We can see this by observing the total distance the resources must be carried,

dtot =
∑

i|Ris −Rig|, in comparison to the total distance the crane must go, Ctot, becomes

negligible. If u = 1 and the bounds are 10000×10000, a two-resource problem could end up

with Ctot being thousands of times larger than dtot. If u = 1, in fact, there will never be any

intermediate drops because the bounding box for each resource only allows the resource to

be moved from its start to its goal. This case is almost exactly the same as the Traveling

Salesman Problem because the solution only involves finding which order to visit resources.

4.1.2 Experimental Results

Using randomly generated instances with varied parameters, we can see the impact on ver-

tex counts that the reductions in this thesis have. The benefits from reductions diminish,

predictably, as the ratio of resources:vertices increases, as that means the graph is get-
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ting denser and the reduction is less likely to remove vertices. Graphs were generated for

bounds× bounds squares using u < bounds. Generating graphs with u > bounds would be

redundant, as the distance between each start and goal vertex is limited by the grid size.

Each plot in figure 4-2 demonstrates the average percentage reduction on 100 plots that

were randomly generated using the algorithm in figure 4-1. In the 10 × 10 instances, a

value of 4 was used for u. In the 100 × 100 instances, 60 was used. In all other instances,

a value of 100 was used. The plots show the impact of the Hanan grid reduction. The y

axis shows the percentage of vertices in the original four-connected grid. The box in each

plot surrounds the middle half of the results. The horizontal line in the box represents the

median value and the whiskers extend to the min and max. Circles beyond the whiskers are

considered outliers. The caption of each graph is the original grid size, though each graph

was truncated to its resource’s bounding box. For example, a generated 10 × 10 instance

may not have any important vertices in the left two columns. The original grid is considered

to be 8× 10 in this case, which decreases the impact of the Hanan grid reduction.

For larger grid sizes, the results show that the Hanan grid size depends almost completely

on the number of resources rather than the size of the grid. As the density of resources

on the grid increases, we see both smaller reductions and more variations in reduction size.

Figure 4-2a shows an average reduction of over 50% for the three resource case, while the

board is so dense in the 500 resource case that no reductions are possible.

The plots in figure 4-3 show the reduction from the Hanan grid to the Hanan grid with

corner removal applied. Each plot is marked with the original size of the four-connected

grid, even though the plots use the number of vertices on the Hanan grid as a baseline.

Corner removal works very well for problems with few resources. The graph is reduced by

at least 40% in the 3 resource case. Even for larger grids, we see the reduced graph has only

60-70% of the original vertices for most of the 10 resource cases. Rather than the Hanan

grid reduction that does not reduce the grid at all when resources are dense, corner removal

still deletes some vertices in all but the most extreme case (500 resources on a 10×10 grid).

These plots support two ideas that were mentioned earlier. First, the density of the
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Figure 4-2: Vertex reduction percentages from a four-connected grid to Hanan grid.
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Figure 4-3: Vertex reduction percentages by applying the corner removal algorithm to a
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resources on the grid has a major impact on both reductions. A denser graph means that

there are fewer vertices that are not important, which provides fewer chances to remove a

vertex. Second, these reductions can have a real and noticeable impact on the size of the

state space. If both the Hanan grid reduction and corner removal have 50% reductions, the

final graph size will be 75% smaller.

4.2 SCP in Higher Dimensions

All of the work presented here is defined for a two dimensional SCP. (One dimensional

SCPs can be solved in polynomial time, so reducing their state space is not as interesting.)

Because distances are measured using Manhattan distance, there are no assumptions made

that only apply to two dimensions. An n-dimensional SCP problem could be reduced

using the theorems in this thesis with only a few small definitional changes. Rather than

a two dimensional bounding box with corners on the start and destination of a resource,

the bounding box would be defined as an n-dimensional box that otherwise has the same

properties. The box would have faces instead of edges, but it is still possible to find minimal

paths as the distance in each direction is independent. A Hanan grid would be constructed

by extending edges and creating vertices in every direction rather than just two.

To apply corner removal, corners would have to be redefined, as one edge in each of

two directions would no longer apply in n dimensions. Instead a corner would be defined

as a vertex that has one edge for each of n different directions. Also, a diagonally opposite

vertex would be determined by vector-wise summing each of the n edges on the corner. For

k resources, a Hanan grid may have as many as kn vertices, which becomes very large very

quickly.

4.3 Limitations and Extensions

There are many limitations to this reduction algorithm. Some of the limitations come

from the chosen topology and some from other problem and solution properties. The
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integral choice of using a four-connected graph may be useful in some situations, but a

poor approximation in others. If an agent can move diagonally, restricting it to a rectilinear

grid increases its pathlength unnecessarily. An additional environmental hazard that we

may encounter is an obstacle in the grid. This reduction will not provide correct results

if the initial four-connected graph has ‘holes’ in it, which may represent obstacles that

interfere with the agent. Problems that are more dense, those that have a large ratio of

resources to vertices, derive little benefit from the reductions. Other search techniques may

better solve dense graphs like these.

4.3.1 Euclidean Distance

Many of the theorems in this thesis rely on properties that rectilinear measurements exhibit,

but Euclidean measurements do not. If an agent can move in arbitrary directions, restricting

it to a grid will negatively impact its overall pathlength. In a worst case scenario, the

rectilinear distance of a path may be up to 2√
2
≈ 1.41 times longer than the Euclidean

distance. The rectilinear distance can never be shorter than the Euclidean distance. This is

a loss of nearly the same efficiency that we gained by allowing for preemption. If we want

to model a preemptive SCP using Euclidean distance, we will have to approach it from a

very different way.

The four-connected graph construction that we have used does not represent possible

motion transitions in this situation. If we choose to discretize the movement space, we will

have to work with a fully connected graph as the agent may move at any angle. Rather

than approaching the problem by removing vertices as we did in the rectilinear case, we may

start with a fully connected graph on the vertices in A and add as few vertices as needed to

guarantee an optimal solution. In the non-preemptive case, this is simply the original SCP.

Since preemption is allowed, we have to pick some additional vertices that would allow for

an optimal solution. We can certainly consider a theorem similar to lemma 1. In this case,

we are using Euclidean distance and can confine drop points to the convex hull of A.
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4.3.2 Obstacles

The reduction algorithms assume that the initial graph has no holes – the Hanan grid

reduction relies on this for combining edges and the corner removal algorithm relies on this

for initializing its queue. The corner removal algorithm will preserve all shortest paths

between important vertices if its initialization step is modified to add any interior corners.

The Hanan grid reduction, however, combines and deletes edges and may remove optimal

all optimal paths between two important vertices.

In physical domains, obstacles can be an important feature to model. There may be

objects on the floor to avoid, or separate rooms with narrow halls or doorways connecting

them. In these cases, the whole search space cannot be reduced with the same approach as

we took. It would still be possible to reduce subsections of the grid, but it would require

much more processing to find valid subsections to reduce. Harabor’s work is better adapted

to pathfinding with separate rooms, though neither his work nor this one deals well with

smaller obstacles.

4.3.3 Steiner Tree Guidance

Steiner minimal trees are trees which connect a set of vertices V with a minimum length

of line segments [Gilbert and Pollak (1968)]. Rather than minimal spanning trees which

only allow original vertices to be used, Steiner trees allow the introduction of new vertices

if these vertices reduce the total length of the edges connecting V . Finding the Steiner

minimal tree of a set of vertices is NP-complete for both Euclidean and rectilinear space

[Karp (1972), Garey and Johnson (1977)]. Steiner points have the same goal as drop points

in the preemptive SCP: to reduce the total distance between more than two points.

It may be possible to constructively build a graph from A and add the set of Steiner

points as additional drop points to still achieve an optimal pathlength. In an algorithm

like A*, the Steiner points would have to be generated for each subgraph when considering

states that have some delivered resources.
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4.3.4 Further Reductions

It is evident that there are still symmetrical paths, meaning that there are still redundant

vertices. The simple example that we have used in this thesis (in figure 3-9l) shows that

at least two further reductions are possible. The vertex immediately above Rg is not an

important vertex and only has two edges. Like in lemma 6, there is never a situation where

changing directions or dropping a resource at that vertex will be advantageous. It can be

removed and its edge costs summed to create a singe new edge.

In addition to this reduction, the vertex to the right of Tg is not necessary. Some of

the lemmas only consider dropping resource R at the vertex in the bounding box of (Rs,

Rg) that is closest to another resource’s start vertex. It is evident that the vertex to the

right of Tg is not a vertex that is closest to any start vertex, so it may be removed from

consideration as a drop point. It has up to four edges, so up to six edges may replace it

(so that all of its neighbor vertices are connected to each other). This reduction allows for

removing interior vertices, which other reductions have not.

4.3.5 Optimality

While all of the reductions in this thesis aim at preserving optimal solutions, there is no

requirement that an optimal solver be used. As mentioned in chapter 2, bounded suboptimal

approximation algorithms exist for other types of SCPs. Although the solutions are only

approximate, these algorithms have the advantage of running in polynomial time. Much

larger problems can be solved approximately. It is probably possible to adapt approximation

algorithms from the general SCP or related problems to the four-connected SCP. It is also

possible to use non-optimal heuristic search solvers to find solutions quickly. For example,

a greedy solver that always considers the action that appears best could provide a feasible

solution very quickly. Because a solver has fewer vertices and fewer actions to consider, the

reduction presented in this thesis would speed many of these approximation methods as

well as optimal ones.
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CHAPTER 5

Conclusions

This thesis has explored graph reductions of a four-connected grid for preemptive stacker-

crane problems. Two graph reductions were proposed, and both were proven to maintain

an optimal solution. The first reduction replaced the four-connected grid with a Hanan grid

constructed from the endpoints of A. It was proven that this Hanan grid maintains optimal

solutions by keeping shortest paths between all important vertices. The reduction makes

graph size and four-connected grid size independent, as the Hanan grid depends only on the

number of endpoints. For large graphs with a small number of resources, this may remove

most of the vertices in the graph, allowing for faster analysis.

The second reduction removes extraneous corners from the graph. It is proven that

the algorithm presented for this reduction also maintains shortest paths between important

vertices. Corners are evaluated for redundancy and if they serve no unique purpose, they

are removed from the graph. This analysis is very quick and, as we saw in the presented

example graph, can sometimes remove a significant number of vertices. The experimental

results shown in the discussion section demonstrate that the reductions are effective when

resources are not overly dense on the graph.

These reductions can be used in conjunction with any graph solver. They preserve

optimal solutions so an optimal solver will find correct results from the reduced graph. An

approximate solver can also be used, and may run faster as there are fewer vertices on the

graph. The graph size is the mantissa of the state space size, so reducing it will reduce the

state space significantly.
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