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ABSTRACT

ROBOTICS NEEDS NON-CLASSICAL PLANNING

by

Scott Kiesel

University of New Hampshire, September, 2016

Classical planning has developed a powerful set of abstractions and assumptions that enables

the study of the underlying characteristics of real world problems. While these abstractions and

assumptions are beneficial in academic research, they prove to be a barrier against the direct appli-

cation of classical planning to real world problems and systems. Similarly, non-classical planning

approaches have been developed, constructing the necessary bridges between classical planning’s

assumptions and the hard truths of operating in the real world. These techniques remove many of

the assumptions that simply do not hold while operating in the real world. They remove assump-

tions such as: a fully known initial world state, fully known future world states and unbounded,

uninterrupted planning time.

This dissertation makes two contributions. First we show how uncertainty in the world model

can be addressed through a non-classical planning algorithm called hindsight optimization. We

consider two realistic sources of uncertainty: temporal uncertainty and open worlds. The second

contribution is applying abstractions and techniques from the heuristic search community to motion

planning. We demonstrate the power of abstraction in a complicated task and motion planning

problem with temporal constraints. We then show how combining high level discrete reasoning,

characteristic of heuristic search, can aid lower level sampling-based motion planning resulting in

faster solving times and better solution quality.

xi



CHAPTER 0

Introduction

Classical planning has developed a powerful set of abstractions and assumptions that enables the

study of the underlying characteristics of real world problems. While these abstractions and assump-

tions are beneficial in academic research, they prove to be a barrier against the direct application

of classical planning to real world problems and systems. As such, non-classical planning needs to

be developed, constructing the necessary bridges between classical planning’s assumptions and the

hard truths of operating in the real world. These techniques will remove many of the assumptions

that simply do not hold while operating in the real world.

The thesis of this dissertation is the same as its title: robotics needs non-classical planning.

The robotics community can benefit from many ideas about high level reasoning from the planning

community. Similarly, the planning community can benefit from addressing challenges posed by

the applications and domains considered by the robotics community.

To that effect this dissertation makes two contributions. First we show how uncertainty in

the world model can be addressed through a non-classical planning algorithm called hindsight

optimization (Chong, Givan, & Chang, 2000). We consider two realistic sources of uncertainty:

temporal uncertainty and open worlds. The second contribution is applying abstractions and

techniques from the heuristic search community to motion planning. We demonstrate the power

of abstraction in a complicated task and motion planning problem with temporal constraints. We

then show how combining high level discrete reasoning, characteristic of heuristic search, can aid

lower level sampling-based motion planning resulting in faster solving times and better solution

quality.

1



0.1 Handling Uncertainty

In this portion of the dissertation we investigate two interesting classes of problems. The first

focuses more on the temporal uncertainty of the underlying world model. It is not possible to know

exactly how long an action will take to execute in many situations, especially when the actions are

defined at a high level such as “move from location a to location b” or “pick up object c”.

The second problem revolves around the idea of Open World Planning. This is a type of

planning where the entire world state is not known a priori, but instead is slowly discovered over

time. As the agent moves around the world and interacts with it through its sensors and actuators

it is able to develop a more accurate picture of the world state.

0.1.1 Temporal Uncertainty

To show how versatile Hindsight Optimization is, we first direct our attention to Temporal Uncer-

tainty. We begin by considering a simple robot assistant that could be given a variety of pick and

place tasks around the house. The difficulty in this problem is however, that there is uncertainty

in the objects’ locations, the duration of each action to be executed, the success of an action’s

execution and also exogenous events that occur at uncertain time points.

In our implementation of Hindsight Optimization, we generate possible worlds that could exist

given our current knowledge of the world. For example, we have some concrete knowledge of the

possible locations of objects and temporal bounds on action durations or event happenings.

Given these possible worlds, we then use a very simple domain specific solver to try to maximize

reward in each world. From that, we then rank the next action the robot could execute based on

the expectation of reward that would follow. The action is executed, new sensor data arrives, new

world samples are generated, planning happens again and finally a new next action is selected.

Using this simple approach we are able to demonstrate a reasoning agent with very interesting

behavior. The agent is able to serialize goals based on expectation about temporal information,

choose different actions based on their expectation to fail and even meet at rendezvous points with

exogenous agents with uncertain arrival times.

2



Summary

This chapter provides an in-depth description of the proposed framework and an array of simulated

results in the above described household assistant robot domain. Each result set targets and

stresses a single aspect of the framework. A final set of results will also be provided to show

how the framework is able to handle a realistic problems exhibiting all of the realistic temporal

uncertainties in the domain at once.

This work was published as a 2014 ICAPS PlanRob paper (Kiesel & Ruml, 2014).

0.1.2 Open Worlds

In this chapter we will examine a few domains that exhibit open worlds, but the most significant

is the Search and Rescue domain. In this domain, a robot is tasked with finding injured victims

inside of a building. To make this more difficult, the robot does not know the layout of the building

and it also does not know the locations of any victims.

The robot must balance exploration of the building and discovery of victims against an ap-

proaching temporal deadline to return to its home base. In this work we want to show that while

very sophisticated techniques are the norm, simpler techniques also can perform quite well.

We use a form of Hindsight Optimization to plan for our robot to explore the building looking

for victims. We call our system Optimization in Hindsight with Open Worlds (OH-wOW). In our

implementation of Hindsight Optimization, we generate possible worlds that could exist given our

current knowledge of the world. For example, we have some concrete knowledge of the building

layout given the history of our sensor data (i.e. a partially formed map) and given a very rough idea

of what a building might look like we could generate random topological building layouts. Inside

that topological building layout we randomly distribute victims, or if an expected distribution was

known, we would bias locations according to that.

Given these possible worlds, we then use a very simple domain specific solver to try to maximize

reward in each world. From that, we then rank the next action the robot could execute based on

the expectation of reward that would follow. The action is executed, new sensor data arrives, new

world samples are generated, planning happens again and finally a new next action is selected.

3



Summary

This chapter provides an in-depth description of the OH-wOW framework and the range of problems

this technique can be applied to. We also provide results from simulated testing environments on

two benchmarks, a classic probabilistic planning “omelet domain” and a simulated search and

rescue domain. We finally provide results from experiments run on a physical robot platform in

the search and rescue domain.

This work was published as an 2013 ICAPS PlanRob paper (Kiesel, Burns, Ruml, Benton, &

Kreimendahl, 2013) and also as a University of New Hampshire technical report (Kiesel, Burns,

Ruml, Benton, & Kreimendahl, 2012).

0.2 Abstraction for Motion Planning

The second portion of the dissertation is on heuristics for motion planning. Motion planning finds

itself as a module in almost every robotics system in some form. As such, they must find solutions

quickly and find solutions of good quality. In order to accomplish this, it is important that motion

planners are able to spend their time focusing on the important pieces of the search space expected

to contain good solutions.

By speeding up the planning time of these types of planners, we can speed up the entire system

they are embedded in. Also, if we are able to find solutions of better quality, we can also improve

the overall execution performed by these systems.

0.2.1 Task and Motion Planning

In this chapter we consider the benefits of abstraction in a task and motion planning problem.

Specifically, we examine the problem of vehicle routing and motion planning with temporal con-

straints. In this problem we are tasked with assigning v vehicles to visit w waypoints while avoiding

static obstacles and minimizing cost induced by gaussian cost objects. Each waypoint also can be

associated with a set of temporal constraints that can induce a partial ordering among waypoints

and define a temporal window in which that waypoint must be visited. Waypoints also can have a

4



radius that defines a circular area in which a vehicle must pass to consider that waypoint as visited.

To solve this very complicated problem we employ an abstraction over the possible space of

routes a vehicle could traverse between waypoint pairs. In this abstraction, we assume there exists

a continuum of routes between the fastest and cheapest routes between waypoints. Furthermore,

we assume this continuum can be linearly interpolated across, between the two end points. By

lifting the space of routes to a simple computation, we are able to dramatically speed up the high

level task allocation problem by assuming we know about all possible low level routes. We use

this information to do a local search over task assignments to vehicles, then use a linear program

to minimize cost among time points to visit each of the waypoints in each route, and then finally

task a motion planner with navigating between each waypoint pairing taking the specified amount

of time. Of course, because of the use of the abstraction, the route may not be feasible, so we

incorporate a feedback loop to the higher layers of planning to inform them about the information

discovered at the lower layers.

Figure 0-1 shows an example solution for the Vehicle Routing and Motion Planning problem.

Here there are 4 vehicles and 43 tasks. The intensity of the red in the image represents the

magnitude of cost for traversing that area of the map. The solid gray polygons represent the areas

of the map that can not be traversed. Each of the 43 tasks has an associated “achievement” radius

as mentioned earlier, and contained within that radius is an ‘x’ marking the point at which that

waypoint was considered visited along the route.

Summary

This chapter provides an in-depth description of the Waypoint Allocation and Motion Planning

problem as well as our system developed to address this task and motion planning domain. We

also provide results from handcrafted instances designed to target various aspects of the vehicle

routing and motion planning problem. For example, scaling the number of waypoints and vehi-

cles, minimizing cost through motion planning and examining a traveling salesman problem are

discussed.

This work was published in a 2012 ICAPS paper (Kiesel, Burns, Wilt, & Ruml, 2012).
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Figure 0-1: Example of a solution found by our planner in the Vehicle Routing with Motion Planning

domain.
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(a) (b)

Figure 0-2: Example of the power of intelligent biasing in sampling-based motion planning.

0.2.2 f-Biased Sampling

In this chapter we explore the use of Heuristic Search as an abstraction to bias sampling-based

motion planner’s exploration (Lavalle & Kuffner, 2000). By constructing a coarse abstraction over

the workspace and using heuristic search in the abstraction we were able to identify large areas of

the search space to focus sampling and other areas to (mostly) ignore. We are able to get much

better performance compared to uniform random sampling and existing simple sampling biases

such as goal biasing.

Summary

In this chapter we provide a description of the f -biasing technique along with results comparing it

against similar sampling bias techniques. We provide these comparisons across a variety of domains.

This work was published as a 2012 SoCS extended abstract (Kiesel, Burns, & Ruml, 2012b)

and also as a University of New Hampshire technical report (Kiesel, Burns, & Ruml, 2012a).

0.2.3 Hybrid Motion Planning

Following from the previously mentioned work, we can see that we are able to further bias sampling

in a more intelligent manner. By maintaining a similar abstraction over the workspace, or even

possibly the configuration space, we can run discrete heuristic algorithms while using sampling-

based planners to form “edges” in the abstract space. By focusing on the frontier of the abstract
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space, we are able to build out the low level search tree much more quickly leading it through twists

and turns much better than sampling along entire paths in the abstract space.

In Figure 0-3 we show a particularly devious example map. In this map the search tree will

effectively have to climb a ladder of obstacles starting from the start state (blue square in the

bottom left) to reach the goal (green square in the top right). In panels (a) and (b) we show

the samples that have been generated to grow the tree from the start state to roughly the same

progress up the first ladder step using f -biasing from the previous section and the newer idea where

we maintain a notion of the current search tree in the abstract space. In panel (a), almost all of

the abstract states look equally good so samples are generated all over the map. In panel (b), all

states still look equally good in terms of their f values, but we are sure to keep the samples we

generate near the currently built tree. As a result, many fewer samples are required to reach the

same level of progress. To further illustrate the benefits of this idea, in panels (c) and (d), we show

each algorithm after 20,000 samples have been generated. In panel (c), the search tree is nowhere

close to the goal while in panel (d), the search tree has already arrived at the goal.

Seeing the parallels between heuristic search as a high level guidance and low level sampling-

based algorithms we extend these ideas further by applying many of the algorithmic concepts used

in anytime heuristic search to find solutions very quickly in the low level space and then improve

them over time. We utilize some of the newer probabilistic roadmap (PRM) discretizations and

tree sparsification techniques in our algorithm.

Summary

In this chapter we provide an in-depth description of our algorithms. We also provide comparisons

across a variety of domains with other similar state of the art algorithms.

This work was accepted as a 2016 ICAPS PlanRob paper.
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(c) (d)

Figure 0-3: Example of keeping sample points near the currently expanded tree.
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Part I

Handling Uncertainty
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In this part of the dissertation, we consider uncertainty in the world model. Specifically, we

examine a way of dealing with temporal uncertainty and uncertainty in the location of objects and

events in Chapter 1. In classical planning, all temporal values are known in advance as well as the

location of all objects. Then in Chapter 2, we explore a way of handling open worlds that robotics

will face in a specific search and rescue scenario. In classical planning, the agent would know at

the start of planning all there is to know about the world. It relies on a closed world assumption,

that anything it does not know about is not important to reason about (or even doesn’t exist).

Both of these types of uncertainty are not handled by classical planning techniques which deal

directly in fully known deterministic domains. The uncertainty of operating in the real world is

inescapable and requires non-classical algorithms to cope with it.
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CHAPTER 1

Temporal Uncertainty

1.1 Introduction

In many real-world domains, such as robotics, a planning agent does not have complete knowledge

of the world state or precise control over action outcomes of actors and processes. Incomplete world

knowledge, stochastic actions and exogenous events are challenges a planning agent must tackle in

many useful robotic applications.

For example, many planners make the assumption that an action, such as pickup, will have a

deterministic outcome and duration. This is a fine assumption that makes planning much easier

to reason about. However when the resulting plan is executed, actions can fail or take longer than

anticipated. Consider the domain of a robot office assistant. When issuing the simple task of

picking up a set of keys from your desk, the planner will quite quickly emit the plan: pickup(keys).

When this plan is executed, the pickup action might fail. If the action fails, then the execution

certainly will not result in a goal state. The ability to reason about action outcome uncertainty

becomes very important when a plan is intended to be executed.

Perhaps the goal state is slightly more interesting and the agent should pickup your keys and

give them to you when you leave to go home. Another assumption that many planners make about

actions is that their duration is a known constant. However, depending on the starting pose of the

robot office assistant or the position of the keys, this simple pickup action can have a varying range

of execution durations. If it could take anywhere between 1 minute and 10 minutes for your keys

to be picked up, you might appreciate a planner that can take this range into consideration. The

planner could start executing earlier, instead of causing you to be 10 minutes late going home. If

a planner only assumes the best case for action durations, it is easy to see that the agent could

be late to a rendezvous. On the other hand, if the planner only assumes the worst case for action
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durations, the agent may spend time waiting at a rendezvous point unnecessarily. It could instead

be performing more productive tasks with this time. Similar behavior can occur when reasoning

solely on the mean of the duration. The ability to handle action duration uncertainty becomes very

important if a productive and punctual agent is desired.

An even more realistic situation for a robot office assistant to face is the task of retrieving your

keys from a set of possible locations. It is not uncommon to forget exactly where you left your keys.

Many planners however, require that the exact location of the keys be known when planning begins.

If you need to manually search out your keys to simply set the initial state for your planner, you

might as well skip using your planner because you have already found your keys. It is important

for a planner to be able to handle location uncertainty if the exact state of the world is not known.

As hinted at in the previous example scenarios, the agent may not be the only entity in its

world. Other agents may exist and these other agents are not necessarily under the control of the

same planner as your robot office assistant. The world can be affected and changed outside of

the control of the planner. Specifically, transitions in the world state may occur in ways entirely

unrelated to agent action execution. Maybe you found your keys while trying to fully annotate an

initial state for your planner. Instead, before you leave the office you would like your robot office

assistant to give you a coffee for the trip home. The coffee is not essential for you to get home,

but it makes the trip significantly more pleasant. As such, you are willing to wait for 10 minutes

before you depart without your coffee. As a human, your timing is not always exact so you might

leave sometime between 5pm and 5:30pm. If you would like to get your coffee frequently before you

leave the office, it is important for a planner to be able to handle interactions with other agents

and events exogenous to the planner.

Adding a single one of these three aspects of uncertainty, either incomplete world model or

uncertain action durations or exogenous events, to a domain renders many planners inapplicable.

Adding all three types of uncertainty further reduces the number of applicable planners. Those

algorithms previously proposed to handle these uncertainties are complicated and can rely on

computationally expensive data-structures such as a Simple Temporal Network With Uncertainty

(STNU) (Morris, Muscettola, & Vidal, 2001). Many of them also require reasoning about all of the
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unknown factors at once requiring complex world representations.

In this chapter we introduce the Temporal-Uncertainty Hindsight Optimization Planner (Tu-

Hop), a simple and straightforward approach that extends previous work on hindsight optimization.

Instead of trying to manage the various uncertainties directly, we employ a basic sampling strategy

and a deterministic specific planner. Tu-Hop begins with a set of beliefs about the initial world

state. This belief state contains certain and uncertain information about locations, arrivals and

departures of objects and agents and expected action outcomes and durations. Given the current

belief, a set of deterministic world samples consistent with the belief state are generated and then

solved by the domain-specific planner. Using the resulting solutions, the next action is chosen

based on solutions maximizing overall expected reward. This action is executed, the belief about

the world is updated based on the action’s result and the process starts again.

We show that Tu-Hop is simple to understand and implement. We also show that Tu-Hop

is very capable of solving problems containing uncertain action outcomes and durations, uncertain

object and agent locations, as well as exogenous events.

1.2 Previous Work

There is wealth of literature on deterministic domain dependent and independent planners. We

are able to leverage this previous work, as others have, to incorporate well researched deterministic

planning ideas and concepts into a larger framework.

Yoon, Fern, and Givan (2007) incorporate a classical domain independent planner called FF

(Hoffmann & Nebel, 2011) into their planning framework called FF-Replan to solve problems with

uncertain action effects. FF-Replan uses FF to find a plan to carefully constructed deterministic

version of the problem. It then executes actions according to the plan until the executed action has

an unexpected effect or the goal is achieved. If an unexpected effect is observed before achieving

the goal, FF is called once again to construct a new plan from the current state. There are also

other planners, such as SDR (Shani & Brafman, 2011), that have been developed to handle and

recover from deterministic planning with partial information.
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1.2.1 Temporal Planning and Execution

EUROPA (Barreiro, Boyce, Do, Frank, Iatauro, Kichkaylo, Morris, Ong, Remolina, Smith, et al.,

2012) is a class library and tool set for building planners within a temporal planning paradigm.

It is a complicated architecture that handles time and resources and constructs plans offline. It

is able to handle many temporal events using its modeling language NDDL. It relies on many

handcoded internal modules and does not directly handle the uncertainties of object locations or

action outcomes.

IxTeT (Ghallab & Laruelle, 1994; Laborie & Ghallab, 1995) is an complex offline planning

and scheduling system that can handle time and resources by constructing partial order plans and

resolving threats to the achievement of goals during planning. It strives to find a balance between

the planning (what to do) and the scheduling (in what order to do it) addressing many domains in

the intermediate spectrum between planning and scheduling. It however relies on absolute temporal

bounds and does not take into account temporal uncertainty.

Procedural Reasoning System (PRS) (Ingrand, Chatila, Alami, & Robert, 1996) is a system for

supervision and control of autonomous mobile robots. This system is explicitly able to monitor plan

execution and provide feedback on action execution to an underlying planning system. However,

PRS still relies on a high level planner to provide the high level actions for it to execute. Integration

of Tu-Hop with PRS is a promising avenue for future research.

IxTeT-EXEC (Lemai & Ingrand, 2003) is complex system that allows for execution control, plan

repair and replanning. IxTeT-EXEC is an extension of the IxTeT planner integrated with PRS

(and several other layers). IxTeT-EXEC is able to handle temporal constraints (inherited from

IxTeT) as well as action failures and unpredicted action outcomes as reported by PRS. However,

this is a very complicated system that is non-trivial to implement and does not address the aspects

of temporal uncertainty of interest in this chapter.

Simple Temporal Network with Uncertainty (STNU) (Morris et al., 2001) are an extension of

Simple Temporal Networks (STN) (Dechter, Meiri, & Pearl, 1991). In many cases of interest in

planning, an STNU would be used to determine dynamic controllability. If an STNU is dynamically

controllable, then we can be assured that from the current state, the actions we plan to execute will
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not cause us to violate any future temporal constraints regardless of their outcome durations. An

incremental approach, such as FastIDC (Nilsson, Kvarnström, & Doherty, 2014), can be used to

compute dynamic controllability but requires O(n3) computation time, where n is number of nodes

in the network. This computation must also occur each time an action or event is added to the

network, for example each time a planner considers the application of an action during planning.

In the case that an addition causes a violation of controllability, the entire network is copied before

each addition so that backtracking can be done. This can be prohibitively expensive for an online

planner that must plan and process new information as it arrives during execution.

1.2.2 Hindsight Optimization

Hindsight Optimization was originally developed for scheduling and networking problems (Chong

et al., 2000; Mercier & van Hentenryck, 2007; Wu, Chong, & Givan, 2002) and has been used in a

probabilistic planning setting (Yoon, Fern, Givan, & Kambhampati, 2008; Yoon, Ruml, Benton, &

Do, 2010). In these previous applications, sampling was used to resolve uncertainty in the outcome

of actions. Burns, Benton, Ruml, Yoon, and Do (2012) used hindsight optimization to solve a

problem where exogenous goals are arriving, which requires the agent to plan ahead and anticipate

these arrival events.

Similar to most sampling techniques, the samples of generated possible worlds used in this

chapter are intentionally not exhaustive. They are intended to provide useful relative judgments

on the expected value of actions. In hindsight optimization, given a current world state, we are

faced with the choice between all applicable actions. We provide very high level pseudocode to

walk through the general algorithm in Figure 1-1. The first step in hindsight optimization is to

generate possible world samples (Line 3) that could be true according to the current world belief

state. Then in order to estimate the value of an action, we apply that action in each of the sampled

possible worlds (Line 8), find deterministic plans from each of the resulting states (Line 9), and

average over the resulting reward yielded in each plan. The action with the highest average plan

reward over the sampled worlds is chosen to be executed (Line 14).

More formally, we define the value of being in a state s1 as the maximum expected reward over
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hindsight optimization(N)

1. while true

2. best action = null

3. world samples = create N samples from belief

4. max reward = 0

5. foreach ai : actions

6. average reward = 0

7. foreach sj : world samples

8. state = apply ai in sj

9. reward = compute optimal plan from state

10. average reward += reward / N

11. if average reward > max reward

12. max reward = average reward

13. best action = ai

14. execute best action

Figure 1-1: Very high level pseudocode for the general hindsight optimization algorithm.
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plans that extend from s1. That is, the maximum reward over all possible future action sequences,

〈a1, a2, ...〉, of the total reward over all expected future states:

V ∗(s1) = max
A=〈a1,a2,...〉

E
〈s2,...〉

[

∑

i=1

R(si, ai)

]

where R(s, a) represents the reward of performing action a in state s. In this planning setting,

these future states incorporate only a single sample of the possible values of all uncertain locations,

events and outcomes. Given our expectations about these uncertainties, we would like to find the

action sequence A = 〈a1, a2, ..., 〉 that maximizes the expected sum of action rewards. To compute

V ∗ exactly, we would need to compute the expectation for each of exponentially many plans over

exponentially many possible resolutions of uncertainty.

In hindsight optimization, we approximate the value function by exchanging expectation and

maximization, so that we are taking the expected value of “maximum-reward plans instead of

the maximum over expected-reward plans”. This means we are taking the weighted average over

optimal plans under each action instead of taking the weighted average over all possible plans under

each action:

V̂ (s1) = E
〈s2,...〉

[

max
A=〈a1,a2,...〉

∑

i=1

R(si, ai)

]

This approximation of V ∗(s) uses fixed values for each of the uncertainties in each maximization. As

in other applications of hindsight optimization, the stochastic elements have been reduced to known

values by sampling: for each possible value that an uncertainty could take on in the expectation,

the problem is to maximize reward given a known world, i.e., standard, deterministic, reward-

maximizing planning. As the underlying deterministic problem becomes more difficult to solve

with a standard deterministic planner, Tu-Hop can employ a limited horizon planner. A limited

horizon planner uses a time horizon which is simply a temporal value by which search depth is

bounded. Setting this bound to infinity results in an informed, full solution to the maximization

problem, decreasing the horizon results in greedier behavior, only considering more immediate

reward. To offset this greedy myopic behavior, a heuristic evaluation function can be used at the

leaf nodes to help gauge what reward could be achieved if the plan were to reach all the way to a
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goal state.

After an action is executed, hindsight optimization updates its current belief state based on the

outcome of its action and how it has affected the world. This newly updated belief state will be

used in the next planning step. We define the Q-value to be the cumulative expected reward of

taking an action a1 in state s1:

Q(s1, a1) = R(s1, a1) + E
〈s2,...〉

[

max
A=〈a2,...〉

∑

i=2

R(si, ai)

]

From this, we estimate the best action choice in s1 as maxaQ(s1, a). Using this technique, we are

said to be performing optimization with the benefit of “hindsight” knowledge about how future

uncertainty will be resolved.

1.3 Approach

After this initial discussion of hindsight optimization we explain how to handle the three types of

uncertainties previously discussed; uncertain action outcomes and durations, uncertain object and

agent locations and exogenous events. Our planner, Tu-Hop, is an online planner that interleaves

search and execution, emitting single actions for the agents to execute at a time.

The pseudo-code in Figure 1-2 provides a high level summary of the Tu-Hop planner. The

planner first receives three parameters, the first is the current belief about the world state, the

second is the number of samples to be used and the third is the horizon with which to bound the

deterministic solver. First, we generate a set of N possible worlds that are consistent with the

planner’s current belief about the world (Lines 2–3). Next, for each action a in the domain, we

consider the resulting state s′ = a(s) (Line 5). Then, each possible world wi is initialized with the

state s′, generating a fully-known deterministic planning problem. Solving this problem provides an

estimate of the reward from s′. The mean reward across the set of samples (Line 6) along with the

reward of the action R(s, a) is used as the Q-value for each action a in the original state s (Line 7).

We then select the action with the maximum Q-value (Line 8), this action is then executed (Line 9).

The result of this action is returned and the current belief of the world state is updated with this
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Tu-Hop(W,N,H)

1. while true

2. for i from 1 to N do

3. wi ← sample world(W )

4. foreach action a

5. s′ ← a(s)

6. r ← (
∑

i=1 solve(s
′, wi, H))

7. Q(s, a)← R(s, a) + r

8. abest ← argmaxaQ(s, a)

9. res = execute(abest)

10. update(W,abest, res)

Figure 1-2: The Tu-Hop planner.

information (Line 10). With this new belief about the state of the world, the planner returns to

the beginning of the loop and executes another iteration.

1.4 Robot Office Assistant Domain

To experimentally evaluate this technique, we focus on a specific domain where a set of controllable

and non-controllable agents are able to navigate around a topological map containing objects in a

Robot Office Assistant Domain. Controllable agents are able to pickup, putdown, and give objects.

The give action is the transfer of one object in an agent’s possession to another agent. All of the

information about the domain and belief of the world state will now be discussed.

The first major entity in the world belief is a representation of the topological navigation graph.

Each node in the graph is named and connected to another node in the graph via an edge. Each edge

has a traversal success rate, a minimum and maximum successful traversal time and a minimum

and maximum failure time. The success rate represents the probability that traversing this edge
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will succeed. The minimum and maximum successful traversal times provide an expected interval

of how long it will take to traverse the edge if the traversal is successful. Similarly, the minimum

and maximum failure interval describes how long it will take for the attempted traversal to report

failure.

The objects present in the world each have a unique name, two associated temporal intervals

and a set of node locations. The first interval is the minimum and maximum expected arrival time

for the object. This can be used to represent an object being dropped off by an agent outside the

control of the planner. The second interval is the minimum and maximum duration the object is

expected to remain usable in the world. This can be used to impose a deadline on when an object

may need to arrive at its goal destination. The set of nodes following the intervals contains at least

one node name. A single node represents complete certainty of the object’s starting location. A

set whose size is greater than one represents uncertainty regarding the object’s starting location.

Agents are very similar to objects with two major differences. The first is that an agent can be

marked as outside of the control of the planner. This is useful if an agent is only “stopping by” to

receive an object from another agent that is under the planner’s control. The second difference is

that each agent also has a number of grippers available to hold objects.

Goals can be one of three different types. The first is a simple goto goal which tells the planner

which agent needs to be moved to which location and what the reward for this goal is. The second

type of goal is move, which tells the planner which object needs to be moved to which location and

what the associated reward is for completing this goal. The last type of goal is give and tells the

planner which object should be given to which agent and how much reward will be received for

achieving this goal. Not all agents and objects need be involved with a goal.

Lastly, there are four actions in the domain; pickup, putdown, give and no-op. Please keep

in mind that the move action is defined on an edge-by-edge basis in the graph. The motivation

behind this is that some edges may be more difficult or simply take more time to traverse. Each

action has a success rate, minimum and maximum successful execution duration and a minimum

and maximum failure duration with the exception of the no-op action. The success rate represents

the probability that executing this action will succeed. The minimum and maximum successful
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execution times provide an expected interval of how long it will take to complete the action if the

execution is successful. Similarly, the minimum and maximum failure interval describes how long

it will take for the attempted execution to report failure. The no-op action is always successful

and has a deterministic execution duration equal to the planned duration. The duration for each

no-op is determined during planning. It is set to be the time from the current state, until the

next occurring event. An event is simply the arrival or departure of an agent or object, or another

agent completing its current action. Setting the duration in such a manner can render a planner

incomplete in certain domains. The types of domains where this becomes an issue are those where a

no-op and an action need to occur before an event occurs. Consider the simple example of serving

ice cream. A very simple problem would be to make sure ice cream is ready to eat in 1 hour.

The actions are no-op and serve. Serve only takes a few minutes to execute. By only reasoning

about event time points like agents arriving, we would be forced to either apply a no-op and be late

serving the ice cream which is not acceptable, or serve the ice cream and then apply a no-op for the

remaining duration in which the ice cream would melt. Ideally, the no-op would be applied for 55

minutes and then serve would be applied. We do not need to reason about the intermediary values

for a no-op in this simple Robot Office Assistant Domain while still maintaining completeness. We

can do this because in this domain all the time points of interest occur at these event boundaries.

1.5 A Closer Look

All of the domain instance information is managed and updated in the belief state of the Tu-Hop

planner throughout its execution. Before emitting any action to be executed, Tu-Hop enters its

first planning iteration.

It begins by generating a set of possible deterministic world samples consistent with the current

belief state. This means that in each sampled world any and all uncertainty is removed. This is

achieved for the location uncertainty by picking, at random, one of the locations in each location

set for the agents and objects. The action outcome uncertainty is resolved by using the success

rate, success interval and failure interval for each action and constructing a deterministic mapping

of times to outcomes and durations. We increase the complexity of the deterministic worlds by
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Figure 1-3: A simple example of the first step of hindsight optimization.

doing this, but conceptually it makes sense that an action may fail at one time and succeed the

next. For example, if we mapped actions directly to outcomes regardless of time, then a pickup may

never succeed and no solution could be found in that particular mapping. However, by mapping the

outcomes by time we maintain the notion of actions sometimes succeeding and sometimes possibly

failing. We can efficiently implemented this by lazily querying the action in the deterministic world

sample when needed for its outcome and duration given the current time. If the time has no

mapping, the outcome is randomly computed given the success and failure values, then stored in a

map. If the time has a mapping already, that mapping is returned. These time values are rounded

to a hundredth of a second before doing the lookup. The arrival and departure times of any object

or agent are also resolved by taking a random sample from the arrival interval and the duration

interval to construct an exact arrival and departure time.

Following the hindsight optimization framework, in each world sample, Tu-Hop examines each

available action from the current state. In the most simple goto (navigation) case with no objects,

Tu-Hop will evaluate what will result after moving to each node adjacent to its current node. In

figure 1-3 the agent is currently in location (a) and is considering moving to location (b) or (c).

Each move action can either succeed or fail as depicted. Each of these outcomes, {s1, s2, s3, s4}, is

generated and then reward is maximized individually in each outcome. The reward for execution of
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the action is then a weighted mean of the reward achieved in the success and failure case weighted

by the likelihood of the action succeeding and the likelihood of the action failing. For example, if

the achievable reward under s1 is 1, the achievable reward under s2 is 0.5, and the the success rate

for that action is 0.9 (0.1 failure rate), then the reward achievable for executing move(b) is 0.95 by

Tu-Hop’s reckoning.

This procedure is executed for each generated deterministic sample. Then the reward is averaged

over all the samples yielding an estimate of achievable reward. The action with the highest expected

reward across all samples is then selected for execution.

The action selected is then executed and the result of the action is used to update the belief

state of the planner. This would include increasing the current time, removing a location from an

object’s possible location set, decreasing the size of an agent’s arrival interval, and so on.

1.6 Experimental Results

We now evaluate Tu-Hop by stressing each of the three types of uncertainties (location, action

outcome and temporal uncertainty). All experiments were planned and executed in simulation on

a Lenovo W520 with an Intel Core i7 and 8GB of RAM. For each problem instance we ran 25

trials. In each trial we initialized the random number generator with a seed in the set 〈1 − 25〉.

So in total we used 25 seeds. We also considered planner configurations which vary the number of

world samples generated at each planning step. All plots presented show a line representing the

mean y-value across the instances and vertical lines representing the 95% confidence interval at

that point on the line.

1.6.1 Location Uncertainty

The first set of experiments begin by issuing the goal of moving an object from its start location to

a goal location. The easiest instance starts with the object’s location known exactly. We increase

the difficulty of the instances by adding uncertainty about the objects location to possibly two

locations, then possibly three locations and so on. As the uncertainty about the object’s start

location increases, the agent should be forced to search out the true start location. The results
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from this experiment using planner configurations of a horizon of 90 seconds and 1, 5 and 10 samples

are shown in figure 1-4.

In all of these instances where the object is up to 5 possible locations, the planner is able to find

the object and deliver it to its destination. We can also see by increasing the number of samples

taken, the agent will visit the possible locations in a more reasonable order: first visiting the closest

possible location, then moving to the next closest, and the next, until the object’s true location is

found. This is shown in figure 1-4 (b) and (c) as the lines representing 5 and 10 samples required

fewer actions to achieve the goal and also an overall shorter goal achievement time. Figure 1-4

(a) shows the time required by the planner at each iteration. Even on the hardest instance with

10 samples the planner takes much less than a second on average before emitting an action for

execution.

We also ran a small experiment to show the underlying planner’s ability to scale with the number

of object relocation goals. We start with a single goal of moving one object to a location and slowly

increase the number of goals and objects in the world. The results from this experiment using

planner configurations of a horizon of 90 seconds and 1, 5 and 10 samples are shown in figure 1-5.

In all instances the planner was able to move all the objects to their goal locations. We can

see that as expected in figure 1-5 (a), using more samples does increase the overall planning time

at each planning step. However, even in the hardest considered instance with 5 objects using 10

samples the planner only took on average 0.6 seconds before returning the next action. In figure 1-5

(b) and (c), a strange trend is shown where using more samples results in fewer actions in the final

execution and also an earlier goal achievement time. This could be an artifact of not reusing the

deterministic samples when possible. This could cause the samples in the 1 sample case to have

different edge traversal durations between planning steps and the intent to retrieve a specific object

can change as a result when an future edge is predicted to now have higher cost. When using more

samples, this type of noise is minimized and more predictable behavior is achieved.
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Figure 1-4: Increasing the amount of uncertainty in an object’s location in the world between 1

and 5 locations using a horizon of 90 seconds and 1, 5 and 10 deterministic samples.
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Figure 1-5: Scaling the number of objects in the world between 1 and 5 using a horizon of 90

seconds and 1, 5 and 10 deterministic samples.
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1.6.2 Action Outcome Uncertainty

In the second set of experiments we issue a similar goal of moving an object from its start location

to a goal location. However in these instances the object’s location is known exactly and the

topological edge traversals required to achieve the goal will have increasing traversal failure rates.

We start with a failure rate of 0% and increase it to 50%. By increasing the edge traversal failure

rates, either plans will be generated expecting failed outcomes or the agent will be forced to re-plan

and accommodate for the failure. The results from this experiment using planner configurations of

a horizon of 90 seconds and 1, 5 and 10 samples are shown in figure 1-6.

The planner was able to achieve all goals in all instances during this experiment. In figure 1-6

(a) we can see that the planning times for the 1, 5 and 10 sample cases are all quite similar until the

edges become quite unreliable with only a 50% success rate. As the failure rate increases, the plan

lengths will simply increase and planning with more samples magnifies this in its overall planning

time. In figure 1-6 (b) and (c) we see a trend similar to the last experiment. This is most likely

caused by the same issue. The noise between sampled worlds is minimized by generating more

samples.

A simple third set of experiments extending the second set was also performed. The instance

is created with a set of inexpensive topological edge traversals between the agent and the object’s

start locations with high action failure rates. A secondary set of expensive edge traversals with very

low failure rates are also created. As the inexpensive route becomes more unreliable throughout

the experiments, the agent should choose to take the more reliable expensive route. The results

from this experiment are shown in figure 1-7.

Again, in this experiment the planner was able to achieve all goals in all instances during this

experiment. Figure 1-7 (a) shows a predictable trend where increasing the number of samples

causes the planning step between action executions to increase. However, planning times with 10

samples on the most difficult instance are still well below 0.1 seconds on average. Figure 1-7 (b)

and (c) show the ability to trade between cost and edge reliability. When using only a single sample

the number of actions in the final execution is lower for the first three instances, but the overall

goal achievement time for those instances is higher than when using 5 and 10 samples. Once the
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Figure 1-6: Decreasing the reliability the only edges available to achieved an issued goal using a

horizon of 90 seconds and 1, 5 and 10 deterministic samples.
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Figure 1-7: Decreasing the reliability of low cost edges forcing more reliable expensive edges to be

utilized using a horizon of 90 seconds and 1, 5 and 10 deterministic samples.
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reliability of the cheap edges decreases significantly in the last three instances, the single sample

case starts to have longer execution lengths and continues to have later goal achievement times

than the 5 and 10 sample cases.

1.6.3 Temporal Uncertainty

In this fourth set of experiments we involve a second agent outside of the control of the planner.

The goal issued in this set of experiments is to give an object to this second agent and also relocate

a second object. Adding a second object goal forces the planner to choose an ordering for the two

goals which becomes very important in this experiment. The second agent does not begin at any

location in the domain model but is scheduled to arrive at one during a predefined interval and will

only remain for a duration between some minimum and maximum value. We begin with this second

agent starting with a small arrival interval and a long duration before departing. We increase the

difficultly of these instances by making the arrival interval larger (more uncertain) and decreasing

the duration the agent remains before departing. As the arrival uncertainty grows and the waiting

duration shrinks, we’re increasing the possible time the agent could be there, while decreasing the

actual time he will remain. You can imagine a synonymous situation of moving an archer further

away from the target (increasing their field of vision) while also decreasing the size of the target

they are trying to hit. The results for this experiment are presented in figure 1-8.

Figure 1-8 (a) shows that planning times between action executions are still less than 0.5 seconds

which is certainly acceptable when the action executions times for a robot can be in the range of

full seconds to a minute for some actions. In figure 1-8 (d) the reliability of both goals being

achieved is illustrated. At first with the larger delivery window, the 1, 5 and 10 sample cases

are able to achieve both goals reliably. However when the window is reduced, the planner clearly

benefits from more samples as the 10 sample case is able to achieve all goals in all but the hardest

instance. In the hardest instance none of the planner configurations are able to deliver the object

to the second agent. Figure 1-8 (b) and (c) are slightly more difficult to interpret because if the

planner incorrectly chooses to relocate the second object first and misses the delivery window, the

planner will terminate with fewer actions and an earlier goal achievement time than an algorithm
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Figure 1-8: Increasing the uncertainty about when an agent will arrive while also decreasing the

duration the agent will wait after arriving using a horizon of 30 seconds and 1, 5 and 10 deterministic

samples.
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that achieves both goals.

1.7 Discussion

The main two attractive features of hindsight optimization are its simplicity and generality. There

are no obvious impediments to combining the current work with other efforts that use hindsight

optimization to address other forms of uncertainty such as arrival of additional goals, partial ob-

servability, or open worlds.

Compared to a planner using an STNU, Tu-Hop’s handling of intervals is imprecise, thus the

combinations of circumstances that are anticipated is incomplete. This limitation gets more serious

as the number of combinations of stochastic events that need to be considered increases. However,

in many applications, it is not necessary to reason about such long chains of events in order to act

successfully.

Tu-Hop demonstrates one way of very tightly coupling planning and acting, namely to ensure

reactivity by planing after every state transition and never explicitly committing to actions beyond

the one that is currently executing.

Unlike many other task planners, Tu-Hop does explicitly consider action failure when selecting

actions.

It does not output a complete plan that can be shared with other collaborating agents. However,

it should be possible to merge together the actions selected in each rollout to form a branching

contingent plan that could be shared. Such sharing could then be represented in the planner by

increasing the cost of actions that do not correspond to those in the shared plan. This directly

models the coordination costs that the group would sustain if the plan were to be changed.

Hindsight optimization is often used with a limited horizon planner. When this is done, it

places some responsibility on the heuristic evaluation function used at the leaf nodes of the search

to correctly identify promising states. An alternative is to use hierarchical planning, in which a

complete plan exists at some level of abstraction, and detailed planning is then done on those

parts that are ready for execution. Such an approach has been proposed by Kaelbling and Lozano-

Pérez (2011).
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Hindsight optimization is an unsound reasoning technique. UCT is a popular sampling-based

technique that is sound, in the sense that it is guaranteed to select the optimal action given an

infinite number of samples. Eyerich, Keller, and Helmert (2010) compare hindsight optimization

with UCT on the Canadian Traveler’s Problem. While they find that UCT does indeed converge

better in the limit of many samples, hindsight optimization performed better when the methods

were given only a moderate number of samples.

1.8 Conclusion

Uncertainty is an unavoidable aspect of real-world robotic applications. We have shown how hind-

sight optimization yields a simple and general approach to planning with location, action outcome

and temporal uncertainty. While the technique is approximate, it is easy to implement and our

results suggest that it can be successful in practice. This work was published in a 2014 ICAPS

PlanRob paper (Kiesel & Ruml, 2014).
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CHAPTER 2

Open Worlds

2.1 Introduction

In this chapter we transition to another type of uncertainty. We move away from temporal uncer-

tainy to focus on open world uncertainty. We will begin with a real world example to motivate this

area of research.

Imagine a rescue robot entering a partially-destroyed building to search for survivors of an

earthquake. The agent does not know the initial layout of the building, what new obstructions

may exist, the locations of potential victims, or even how many victims there are. In open-world

planning problems like this, the agent is not given a complete description of the initial state of

the world, but it can perform sensing actions to determine the existence of relevant objects and

the values of important fluents. To be useful, the planner must be fast enough to not materially

delay the actions of the robot. It must be able to plan to discover and take into account newly

sensed information, and ideally it would be expressive enough to handle soft goals, durative actions,

temporal constraints, and actions with uncertain outcomes.

In this chapter, we continue with the simple on-line hindsight optimization planning approach

that we used in the previous chapter, but now extend it to handle the requirements of open-world

domains. We call this new approach Optimization in Hindsight with Open Worlds (OH-wOW).

Rather than using traditional techniques that compute a policy or contingent plan in advance, we

estimate on-line at each step which action is best in light of our current knowledge of the world.

The OH-wOW approach is domain agnostic and does not commit to a particular representation

for open-world knowledge or goals. Instead, it can leverage any closed-world planner appropriate

for the underlying domain. Our central assumption is that the agent possesses some knowledge,

likely probabilistic, about the domain. In our view, performing well in an open-world depends on
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having expectations about that world, e.g., building dimensions are typically tens or hundreds of

meters rather than centimeters or kilometers, or that people are usually found in certain densities

per square meter, or are more often found in certain areas, such as offices. This type of default or

prior information can be overridden by direct experience, but ought to play a role in planning until

it is discovered to be inaccurate. We use these expectations to generate possible states of the world

consistent with the agent’s current knowledge, use a closed-world planner to estimate the future

reward achievable in those worlds after taking each currently-applicable action, and then select the

action with the lowest expected cost.

After describing OH-wOW in detail, we contrast it with previous work. We then report on

the method’s empirical performance, both in simulated domains and when deployed on a physical

mobile robot fully integrated with the Robot Operating System (ROS), Simultaneous Localization

And Mapping (SLAM) and standard navigation. Our experience indicates that the method is

surprisingly general and practical, achieving results as good as those of previous systems but with

lower planning times and fewer ad hoc assumptions. This work showcases the power of Monte

Carlo techniques and adds open-world planning to the list of non-classical planning settings in

which simple planners can be leveraged to provide state-of-the-art performance.

2.2 A Hindsight Optimization Approach

Optimization in hindsight was originally developed for scheduling and networking problems (Chong

et al., 2000; Mercier & van Hentenryck, 2007; Wu et al., 2002) and has recently been applied to

probabilistic planning (Yoon et al., 2008, 2010). In these previous settings, sampling is used to

resolve uncertainty in the outcome of actions. In our context of open-world planning, each sample

forms a concrete hypothesis about the world—which objects might exist and which fluents might

hold. While these will likely be revealed to the agent as it performs actions that have, a priori,

uncertain outcomes, the sampling process for open-world planning is more involved than choosing

an outcome in a PPDDL (Younes & Littman, 2004) or RDDL (Sanner, 2011) action description.

For example, a rescue robot will generate possible world states with conceivable floor plans for the

building, each with sets of victims distributed in various plausible locations. Each of these sampled
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worlds may potentially determine the outcome of multiple sensing actions during the course of

the corresponding planning episode. Demonstrating the practicality of this approach is the central

contribution of this work.

While these samples of possible worlds are intentionally not exhaustive, they are intended to

provide useful relative judgements on the expected value of actions. In order to estimate the value

of an action, we apply that action in each of the sampled possible worlds, find closed-world plans

from the resulting states, and average over the resulting plan costs. The action with the lowest

average plan cost over the sampled worlds is chosen to be executed.

More formally, we define the value of being in a state s1 as the minimum expected cost over

plans that extend from s1. That is, the minimum cost over all possible future action sequences,

〈a1, a2, ...〉, of the total cost over all expected future states:

V ∗(s1) = min
A=〈a1,a2,...〉

E
〈s2,...〉

[

∑

i=1

C(si, ai)

]

where C(s, a) represents the cost of performing action a in state s. In open-world planning, these

future states incorporate the sensed knowledge of the agent and the expectation is over the distri-

bution of sensing outcomes. The agent will expect different outcomes based on its beliefs about the

world. Given our expectations about sensing outcomes, we would like to find the action sequence

A = 〈a1, a2, ...〉 that minimizes the expected sum of action costs. To compute V ∗ exactly, we would

need to compute the expectation for each of exponentially many plans.

In optimization in hindsight, we approximate the value function by exchanging expectation

and minimization, so that we are taking the expected value of minimum-cost plans instead of the

minimum over expected-cost plans:

V̂ (s1) = E
〈s2,s3,...〉



 min
A=〈a1,...,a|A|〉

|A|
∑

i=1

C(si, ai)





This approximation of V ∗(s) uses fixed sensing outcomes in each minimization. As in other appli-

cations of optimization in hindsight, the stochastic elements have been reduced to known outcomes

by sampling. For each possible outcome in the expectation, the problem is to minimize cost given a

known world, i.e., standard, closed-world, cost-minimizing, deterministic planning. In OH-wOW,
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fixed sensing outcomes are generated using concrete hypotheses about the state of the world. For

each fully-known, deterministic world hypothesis, the agent can compute the result of different

sensing outcomes when solving the minimization in the equation for V ∗. For example, the result

of querying a vision system to look for an injured person depends on whether or not there is an

injured person in the sensed portion of the world—this is fully-known for each hypothesis. The

agent is aware of what features are truly known and which are merely hypothesized, as a result

the deterministic problem can require sensing actions before the agent interacts with hypothesized

portions of the world. In this way, the system will still be required to plan to sense. A dummy

precondition is added to all actions that involve a hypothesized variable. This precondition en-

forces that the value of that variable is sensed before actions requiring the value are executed. This

ensures that the resulting plan executes sensing actions appropriately. More concretely, if the agent

hypothesizes that there is an injured person in a room, then the deterministic planner will require

a sensing action before that person can be reported. When a sensing action is carried out in the

physical world, its result may differ from the hypothesis. This new information will be reflected in

the samples taken at the next planning step.

We define the Q-value to be the cumulative expected cost of taking an action a1 in state s1:

Q(s1, a1) = C(s1, a1) + E
〈s2,s3,...〉



 min
A=〈a2,...,a|A|+1〉

|A|+1
∑

i=2

C(si, ai)





From this, we estimate the best action choice in s1 as minaQ(s1, a). Using this technique, we are

said to be performing optimization with the benefit of “hindsight” knowledge about how future

uncertainty will be resolved.

The pseudocode in Figure 2-1 summarizes the algorithm. At each time step, the algorithm

is used to find the next action to execute from the current state s, which includes information

about both the agent’s current configuration and its current knowledge about the world. First,

we generate a set of N possible worlds that are consistent with the agent’s current knowledge

(lines 11–12). Next, for each currently applicable action a, we consider the resulting state s′ = a(s)

(line 14). Then, each possible world wi is initialized with the state s′, generating a fully-known
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OH-wOW(s = 〈agent ,world〉, N)

11. for i from 1 to N do

12. wi ← sample world(world)

13. foreach action a applicable in s

14. s′ ← a(s)

15. c← (
∑N

i=1 solve(s
′, wi))/N

16. Q(s, a)← C(s, a) + c

17. Return argminaQ(s, a)

Figure 2-1: The OH-wOW algorithm.

closed-world deterministic planning problem. Recall that, to incorporate sensing, the determinized

problem requires the agent to sense before interacting with hypothesized features of a sampled

world. Solving this problem provides an optimistic estimate of the cost from s′. The mean cost

across the set of samples (line 15) along with the cost of the action C(s, a) is used as the Q-value

for each applicable action a in the original state s (line 16). Finally, we return the action with the

minimum Q-value (line 17), the agent executes the action, possibly observing new facts and objects

in the world, yielding a new current state, and the cycle begins anew.

2.3 Related Work

Open world planning is a broad problem that has been attacked from many angles. One issue is

how to formally represent knowledge and goals related to open-ended sets; Etzioni and Weld (1994)

and Babaian and Schmolze (2006) have addressed this. We do not address this issue in this chapter,

except to point out that the underlying planners used in our approach are closed-world and do not

require a particularly expressive (and expensive) representation language. We do require that the

agent tracks what is currently known about the world and that the world generator respects this

knowledge when sampling possible worlds.

In conformant planning (Cimatti, Roveri, & Bertoli, 2004, inter alia), one requires plans that
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are guaranteed to work without sensing. For most robotics domains, this is overly restrictive and

renders problems unsolvable. Contingent planning (Meuleau & Smith, 2003, inter alia) allows for

sensing, but computes a plan before beginning execution. In addition to handling open-worlds, we

aim to scale to domains in which the number of contingencies may be very large (e.g., the number

of possible floor plans), making synthesis of branching plans prohibitively expensive.

In the POMDP literature, computing actions on-line is recognized to provide increased scalabil-

ity (Ross, Pineau, Paquet, & Chaib-draa, 2008). However, many POMDP algorithms attempt to

compute future belief states of the agent, which can be expensive and cumbersome. Optimization

in hindsight represents an extreme approach, disregarding future belief uncertainty and assuming

that the agent can achieve the cost accrued by the plans for the fully-observed sampled worlds. Our

work is perhaps most closely related to work on sampling techniques for POMDPs, where a particle

filter approximates the belief space during sampling (Silver & Veness, 2010). Open world planning

goes beyond traditional factored POMDP representations (Boutilier, Dean, & Hanks, 2011) because

the structure of the world state requires representing a logically infinite domain of discourse; the

universe of objects that exist and the possible relationships between them remain unknown to the

agent (Doshi, 2009).

There has been sustained interest from roboticists in open-world planning. One way of handling

open-world planning in practice is to force the robot to move in one direction simply to explore

without a concept of cost or reward. Such simple ad hoc approaches cannot exploit the agent’s

expectations about goals (e.g., people are likely in offices) or take sensed information into account

(e.g., a hallway implies new rooms to explore). Talamadupula, Benton, Schermerhorn, Kambham-

pati, and Scheutz (2010) present an approach where the planner assumes objects exist in order

to instantiate goals and motivate a search and rescue robot to collect reward by discovering and

reporting victims. As new information arrives about the environment, the planner replans. This

can be seen as a degenerate form of our hindsight approach, where the robot operates on a single

optimistic “sample”. While it is simpler, it cannot generalize to domains where uncertainty is a

major component.

Joshi, Schermerhorn, Khardon, and Scheutz (2012) use offline symbolic dynamic programming
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with known goals but unknown numbers or locations of objects, which does allow for reusable

policies on any instance of the domain. However, in their experiments the number of possible

objects was severely limited to retain feasible computation times (they require 4 hours for their 3

room example), which makes the resulting policies suboptimal. They also do not handle temporal

constraints, action costs, or goal rewards.

2.4 Evaluation

We evaluate OH-wOW by applying it in two domains: the classic omelette benchmark for planning

under uncertainty, and urban search-and-rescue, which we investigate both in simulation and using

a physical robot.

2.4.1 Omelettes

In the omelette benchmark, introduced by Levesque (1996), the agent is attempting to make a

three-egg omelette with ingredients of unknown freshness. The agent has four available actions.

The agent can break an egg into a bowl, pour the contents of a bowl into another bowl or the trash,

wash a bowl, or sniff whether the eggs in a bowl are good. All actions are deterministic except for

the sniff action. The goal is to have exactly three good eggs in a specific bowl with no trace of bad

eggs. To make the domain more challenging, we extended it to have both regular white eggs, which

are bad with a probability of 0.5, and local brown eggs, which are bad with a probability of 0.1.

The agent is able to observe the color of the next available egg without requiring a sensing action.

We compared OH-wOW to a perfectly omniscient oracle and also to a hand-coded controller.

The controller puts eggs into the goal bowl, sniffing after each addition and cleaning out bad eggs

until it finds a good one. Then it does the same routine using an extra bowl, pouring good eggs

into the goal bowl from the extra bowl until the goal is reached. We generated three sets of 100

random instances, each set with a different probability of the next egg being brown. OH-wOW

used a domain-dependent deterministic planner based on uniform-cost search.

Figure 2-2 shows the distribution of the resulting plan costs using box and whisker plots. Each

box surrounds the middle 50% of the data, with a horizontal line indicating the median and whiskers
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Figure 2-2: Plan cost in the three-egg omelette domain.
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Figure 2-3: Plan cost in the search and rescue domain.

indicating the range (values beyond 1.5× the inter-quartile range are shown as circles). The gray

vertical stripes inside each box show 95% confidence intervals on the mean. The plot shows the

increase in cost over the optimal solution found by the oracle, of the hindsight planner with 32 and

256 samples, and the hand-coded controller (ctlr). The boxes are grouped by the probability of an

egg being brown (0.0, 0.5, and 1.0). We can see that, when all eggs were white, the hindsight planner

with 256 samples had a median cost that was less than the hand-coded controller (significant with

p < 0.05 via the Wilcoxon signed-rank test). As the probability of a brown egg increased, the

hindsight planner performed better, nearly dominating the controller when all eggs were brown.

This is likely because the hindsight planner could recognize that brown eggs tend to be good, and

put multiple into a bowl before bothering to smell, saving redundant sniff actions.

The average total planning time on a 3.1 GHz Core2 PC for OH-wOW to reach the goal

using 256 samples on a problem without brown eggs was 12.9 seconds (standard deviation 8.0

seconds). Each plan was an average of 24.9 actions long (standard deviation 13.7 actions) and
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each action in the plan took an average of 0.52 seconds to select (standard deviation 0.31 seconds)

before executing it. This compares favorably with the 185 seconds of offline planning reported

for approximate RTDP (CPU unspecified) by Bonet and Geffner (2001). Levesque (2005) also

generates full plans offline to solve the three-egg omelette in 1.4 seconds but requires 1,681 seconds

if the omelette is scaled to four eggs. When using four eggs, OH-wOW’s costs relative to optimal

were similar to the three-egg case, and total computation time averaged only 76.7 seconds (standard

deviation 43.6). Each plan was an average of 49 actions long (standard deviation 27.3 actions) and

each action in the plan took an average of 1.57 seconds to select (standard deviation 0.99 seconds)

before executing. The plans found by Levesque’s planner also contain strictly more actions than

our hand-coded controller (which in turn finds more costly plans than OH-wOW on the median),

as Levesque’s solution always uses the auxiliary bowl for staging and requires an additional pour

action to move the first good egg into the goal bowl.

2.4.2 Search and Rescue

Now, we return to the motivating example of search and rescue robotics. The robot’s objective is

to maximize the number of injured people it reports while still returning to its starting location by

a given hard deadline.

To generate possible worlds for OH-wOW, we need to generate building layouts consistent with

the robot’s current map and hypothesize the possible locations of injured people. We represent

building layouts as rough topological maps. We assume that undiscovered nodes will lie on a

uniform four-connected grid, and that a known node can be extended if it has an adjacent grid cell

that can be reached without going through an obstacle or crossing an existing edge in the map. We

iteratively choose an extendable node, generate a valid neighbor and connect them. We use a bias

toward extending the most recently added node, and toward generating the neighbor that forms a

straight line from the chosen node’s parent. This was sufficient to yield plausible building layouts

with hallways. Victims are generated independently with fixed probability per hypothesized node.

The upper right panel of Figure 2-4 shows a very small example map with hypothesized extensions

shown in gray.
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Figure 2-4: Architecture diagram.
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The base planner used by OH-wOW precomputes all-pairs shortest-paths among nodes con-

taining people and the start location. It then uses depth-first search, considering at each step to

visit each unreported person or return home. The available actions depend on the remaining time.

For efficiency, we avoid considering time as a separate state variable by incorporating it into the

cost function (Phillips & Likhachev, 2011).

Simulation

To test the planner in simulation, we created 100 random worlds with 100 nodes each. We considered

three victim distributions: unbiased, uniform probability of 0.1 per node; south, nodes south of the

start location contains a person with probability 0.2 and nodes north of the start location 0;

and southwest, southwest of the start 0.4 and 0 elsewhere. These distributions are representative

of helpful domain knowledge that can be leveraged when generating possible worlds. Skewing

the probability of a victim’s existence to one side of the building could be used to represent the

knowledge of a closed wing of the building or a scheduled company-wide event. We limit the total

number of victims to 10. The cost of a plan is the number of unreported people remaining when the

agent returns home and performs a dummy finish action. We compared OH-wOW to two different

algorithms. The first is an oracle that knows the exact configuration of the building and location

of all victims. The second is a hand-coded controller that performed a depth-first exploration of

the building, reporting people that it encountered and returning to the start location when it had

no more time to explore.

To gauge the complexity of these instances, we must consider the number of possible configu-

rations of maps and victims. Considering only n× n grids, there are 2(n− 1)n possible places for

edges; our generator is limited to trees, so it must pick n2−1. For n = 10, this is
(

180
99

)

≈ 1052 maps.

For each possible map, we must choose locations for victims; for 10 victims, there are
(

100
10

)

≈ 1013

possible configurations on the map. Maintaining a belief over so many possible worlds would be

challenging. Thankfully, it also seems unnecessary if we merely wish to estimate the expected value

of actions.

Figure 2-3 shows results, grouped by the victim distributions. For the unbiased case, the
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victims found

deadline 0 1 2 3

1 minute 4 6 0 0

5 minutes 0 7 3 0

10 minutes 0 3 4 3

Figure 2-5: Number of injured victims found and reported over 10 runs using a physical robot.

Figure 2-6: Example SLAM and topological map.

hand-coded controller gave the best performance, but OH-wOW was quite competitive. With a

biased distribution, OH-wOW was superior as it was easily able to leverage prior knowledge about

possible worlds. The average maximum per-action planning time for OH-wOW with 256 samples

was 2.7 seconds (standard deviation 0.85 seconds). In order to compare with Joshi et al. (2012),

we also ran smaller instances with at most three victims. The average maximum per-action time

for 256 samples was 0.18 seconds (standard deviation 0.035 seconds), which is negligible compared

to typical mobile robot latencies.

Physical Robot

We also integrated OH-wOW with the Robot Operating System (ROS, www.ros.org) on a 3.7

GHz quad-core i7 laptop onboard a Pioneer 3dx equipped with a SICK LIDAR shown in Figure 2-4.
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We use the ROS Gmapping SLAM stack to generate a fine-grained occupancy grid, from which we

extract a topological map with edge lengths of 1 meter to provide to OH-wOW. Figure 2-6 shows

a final topological map overlayed on the corresponding SLAM map created during an experiment

run of the search and rescue application. In the topological map, nodes are marked as either black,

green, or pink. Pink nodes indicate an area of the building where a victim was found and reported.

Green nodes are points in the map that can be extended when creating possible building layouts.

The black nodes indicate that the layout of the building can not be extended from this area.

The ROS Navigation stack is used to execute movement actions, which are specified as the

topological node to visit next. These topological nodes are then mapped to a two-dimensional

point in the map built by SLAM before issuing the move action to the robot. In some cases, the

rough topological graph places a node very near to an obstacle and the motion planner can not find

a safe way to achieve the requested action. We supplemented the navigation component in these

instances by issuing a set of perturbed points around the initial point before returning failure to the

planner. This set was simply four points, one in each cardinal direction, one half of a discretization

away.

We performed experiments in a hallway of approximately 20 meters with between 2 and 5 open

doors to offices and 3 victims. We simulated detection of a victim using the range capability of

the laser rangefinder. When the laser is able to collect data and populate a portion of the map

corresponding to certain pre-selected locations (that were unknown to the planner), we pass that

detection information along to the planner. In order to report a victim the robot must navigate to

the containing topological node.

We used three different deadlines, one minute, five minutes and ten minutes. As shown in

Table 2-5, the performance of the robot improves as it is given more time to search for victims.

In all experiments the robot returned within the hard deadline we provided. At first, only given

a short deadline of one minute, the robot is able to find one out of the three victims in six of the

ten trials before returning home. When the deadline is increased to five minutes, the robot takes

advantage of this and performs more exploration and is able to find two out of the three victims

in two trials and one victim in the remaining eight. When this deadline is further increased to ten
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minutes, the robot is able to find all three victims in two trials, two victims in four trials, and one

victim in the remaining four trials.

These results demonstrate that generating possible worlds consistent with experience is feasible

in practice, even as the robot’s knowledge is being updated during exploration. It also shows that

under realistic conditions, OH-wOW correctly trades off soft goals under temporal constraints,

but without the ad hoc goal handling of Talamadupula et al. (2010) or the hours of preprocessing

required by Joshi et al. (2012).

2.5 Discussion

OH-wOW requires a generative model of plausible worlds. We assume such expectations can

be developed either manually or through experience. When the world contradicts the agent’s

expectations, this can be interpreted as surprise, which might naturally lead to increased learning.

The fundamental vulnerability of sampling-based planners is when unlikely worlds play a large role

in determining action value; importance sampling may help here. For example, in the “Bombs in

Toilets” domain (McDermott, 1987; Smith & Weld, 1998), OH-wOW may never sample a world

in which a certain undunked package contains the bomb. The probability of this, however, is small

(7 · 10−11 for 6 packages and 128 samples). In any case, optimal behavior is unattainable if one

insists on fast response times in dynamic domains.

While faster than many POMDP algorithms, OH-wOW is much slower than a classical plan-

ner, as it must solve one classical planning problem for each sampled world. In our implementation,

during each step, all planning problems were solved serially. These problems are entirely indepen-

dent though and could trivially be solved in parallel to take advantage of multiple processor cores.

OH-wOW is more general than standard off-line techniques as it can be used on-line, as shown in

the experiments, and also off-line by simulating the domain to construct a branching plan. It is

possible to improve the performance of OH-wOW by applying some of the enhancements of Yoon

et al. (2010). One such technique is called probabilistically helpful actions. To find probabilistically

helpful actions, the planner evaluates all samples from the current state of the agent instead of the

one step lookahead states. Actions that lead to optimal plans starting from the current state are
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considered to be helpful while the others are not. The samples are solved as normal from the one

step lookahead states, but the only actions that are considered are the ones that were deemed help-

ful. Another improvement presented by Yoon et al. (2010) is to save samples and plan prefixes that

remain consistent with the outcome of a selected and then executed action. In domains with large

amounts of determinism, this enhancement can greatly reduce the amount of planning required by

saving work across deterministic transitions.

In this chapter, we assume that the world remains static as we explore it and that non-sensing

actions are deterministic. OH-wOW however, is very general and immediately applies to dynamic

worlds, stochastic actions, and on-line goal arrival; this remains an exciting area for future work.

2.6 Conclusion

Open world planning is essential for many real-world agents. We have shown how optimization in

hindsight yields a simple and general approach to open-world planning with temporal constraints,

decision-theoretic reasoning, and soft goals. While the technique is approximate, it is easy to

implement and our results suggest that it can be successful in practice.

In this chapter, we were able to demonstrate the benefits of Hindsight Optimization in an Open

World search and rescue domain. This further expands the realm of applicability of this non-

classical planning technique from its traditional uses to handle an additional kind of uncertainty.

We were able to plan and execute entirely online while still maintaining good performance. This

work was published in an 2013 ICAPS PlanRob paper (Kiesel et al., 2013) and in a University of

New Hampshire technical report (Kiesel et al., 2012).

In Part 1, we applied Hindsight Optimization to planning with temporal uncertainty and to

planning in Open Worlds. We showed that leveraging this non-classical planning technique in the

face of uncertainty can achieve good performance in our domains of interest.
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Part II

Abstraction for Motion Planning
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In Part I of the dissertation we examined ways to increase the expressiveness of hindsight

optimization to handle aspects of uncertainty in robotics applications. In Part II we increase the

efficiency for the quintessential robotics planning setting: motion planning.

As is common in AI, we exploit abstractions to assist in guiding motion planning. In Chapter

3, an abstraction is used to guide scheduling and motion planning in terms of vehicle allocation,

subgoals, and expected temporal cost of a solution segment. The abstraction allows the motion

planner to focus on exponentially smaller pieces of the state space. This allows us to solve large

problems quickly.

In Chapters 4 and 5, abstraction are also employed to help guide motion planning, However,

here we focus on sampling-based motion planning. The benefit of abstraction and heuristics is

already established in another form of motion planning, lattice-based motion planning. Lattice-

based motion planning can directly apply many of the ideas from heuristic search, while sampling-

based motion planning requires some non-traditional modifications to bridge the gap. Our work

focuses on sampling-based motion planning because of its smaller number of assumptions and

probabilistic completeness guarantees. In some cases there are asymptotic optimality guarantees

that are not qualified by discretization resolution.

By re-interpreting recent heuristic search techniques and ideas under the framework of sampling-

based motion planning, we are able to find solutions faster than the previous state of the art. We

are then able to leverage this speed along with cost reasoning to provide more robust performance

across a wide variety of experiments. We show that using these non-classical planning ideas from

heuristic search we can outperform the previous state of the art sampling-based motion planners.
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CHAPTER 3

Task and Motion Planning

3.1 Introduction

There has been much interest recently in problems that combine high-level task planning with low-

level motion planning. As techniques for high-level task planning and low-level motion planning

each mature, there has been interest in how they might be integrated together to improve overall

system performance. We will apply non-classical planning ideas to a robotics task and motion

planning domain which is composed of several NP-Complete sub-problems. Without the use of

non-classical planning techniques to help focus search effort, this problem could not be solved for

any reasonably large instance size. This is because often, decisions at the high level, such as who

will do what and in what order, depend on low-level considerations, such as the existence or cost

of feasible motions for particular tasks. A straightforward approach would be to combine both the

task and motion planning problems and then solve them all at once with a single search algorithm

such as A* (Hart, Nilsson, & Raphael, 1968). Because of the exponential nature of such problems,

however, this approach is intractable for even small instances. Alternatively, both the task and

motion problems could each be solved independently by first finding a task-level plan and then

solving the motion planning problem for each task. While this approach is usually feasible, it can

lead to poor solutions, or even incompleteness. This is because the task planner has incomplete

knowledge of the cost and dynamics that will be utilized by motion plans when achieving its tasks,

and furthermore, the motion planner is focused on the individual tasks without considering the

constraints from a full plan perspective.

This chapter makes two main contributions. First, we present a new problem that requires

the combination of task and motion planning, called Waypoint Allocation and Motion Planning

(WAMP). While the problem is easy to understand and compact to specify, it presents timely
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research challenges. Again, it consists of scheduling a fixed set of vehicles to achieve different

waypoint locations according to given temporal constraints. At the high-level, it is a resource

allocation problem in which waypoints must be assigned to vehicles. For each vehicle, an ordering

of the waypoints must be found such that temporal constraints can be met. At the low level, it

is a difficult motion planning problem where a physically feasible path that respects the vehicles’

motion models must be found such that each waypoint is visited and, again, all temporal constraints

are met. The solution cost depends on the low-level paths that are selected. As we describe below,

many of the subproblems of WAMP are known to be NP-hard. We also prove that the target value

search problem (Kuhn, Schmidt, Price, Zhou, & Do, 2008), which is related to WAMP’s routing

subproblem, is NP-complete.

The second contribution is a planner that we have developed to solve WAMP instances involv-

ing fixed-wing aircraft. We combine tabu search for waypoint allocation, linear programming for

scheduling, and heuristic search for route planning. The planner separates the high-level scheduling

and resource allocation from the low-level routing by using a surrogate objective that is optimized

by the high-level solver as a proxy for the true objective of the problem. This greatly reduces

the number of times the router needs to be called. The low-level planner has the ability to give

feedback to the high-level sequencer to help improve the accuracy of the surrogate objective. We

present experiments that demonstrate the infeasibility of using one single A* search to solve this

problem. Then, we test the scalability of our planner and evaluate the performance of its major

components. We also show that our planner is able to solve realistic problems within the required

time limit. This work illustrates how real world robotics applications can feature the combination

of multiple interacting planning problems, requiring the integration of diverse non-classical solution

techniques.

3.2 Problem Formulation

WAMP is directly motivated by an industrial application. An instance of WAMP is given by a

6-tuple 〈Size, V,W,R,C,K〉 where Size = 〈xmax, ymax〉 is the problem’s x and y dimensions, V

is a set of vehicles, W is a set of waypoints, R is a set of relative temporal constraints between
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Figure 3-1: An example solution with 2 vehicles and 6 waypoints.

waypoints, C is a set of high cost regions and K is a set of non-traversable regions. The state space

is restricted to two dimensions and vehicle collisions are not considered.

Vehicles In our instances, all vehicles are airplanes, so each element of the set V is a 5-tuple

〈x0, y0, θ0, v, r〉 where x0, y0 and θ0 define the vehicle’s initial position and heading, v is the vehicle’s

velocity and r is the minimum turn radius. In this chapter only fixed velocity vehicles are considered.

In Figure 3-1 (a), the vehicles start poses are depicted by small black triangles.

Waypoints Each waypoint in the set W is represented as a circle and is defined by the 8-tuple

〈x, y, r, ts, te, θ0, θ1, A〉, where x, y and r give the center point and radius, ts and te give the start
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Figure 3-2: An example of time/cost trade-off.

n Failure Rate

1 24%

2 64%

3 88%

4 98%

5 98%

6 100%

Figure 3-3: Sample A* scaling results
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Figure 3-4: A router stressing maze example solution.
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and end times of the window during which the waypoint must be achieved, θ0 and θ1 define a range

of headings that the vehicle must be within when the waypoint is achieved and A ⊆ V is a set of

vehicles that are allowed to achieve that waypoint. The waypoints can be seen in Figure 3-1 (a) as

numbers with circles. Each waypoint must be achieved by being within the circle at a legal time

at a legal heading.

Relative Temporal Constraints In addition to each waypoint having an absolute time window,

the set R defines a set of relative constraints. Each is a 4-tuple 〈u, v,min,max 〉 where u, v ∈W are

waypoints and min and max are the minimum and maximum allowable time difference between

when u is achieved and v is achieved.

Costs C is a set of two dimensional Gaussians: 〈x , y , h, σx , σy , c〉, where x and y give the center

location, h specifies the “height”, or the cost that will be incurred at the center, the σ terms give

the standard deviation in the x and y directions respectively, and c is the correlation. These are

used to determine the cost of vehicle motion. There is also a minimum cost present everywhere

representing fuel consumption and time. Every vehicle traverses a path, and the cost incurred by

the vehicle is the time it spends in each location multiplied by the cost of being in that location.

As the time discretization approaches zero, the limit is the line integral along the vehicle’s path

divided by the vehicle’s speed. In Figure 3-1 (a), the cost of each cell is represented by the shade

of red in the cell. Being in a white area incurs low cost, and being in a red area incurs high cost.

Keepouts Lastly, K is a set of “keepout” zones that cannot be traversed. Each zone is a tri-

angular area defined by three points 〈x0 , y0 , x1 , y1 , x2 , y2 〉. These shapes can be aligned to create

more elaborate regions. In Figure 3-1 (a), the gray area is a keepout zone.

The cost of a solution is the sum of the cost incurred by all vehicles. However, after a vehicle

achieves its final, waypoint it no longer accumulates cost. The objective of WAMP is to find a

minimal cost solution, using the available vehicles, that achieves the given waypoints and meets all

of the problem constraints.
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3.2.1 Application Context

The planner must solve problems within ten seconds because it is part of an interactive decision-

support aid with a human in the loop, who edits the resulting plans. The planner’s solution might

not be immediately acceptable because the Gaussian cost model is only an approximation of the

real cost model and there may be other assets that are not modeled in the instance. We are also

interested in pseudo-balanced vehicle makespans. Therefore our planner’s objective was altered to

take into account not only cost but an adjustable ratio between path cost and makespan. This

tradeoff allowed us to specify how interested we were in minimizing time and cost as a weighted

sum of the two final values:

obj = w1 · time + w2 · cost

3.2.2 Relations to Other Problems

We provide brief sketches showing how WAMP can be seen as a composition of several problems

that are known to be NP-hard. We also provide an NP-completeness proof for one subproblem

that, as far as we are aware, was not previously known to be NP-complete.

Vehicle Routing Problem with Time Windows VRPTW is a popular problem in the op-

erations research community. While it now has a large number of variants, the classic VRPTW

(Dantzig & Ramser, 1951) is: given a set of service requests with known fixed distances between

request locations, find a schedule such that the required number of vehicles and total travel cost

are minimized (in that order) and all requests are serviced within their given time windows. One

variant that is closely related to our problem is the m-VRPTW problem (Lau, Sim, & Teo, 2003)

where the number of vehicles is fixed at some value m and the goal is to find the minimum cost

schedule with this fixed size fleet. The decision variant of this problem (determining if a feasible

schedule exists) has been shown to be NP-complete (Savelsbergh, 1985; Lau et al., 2003).

The m-VRPTW problem can be reduced to a WAMP instance if each of the m vehicles has

infinite capacity and the delivery destinations reside in the Euclidean plane. The reduction can
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then be achieved by setting the turning radius of each of the m vehicles to ǫ with a fixed velocity of

1. All vehicles share a start and end location, the location of the depot. Each delivery destination

location and time window are direct mappings from the original problem. Using a large Gaussian

to distribute cost uniformly over the map, such that the cost of each point on the map evaluates to

1, will result in a WAMP objective function that directly minimizes the overall distance traveled.

WAMP also shares similarities with the OR Orienteering Problem and its extensions (Vansteen-

wegena, Souffriaua, & Oudheusdena, 2011), specifically the Team Orienterering with TimeWindows

problem. Our task assignment solving techniques are similiar to those used in the OR research for

the Orienteering Problem. The major difference from the traditional Orienteering Problem and

WAMP is that the OR problem operates on a discrete graph with a discrete cost/reward function

while WAMP operates in continuous space with a continuous cost function and obstacles.

Jobshop Scheduling Problem JSP is perhaps the most well-known scheduling problem. The

JSP is an NP-complete problem (Garey & Johnson, 1991) concerning a given set of jobs, each

composed of a set of activities that each have a given length. All activities must be assigned time

on a given set of machines so that no two activities use the same machine at the same time and

each activity must be serviced by a specified machine. The problem is to determine whether or not

a feasible schedule exists within a given deadline.

We reduce the JSP to WAMP by associating vehicles with machines and waypoints with tasks.

For each machine m, there is a special location lm located sufficiently far from the special locations

for all other vehicles that flying between any two special locations takes longer than the deadline.

Each activity to be scheduled on machine m corresponds to three unique waypoints, the first one

is placed at location lm, the second is placed at a distance from lm that corresponds to half of the

length of the activity and the final one is placed at lm. These waypoints have temporal constraints

such that the first must be achieved first, the second one, that is not located at lm, must be achieved

exactly half the activity duration after the first and the final one must be achieved exactly half of

the activity duration after the second. When a vehicle chooses to achieve the first waypoint for this

activity, it cannot achieve any other waypoints besides the remaining two for this activity and the

entire time to achieve all three must be equal to the activity duration. Finally, the activities are
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ordered within their respective tasks by constraining the last waypoint for an activity to precede

the first waypoint for the activity that follows it within the task.

Traveling Salesman Problem TSP is a classic NP-complete problem (Garey & Johnson, 1991).

The Euclidean variant of the TSP may be reduced to WAMP by creating an instance with uniform

cost, a single vehicle, a turn radius that is infinitely small (the vehicle can turn and point itself

directly at its next waypoint) and by placing the cities of the TSP at their respective x and y

locations. The vehicle is able to traverse this set of waypoints within the given cost bound if and

only if there is a solution to the TSP within the bound.

Target Value Search While WAMP is defined on a continuous space, our solution uses discrete

search-based methods, thus it is useful to understand the complexity of related discrete problems

such as Target Value Search. The TVSP (Kuhn et al., 2008; Schmidt, Kuhn, Price, de Kleer, &

Zhou, 2009) is the problem of finding a path from start to goal whose length is equal to the target

value. Schmidt et al. (2009) conjectured that the optimization variant of the TVSP (i.e., finding a

path with cost as close as possible to the target value) is in EXPTIME. Kiesel et al. (2012) showed

that the decision problem of determining whether or not a path with the exact target value exists

is NP-complete. We include the proof here for completeness.

We specify a TVSP instance as a 4-tuple 〈G, s, g, T 〉, where G = 〈V,A〉 is a finite graph with

vertices V and a set of weighted, directed arcs A ⊆ V × V ×N, s ∈ V and g ∈ V are the start and

goal nodes in the graph, and T ∈ N is the target value.

Theorem 1. The target value search problem in a graph is NP-complete.

Proof The problem is in NP since, given a solution, one can easily check the validity of the path

and sum the edge weights in polynomial time. We show it is NP-hard by reducing from SubsetSum

(Garey & Johnson, 1991). Given an instance of SubsetSum — a finite set S ⊆ N and a positive

integer B for which we wish to know if there exists a subset of S that sums to B — we formulate

a target value search problem as follows: T = B is our target value. For each si ∈ S, we create a

vertex vi. The vertices are then linked together in a chain with two arcs between adjacent pairs of
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Figure 3-5: Overview of our system.

vertices, one arc has cost 0 and the other has a cost equal to the element of S corresponding to the

first vertex of the arc: (vi, vi+1, 0) ∈ A and (vi, vi+1, si) ∈ A, 0 ≤ i < |S|. Finally, our start vertex

is s = s0 and our goal vertex is g = s|A|−1.

There is a path in this graph that achieves the target value T if and only if there is a subset of

S whose sum is equal to B, with the non-zero-cost arcs corresponding to the elements included in

the subset. �

3.3 Our Approach

Our approach is guided by four features of the application context that we exploit to make the

problem easier to solve: first, the cost function is relatively smooth, meaning that similar paths

will often have similar costs. This allows us to approximate final path cost by evaluating the cost

of a simple 8-way grid path. This implies that we can postpone detailed motion planning until

we have a promising candidate solution. Second, there are many possible low-level paths, so we

can make the assumption that any schedule will be routable given sufficient time per leg. This

allows us to assume that a spectrum of paths exists between the fastest (most expensive) and the

cheapest (relatively long) (see Figure 3-2 (b)). As we explain below, this spectrum is constructed

optimistically and we therefore will incorporate feedback from motion planning as necessary to

refine the estimates of achievable paths. Third, making a leg longer can usually decrease cost of

the final route, as the vehicle has more time to navigate around high cost regions. Finally, it is

easy to make a leg of a route longer, because if the route arrives at the destination waypoint too

early, then extra time can easily be added by inserting loops into the route at low-cost locations.

This means we can focus on trying to arrive early.
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More specifically, our planner uses four stages: pre-computation, scheduling, building a timetable

and routing (see Figure 3-5). First, we pre-compute information about times and costs between

pairs of waypoints. This information will be used by the later stages to approximate the time and

cost between pairs of waypoints. Next, the sequencer assigns waypoints to vehicles and then orders

them such that there should be a feasible route for each vehicle that obeys the problem constraints.

After an assignment and ordering are found, we use a linear program (LP) to find a timetable that

specifies, for each waypoint, the time at which its assigned vehicle should arrive. The timetable is

then passed to the router to find a flyable path for each vehicle that achieves the given times.

The information about routability used by the sequencer and LP is approximate, so there are

two places where the procedure may fail. The first level of failure is when the router is unable to

connect two waypoints and meet the deadline. This can happen because the initial estimates are

approximate. If this happens, the router posts additional problem constraints, which are then used

by the LP and sequencer to improve the accuracy of their estimates. The new constraint may make

the the current ordering infeasible, at which point a new ordering is constructed. The following

subsections describe each of these steps in greater detail.

3.3.1 Pre-computation

Both the sequencer and the timetable generation phases need to estimate the cost and duration of

possible routes between each pair of waypoints, as depicted in Figure 3-2 (b). These estimates are

represented by a linear interpolation between the quickest path and the cheapest path between each

set of waypoints. The slope of this line represents an estimate of the rate at which adding additional

time navigating on a leg can be converted into cost reduction, which we call the improvement slope.

These shortest and the cheapest paths between the waypoints are computed in an 8-connected grid

discretization of the problem where the discretization is the size of the smallest vehicle’s turning

radius. Each grid cell uses a single traversal cost estimate given by the mean of the true cost

sampled at a fixed number of points distributed uniformly over the cell. In our implementation,

the cost between two adjacent cell centers is the distance multiplied by half of the cost of each cell.

To find the shortest and cheapest paths to each waypoint, we use Dijkstra’s algorithm from each
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waypoint to all cells in the grid (once for each metric). Since the costs and distances are invertible,

this gives an estimation of the shortest and cheapest paths to the given waypoint from anywhere

in the problem. While the sequencer only needs waypoint to waypoint estimates, the router needs

a heuristic value for every cell.

3.3.2 Sequencer

The sequencer finds an ordered assignment of waypoints to vehicles that is thought to be feasible

given the problem constraints. For this step, we use a tabu search based on the technique for m-

VRPTW described by Lau et al. (2003). WAMP however, has a handful of additional constraints

such as allowable vehicle constraints and relative temporal constraints. The search is over ordered

partial assignments of waypoints to vehicles. In each state, there is a set of waypoints that have

yet to be assigned called the holding list and there is a set of ordered waypoints assigned to each

vehicle. The neighborhood of a state is given by five operators: relocate a waypoint by moving it

from one vehicle to a specific location in the ordering for another vehicle, exchange two waypoints

in the ordering on a single vehicle, unassign a waypoint by moving it from a vehicle’s ordering to

the holding list, assign a waypoint to a specific location in the ordering for a vehicle and exchange

a waypoint on the holding list with an assigned waypoint on a vehicle.

The search begins from the initial state where all waypoints are unassigned. The neighborhood

of the initial state is evaluated to find the best neighbor using an ordering predicate described

below. As neighbors are generated, they are tested for validity in two ways. First, constraints

imposed by the ordering of each schedule are tested for feasibility using a simple temporal network

(STN, Cervoni, Cesta, and Oddi (1994)). In order to account for the distance between waypoints,

we use the pre-computed shortest path distances to constrain each pair of waypoints to be separated

by at least the time required to traverse the shortest path between them. If the STN reports that

the ordering constraints are inconsistent with the constraints of the problem, then the neighbor is

discarded as it cannot lead to a valid solution.

The second test is to see if the neighbor is tabu by checking if any of the waypoints that moved

while generating the neighbor are included in a tabu list. The tabu list contains waypoints that are
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temporarily disallowed from being moved. If a neighbor fails the tabu test, then it is considered as

a candidate for the best neighbor only if there are no other feasible neighbors. The tabu list helps

to prevent the search from getting stuck in local minima by causing it to explore new portions of

the space.

Once the best feasible neighbor is found, then the waypoints that were moved to generate that

neighbor are added to the tabu list. If the size of the tabu list becomes greater than a fixed size (7

in our experiments), then entries are removed in first-in-first-out order. Finally, the search iterates

with the best neighbor as the new current state. The best state ever encountered by the search is

maintained as an incumbent, giving the sequencer an anytime behavior. The sequencer is stopped

when either a maximum time limit has been reached or, if a full schedule has been found, it is

stopped when no new incumbent arrives for a quarter of a second.

Following Lau et al. (2003), the ordering function used by the sequencer to estimate the quality

of a state is hierarchical. First, the ordering function prefers states in which more waypoints have

been scheduled. This helps encourage the sequencer to find total assignments of all of the waypoints

to vehicles. In order to allow the user to make a trade-off between inexpensive and short schedules,

we break ties using our version of the WAMP objective.

These costs approximate the actual makespan and cost of the final flyable route for the given

schedule. Since the sequencer finds an ordering over the waypoints and not a fully instantiated

timetable, there is some question as to how time may be allocated among the different legs of each

route if there is flexibility in the temporal constraints. For estimating the cost of a state during the

tabu search, we can use one of three techniques. The first approximation is optimistic and assumes

that each leg will always use a path with the cost and duration of the minimum cost grid path. We

call this the min estimation technique.

The greedy technique assigns time to each leg greedily. Each leg has an associated improvement

slope which we use to estimate the rate at which we can convert extra time into cost reduction.

The greedy technique greedily allocates more time to legs for which additional navigation time is

likely to reduce cost the most. As we describe below, this greedy strategy is optimal in certain

situations.
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The final estimation technique is based on linear programming and is fairly expensive when

evaluated on each state generated by the tabu search. We describe it in the next section as it is the

same technique used to generate the timetable of the final solution returned from the sequencer.

3.3.3 Generating a Timetable

Once a waypoint ordering has been found for each vehicle, we generate a timetable that assigns

the time when each waypoint should be achieved. This timetable will be used by the router to

find a flyable path for each vehicle that achieves each waypoint at its designated time. In order to

decide where time should be allocated along each vehicle’s route, we again use an estimation of the

time/cost trade-off for each leg of the route. The objective of this part of the solver is to assign

each leg a time such that the sum of the associated costs is minimized.

In order to meet the problem’s time constraints, more time may need to be spent on a leg than

would be taken by the cheapest path. If this happens, the cost of the leg will generally be greater

than the cheapest path cost due to cost incurred while waiting for time to pass. Currently, our

implementation uses an optimistic approximation in which additional time can be added for free.

The LP uses two base variables for each leg: reduction duration durred(i) and free duration

durfree(i). durred(i) represents the additional time that is devoted to avoiding high cost areas, and

is required to be larger than the minimum travel time between the two waypoints, and smaller than

the travel time of the cheapest path between the two waypoints. durfree(i) represents time beyond

the time required for the cheapest path. durred(i) + durfree(i) = duri, where duri is the duration

spent getting to waypoint i from the previous place, either the previous waypoint or the starting

location. ti is the time at which waypoint i was achieved, and it is equal to the sum durj for all

waypoints that the vehicle services up to and including waypoint i. The objective function of the

LP is minimizing
∑

waypoints durred(i) ·redi+0 ·durfree(i) where redi is the improvement slope. The

zero coefficient reflects our optimistic assumption that time beyond the cheapest solution can be

added for free. Temporal constraints from the problem all restrict ti using linear inequalities so

these can be entered into the LP directly, restricting the legal values of the derived variables.

An alternative method for solving the timetable problem is to use the greedy estimation method
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used by the scheduler.

Theorem 2. In the case where there are no relative constraints in the problem or when all relative

constraints are subsumed by the absolute constraints on each waypoint, the solution produced by the

greedy algorithm is optimal.

Proof Suppose we have a potentially optimal solution that is not the greedy solution. The fact

that this solution is not greedy means there exists a pair of legs S and S′ such that S′ offers a worse

return on investment of time, and S′ was allocated time that could possibly have gone to S. This

possibility implies that it is possible to shift time from S′ to S by simply moving all the waypoints

between S and S′ by some nonzero amount, leaving the duration of all other legs the same. This

solution cannot be optimal, because we can improve it by moving some time from S′ to S. This

reduces the cost of the solution because S′ offers a worse return on investment of time than S, and

all other legs remained the same duration. �

Theorem 3. In the general case, the problem requires a non-greedy method, such as linear pro-

gramming.

Proof We exhibit an instance with three vehicles (and some relative constraints) that defies

greedy scheduling. Vehicle v1 must visit waypoint w1, which is at least 2 minutes away. Vehicles v2

and v3 each start one minute from w2 and w3, respectively, and must visit them exactly 1 minute

before v1 visits w1. Anytime after v1 visits w1, v2 must visit w2′ and v3 must visit w3′ . w2′ is at

least 1 minute from w2 and w3′ is at least 1 minute from w3. All waypoints must be visited before

time 7. The traversal costs are such that giving v1 more time for w1 lowers cost by 6 per minute,

giving v2 or v3 more time for w2 or w3 doesn’t lower cost at all, and giving v2 or v3 more time for

w2′ or w3′ lowers cost by 5 per minute. The greedy scheduler will put w1 at 7 − ǫ, w2 and w3 at

6− ǫ, and w2′ and w3′ at 7. This lowers cost for v1 by (5− ǫ) · −6 and for v2 and v3 by ǫ · −5, for a

total of −30− 4ǫ. The optimal solution puts w1 at 2, w2 and w3 at 1, and w2′ and w3′ at 7, which

lowers cost for v1 by 0 and for v2 and v3 by 5 · −5, for a total of −50. �
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3.3.4 Routing

The router constructs flyable paths that meet the timetable while minimizing cost. The router

performs this task one vehicle at a time, one leg at a time. Each invocation has three phases:

finding a grid path, smoothing the grid path, and adding additional travel if necessary to match

the timetable.

Finding a Path

The first step in constructing each leg is to use a discretized version of the problem to find an 8-way

grid path that connects the cells containing the leg’s start and goal. All grid cells whose center

point is within the radius of the leg’s goal waypoint count as goals. If the waypoint’s radius does

not contain a grid cell center, the grid cell that contains the waypoint’s center point is used as the

goal. Any cell touched by a keepout zone is marked as impassable in the grid search. Technically

this approximation makes the planner incomplete, however, this was not an issue in practice.

Grid paths are found using A* search, modified to account for time constraints. The modified

A* search prunes any state whose travel time so far tcur and estimated remaining travel time trem

(from the pre-computed shortest 8-way grid path times) are greater than the deadline di imposed

by the timetable, tcur + trem > di. The cost of each grid cell is determined in the pre-computation

phase. The heuristic used during search is based on the pre-computed costs. The pre-computed

cheapest path is used if its length is less than that required to meet the deadline.

Smoothing

If used directly, the 8-way grid path is usually dynamically infeasible and might not intersect the

waypoint’s radius or take into account heading constraints from the waypoint or the previous leg

(or start position).

The grid path is smoothed by substituting arcs at sharp turns, resulting in a smooth path that

is traversable by the current vehicle. This smooth path may not achieve the waypoint correctly

(incorrect heading and/or incorrect position) and may not line up correctly with the exit trajectory

from the previous leg. This is resolved by constructing dynamically feasible Dubins paths (Dubins,
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1957; LaValle, 2006) to match up the ends of the smooth path with the previous leg and the goal

waypoint. This is done by constructing a Dubins path that connects a point on the smooth path

to either the goal waypoint or the previous leg.

The connection point choice has very visible impact on the resulting path. Choosing a point

too close may result in large turns to correct heading discrepancies. Choosing a point too far away

can remove too much of the cheaply routed path. We iteratively try several lengths, keeping the

best path according to a weighted combination of cost and distance.

Constructing the connection from the smooth path to the goal waypoint has one more free

variable, the heading at the waypoint. The waypoint may have an associated heading constraint

so any values chosen must be within the specified range. The same iterative technique is used to

evaluate connection points along the smooth path.

The heading at which a non-goal waypoint is achieved affects both the cost of the segment

entering the waypoint as well as the cost of the segment exiting the waypoint. We would like to

achieve the waypoint at a heading that is expected to have a cheap ingress as well as a cheap egress.

To account for both of these costs, we consider a small set of pairs of Dubins curves where one

curve in each pair is entering the waypoint and the other is exiting. The set is constructed using all

combinations of a discrete set of starting points along the smoothed path entering the waypoint,

ending points along the grid path exiting the waypoint, and headings at the waypoint. Of this set,

we choose the curve that enters the waypoint from the pair that minimizes the weighted sum of

cost and makespan.

Extending a Route

The smoothing process can result in paths longer or shorter than the grid path solution. When a

path whose increased length results in missing the deadline, the A* search is continued to find a

faster path. If no such path can be found, the router will fail back to the timetable stage with a

new constraint bounding the problematic leg.

If smoothing results in a path that arrives at the waypoint before the deadline, the path is

lengthened. If the time required to arrive at the deadline is at least the circumference of a tight
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loop of the vehicle, loops are added to the leg in the area where they will increase the cost least.

3.3.5 When Routing Fails

The timetable is generated using only an approximation of the routability between waypoints, so it

may happen that the router is unable to meet the given deadlines. This can occur when the shortest

8-way grid path between two waypoints is shorter than the shortest flyable path. When the router

fails to successfully route a leg, it passes the true minimum distance and cost of the failed leg back

to the LP and sequencer. Using this new distance constraint, a new timetable is found and routing

restarts. Additionally, if the updated LP has become infeasible, then the ordering produced by the

sequencer is invalid and the sequencer is restarted to find a different ordering.

To avoid re-planning the same legs again in an updated timetable, the router caches the route

for each successful leg. When a new timetable requires a leg that has already been routed with the

same time constraint, this leg is re-used from the cache.

3.4 Evaluation

We now present the results from experiments we performed to evaluate the planner.

3.4.1 A Single Unified A* Search

Our first experiment verified that solving WAMP by running an A* search on the combined task and

motion planning problem would quickly become infeasible. The state space included the airplane’s

position, heading, and time. The available operators were turn left or right 45◦ and go straight.

For a heuristic, we calculated a minimum spanning tree of the 8-way grid path costs between

waypoints on a discretized version of the problem, and added the distance of the vehicle to the

nearest waypoint. The A* solver was written in Java, and we define failure as filling a 7GB object

heap. Figure 3-3 (c) shows the failure percentages (right column) as the number of waypoints

scales from 1 to 6 (left column). Each of these problems used a single vehicle and had no temporal

constraints. The A* solver fared extremely poorly on this problem, and was unable to successfully

solve a full set of these very small instances even with a single waypoint.
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Figure 3-6: Scaling the number of waypoints and vehicles.
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3.4.2 Scaling Behavior

We now turn to evaluating the approach discussed in this chapter, which was implemented in C++

and run on a 3.16 GHz machine with 8GB of RAM. Our first evaluation measured solution time

and cost when scaling both the number of vehicles and the number of waypoints. Both of these

parameters have a large effect on the difficulty of problem. The plots in Figure 3-6 show the results

of these experiments. The top plot shows the scaling behavior of the min, greedy and LP surrogates

as a function of the number of waypoints. Each glyph represents the mean time and cost over a set

of instances with a number of waypoints given by the label (10, 20, 30 or 40) and 4 vehicles. The

error bars give the 95% confidence interval on the means. A line connects each mean in order of

increasing number of waypoints. As can be seen, the problems require more time and accrue more

cost as the number of waypoints increases. When using both the min and greedy surrogates, we

are able to solve the instances within our 10 second time frame even with up to 40 waypoints. We

were surprised by the good performance of the min approximation. The LP approximation requires

more time and is only able to solve up to 30 waypoint instances within the 10 second time frame.

The bottom plot of Figure 3-6 shows the scaling behavior as the number of vehicles increases.

These instances had 20 waypoints. As the number of vehicles increases, the planning time increases.

Again, the min and greedy surrogates give the best performance. Both the greedy and min tech-

niques easily solve all problems within the 10 second time frame. The LP technique requires more

than 10 seconds for some 16 vehicle instances.

3.4.3 Evaluating the Scheduler

Next, we considered synthetic instances that stress each major component of the system separately.

To evaluate the sequencer, we created a set of instances for which we could find optimal solutions to

the scheduling problem using the Concorde TSP solver (Applegate, Bixby, Chvatal, & Cook, 2006).

We converted sets of TSP instances with 40 and 100 cities into WAMP instances for a vehicle

with turning radius ǫ in order to compare the solutions found by our sequencer to the optimal

TSP solutions. For comparison, we also implemented a simple nearest-neighbor TSP solver which

chooses to visit the nearest unvisited city next.
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The results of this experiment are shown on the plot in Figure 3-7. We compared the min (M)

and greedy (G) approximation techniques and the nearest neighbor TSP solver (NN). The y axis

shows the factor of the optimal cost, so 1 is optimal and 1.2, for example, is 20% over optimal.

Each box surrounds the middle half of the results, the horizontal line represents the median value,

the ‘whiskers’ extend to the min and max. Circles beyond the whiskers show outliers. This plot

does not include any results for the LP-based approximation as it was unable to solve any of the

100 city problems within a 120 second time limit. We can see from this plot that our ordering

search tends to find solutions that are 20% above the optimal cost. For the more difficult 100 city

instances, both the min and greedy approximations tend to outperform the nearest neighbor solver.

Additionally, the 100 city instances seem to skew a bit more toward low-cost solutions than the

easier 40 waypoint instances. We interpret these as positive results because they show that our

sequencer is able to find reasonable solutions to these TSP instances.

3.4.4 Evaluating the Router

To evaluate the router, we created instances that required traversal of a maze of high-cost regions.

Figure 3-4 (d) shows the path found for one such instance. While we did not have any simple way

to quantify these results, it is visibly clear that the router was able to find its way through the

mazes while avoiding high-cost regions.

3.4.5 Application

Finally, we evaluated on a set of instances that were similar to those used by our industrial partner.

These instances were 200x200 miles, with 3 vehicles, and 41 waypoints. Our industrial partner’s

current system, which we do not have access to for reasons of intellectual property and security

classification, solves instances like these in approximately 7 seconds. On this set of instances, our

solver had a mean solution time of 2.5 seconds. We have designed our implementation such that we

expect near linear time speedup on a multi-core machine; so these results could be improved even

further. Due to confidentiality reasons we were unable to directly compare solutions on quality,

however we generally received positive feedback.
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3.5 Related Work

Lavalle (1998) introduced rapidly-exploring Random Trees (RRTs) which are a popular technique

for finding dynamically feasible motion plans, however they do not minimize path cost. The RRT*

algorithm (Karaman & Frazzoli, 2010) minimizes cost, but does not handle temporal constraints.

Bhatia, Kavraki, and Vardi (2010) combine sample-based motion planning with temporal goals

by employing a geometry based multi-layered synergistic approach. Unlike the temporal constraints

of WAMP, their goals are given by linear temporal logic formulas.

Dornhege, Gissler, Teschner, and Nebe (2009) describe how to combine low-level motion plan-

ning with high-level task planning via semantic attachment to a PDDL planner. In their approach,

the lower level planner is used to check action applicability and compute effects whenever certain

high level actions are used. In our approach, we use pre-computed minimum travel times to allow

quick feasibility checking during high level planning, reserving the low level planner for computing

the true cost of a solution.

Kaelbling and Lozano-Pérez (2011) present a more flexible technique for combining both task

and motion planning called “hierarchical planning in the now.” The technique generates a hierarchy

dynamically. When refining a transition at one level in the hierarchy, a planner is used where the

goal specification is given by the preconditions of the destination node of the transition. This

technique does not handle temporal constraints or a cost metric other than makespan.

Frank, Stachniss, Abdo, and Burgard (2011) make use of surrogate objective for motion planning

for a robotic arm in the face of deformable objects. Their technique uses a surrogate objective to

avoid using a computationally intensive finite element methods simulation to compute the cost of

object deformations.

There has also been previous work in routing for aerial vehicles. McVey, Clements, Massey,

and Parkes (1999) present the Worldwide Aeronautical Route Planner (WARP) that plans fuel-

efficient airplane routes around the globe. S̆tĕpán Kopr̆iva, S̆ĭslák, Pavĺıc̆ek, and Pĕchouc̆ek (2010)

present Iterative Accelerated A* (IAA*) which is a technique developed for flight-path planning

that increases the distance covered by each action primitive when the vehicle is far from surrounding

obstacles. However, neither of these techniques consider temporal constraints.
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3.6 Possible Extensions

Our current surrogate objective optimistically assumes that additional time can be added to a route

free of charge. Better approximations for this issue in the future could be explored. One possible

improvement is to estimate that additional time adds cost at a fixed rate. As long as the change

in slope at that point is a positive change in slope, it can still be captured in a linear program.

An additional improvement to our current system would be to allow the router to pass more

information back to the sequencer and linear programming layers. Currently, the router only sends

accurate time/cost information back to these layers when it determines that a leg is unroutable.

One may imagine a more complex system, however, where information flows back to the sequencer

and linear programming layer for every successfully routed leg too.

3.7 Conclusion

We introduced the problem of Waypoint Allocation and Motion Planning, which requires integration

of high-level task planning with low-level motion planning. WAMP models a real-world application,

moving beyond the classic planning problems and raising interesting issues that have not received

much attention, including how to partition effort in a multi-level planner and how to trade plan

cost for execution time in a time-constrained context. WAMP contains many subproblems that are

well-known to be NP-complete and we proved that the target value search problem is NP-complete.

We described an approach for the WAMP problem that takes advantage of the characteristics of the

problem in order to separate the solving into three distinct stages: scheduling, building timetables,

and routing. Our approach makes use of a surrogate objective in the high-level layers in order to

avoid calls to the more expensive low-level route planner. Using this hybrid approach we are able

to meet the demanding requirements imposed by the application.

In this chapter, we used abstraction to solve a complicated task and motion planning problem,

WAMP. As shown in the experiments, trying to solve the problem directly in the grounded space

using an algorithm like A* was not scalable. By applying these non-classical planning techniques to

estimate and identify promising portions of the state space to explore, we were able to get scalable
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performance. This work was published in a 2012 ICAPS paper (Kiesel et al., 2012).

In Chapter 4, we will continue to build on this idea of applying non-classical planning ideas

using abstractions to the area of sampling-based motion planning for robots.
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CHAPTER 4

f-Biased Sampling

4.1 Introduction

In this next chapter, we continue the trend of guiding low level search through high level reasoning.

We shift our focus from task and motion planing, to simply the core motion planning problem.

We begin by recalling Dijkstra’s algorithm (Dijkstra, 1959), the well-known search technique

for finding paths in a discrete state space graph. Dijkstra’s algorithm explores a graph by visiting

its nodes in ascending order according to the cost necessary to reach them and it is guaranteed to

find a cheapest path from an initial node to any node in the graph. Unfortunately, the search is

unfocused and will explore portions of the graph that lead away from the goal as well as those that

lead toward it. To alleviate this problem, the A* algorithm (Hart et al., 1968) uses a cost-to-go

estimate called a heuristic. When a heuristic estimate is available, A* always visits fewer nodes

than Dijkstra’s algorithm, as it avoids portions of the graph that only participate in high cost

solutions.

Rapidly-exploring random trees (RRTs) (Lavalle, 1998) are a popular technique for motion plan-

ning in continuous spaces. The RRT algorithm builds a tree of paths by sampling configurations.

The point in the tree nearest to each new sample is steered toward the sample, creating a new path

segment and a new node in the tree. RRTs are complete in the limit of infinite samples, however

they do not optimize for low cost solutions. Karaman and Frazzoli’s RRT* algorithm (Karaman

& Frazzoli, 2011) re-wires the tree when lower cost paths can be found to existing nodes near each

sample point. RRT* is both complete and asymptotically optimal. However, much like Dijkstra’s

algorithm for discrete graph search, RRT* will expend effort exploring portions of configuration

space that lead exactly away from the goal as well as towards it.
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The main contribution of this chapter is a new technique called f -biasing, named after the value

f used by A* to order its search effort. Just as A* improves over Dijkstra’s algorithm, f -biasing

focuses exploration of RRT-based algorithms toward areas that are more likely to lead to the goal

configuration, and to do so via low cost trajectories. To use f -biasing, we first solve a discretized

and abstracted version of the motion planning problem. Then, using the cost estimates found in

the abstracted problem, we bias the location of samples in the RRT so that they are more likely

to be drawn from portions of configuration space that contain low cost solutions to the abstracted

problem.

After discussing the method in detail, we prove that f -biasing maintains the completeness and

convergence properties of RRT and RRT*. We then compare f -biased RRT and RRT* to their

unbiased and goal-biased versions using three vehicles of increasing complexity: a simple straight-

line vehicle, the Dubins car, and a hovercraft. f -biasing finds its first solutions more quickly in

all domains except Dubins car with RRT*, where our current f -biasing implementation has more

re-wiring overhead and thus is only as fast as the other methods. We also show anytime profiles

that demonstrate that f -biasing both solves more problems and is able to improve its solution

quality more quickly than other techniques. Finally, we show how f -biased RRT can provide a

larger improvement over unbiased RRT than the RRT* algorithm. Broadly, we see this work as

strengthening the connections between motion planning in robotics and combinatorial search in

artificial intelligence that were pioneered by algorithms like RRT* and R* (Likhachev & Stentz,

2008).

4.2 Previous Work

We begin with a discussion of related work in both heuristic search and robotics.

4.2.1 Heuristic Search

A* (Hart et al., 1968) is an optimal search algorithm for discrete graphs (Dechter & Pearl, 1988).

A* visits nodes in increasing order of estimated solution cost f(n) = g(n)+h(n), where g(n) is the

cost of the path from the initial node to node n and h(n) is the heuristic value of n, estimating the
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cost from n to a goal node.

One technique for creating heuristics is by relaxing the constraints of the problem. Essentially,

this technique adds extra edges between states that do not exist in the original problem. Likhachev

and Ferguson (Likhachev & Ferguson, 2009) provide two examples of relaxation as applied to

motion planning. The first example is their removal of obstacles from a motion planning problem

to create a simpler relaxed problem that can be solved quickly. The second example is the ignoring

of vehicle dynamics in order to relax motion constraints. Solutions to these relaxations are lower

bounds on the cost-to-go in the original problem and are used to guide search.

Currently, some of the most powerful heuristics used by the search and AI planning communities

are created using abstraction. An abstraction is a many-to-one mapping from the search space

to a smaller abstract representation of the search space. For example, Remolina and Kuipers’s

(Remolina & Kuipers, 2004) topological maps are a form of abstraction created by mapping regions

of space to single nodes in a map. Sturtevant and Geisberger (Sturtevant & Geisberger, 2010) also

present an overview and a comparison of recent advances in the area of abstraction-based heuristics

for grid pathfinding.

Pattern databases (PDBs) (Culberson & Schaeffer, 1998) are one of the most popular abstraction-

based methods and are closest in spirit to f -biasing. A PDB contains the cost-to-goal for every

state in an abstract representation of the search space, computed by performing Dijkstra’s single-

source shortest path algorithm in reverse from the abstract representation of the goal to every node

in the abstract state space. During search, the abstract costs from the PDB are used as admissible

heuristic estimates for search states: when a non-trivial heuristic estimate is needed for a node, the

solution cost for the abstract representation of the node is used as the estimate.

4.2.2 Rapidly-exploring Random Trees

Rapidly-exploring random trees (RRTs) (Lavalle, 1998) grow a tree from the initial configuration

toward random samples in configuration space. Each iteration of the RRT algorithm samples a

random configuration, finds the node in the tree that is nearest to the sample, and then adds a new

node to the tree by steering the nearest node toward the sample. In the limit of infinite samples,
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an RRT will densely cover the configuration space.

The RRT* algorithm (Karaman & Frazzoli, 2011) is a simple modification to the standard

RRT algorithm that allows it to find cheaper motion plans. Whenever a new node is added to the

tree, nearby nodes are updated if they can be reached by a cheaper path via the new node. The

re-wiring performed by RRT* is closely analogous to a common technique used in heuristic search

algorithms, such as A*, in which, whenever a cheaper path with a lower g value is found to a node,

the cheaper path is used and the more expensive path is discarded. This can be seen as a form of

dynamic programming. Unlike A*, however, RRT* makes no use of a heuristic estimator.

Other variants of the basic RRT algorithm have been proposed, such as bidirectional RRT

(Kuffner & LaValle, 2000). In this chapter, we only evaluate f -biasing on the basic RRT algo-

rithm and RRT*, however any sampling technique, such as f -biasing, could easily be applied to

bidirectional RRTs.

RRT Sampling Schemes

Previous authors have also recognized that uniform exploration is not the most efficient choice for

a single query motion planning algorithm. There are a variety of previous proposals for biasing

sample selection in an attempt to decrease the time required to find the first solution, improve

the handling of navigation near obstacles, and increase the exploration of the configuration space.

Most of the techniques summarized here are discussed in greater detail by LaValle (LaValle, 2006).

Unbiased Random Sampling: Unbiased random sampling, the method that was originally

proposed for generating an RRT, has the benefit of covering the configuration space without prej-

udice and is appropriate for domains where no prior knowledge or only inaccurate knowledge is

available. The following biasing techniques attempt to exploit additional information to find better

solutions faster.

Goal-biased Sampling: Goal-biased sampling (Lavalle & Kuffner, 2000) selects the goal

configuration, or configurations near the goal, more often than uniform sampling in an attempt to

grow the RRT more quickly toward the goal. There are two major flavors of goal biasing. First,

the goal configuration itself can be selected as a sample with some fixed probability p, otherwise
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an unbiased sample is used. The second version of goal biasing selects configurations near the goal

instead of only the goal itself. One common method for this is to use a Gaussian distribution

(Lavalle & Kuffner, 2000; Song & Amato, 2001) around the goal configuration. These both can

overcome minor local obstacles, however, if a the start configuration lies in a heavily obstructed

part of the space far from the goal, it will be difficult for the planner to construct the the tree

through the obstructions.

Heuristic-biased Sampling: Urmson and Simmons (Urmson & Simmons, 2003) introduced

heuristic-biased sampling, which biases samples to be nearer to those nodes that the RRT reached

via lower cost paths. This method has been shown to find cheaper motion plans, however, its

biasing is based on the cost of paths found by the RRT regardless of whether or not these paths

lead toward the goal. Like Dijkstra’s algorithm, heuristic-biased sampling will explore portions of

the space that lead away from the goal if it has reached them via cheaper paths than those leading

toward the goal. Instead, we would like to sample from areas that we expect to be traversed by

cheap trajectories that actually reach the goal.

Path-biased Sampling: The previous method that is most similar to ours is path-biased

sampling (Vonásek, Faigl, Krajńık, & Pr̆euc̆il, 2009; Krammer, Granzer, & Kastner, 2011). While

it was developed independently, path-biasing is similar because it can be seen as using the solution

to an abstract or simplified representation of the motion planning problem such as a discrete grid

or visibility graph (Nilsson, 1969). An RRT is then constructed by choosing samples along the

solution path of the abstract problem with a probability p and uniformly otherwise. Using this

technique, samples tend to occur along a possible low cost trajectory from the initial configuration

to the goal.

Basic path-biasing fails if the path found in the simple problem doesn’t take into account

constraints of the complex motion planning problem. To hedge against this possibility, Krammer

et al. (Krammer et al., 2011) propose a modified variant that draws samples from a Gaussian

distribution around the abstract solution path. As we discuss next, f -biasing uses a more principled

approach by selecting samples from areas of the configuration space with a probability based on

the solution cost in the abstract space. Effectively, f -biasing takes into account all low-cost paths
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in the abstract space simultaneously instead of focusing on a single path. Furthermore, we will

demonstrate that this is effective even for vehicles with complex dynamics, such as a hovercraft.

4.3 f-biased Sampling

We have discussed heuristic search and the benefits that it gains by using a heuristic to focus its

effort on areas of a search space that harbor low cost solutions. Next, we saw that many of the

most powerful state-of-the-art heuristics are created by using abstraction, and lastly, we described

RRTs, which use sparse, uniform random sampling to explore the continuous and high-dimensional

nature of motion planning problems. f -biased sampling combines these three ideas: heuristic

search, abstraction, and sample-based motion planning. The first step in using an f -biased RRT

is to create an abstract representation of the motion planning domain. Next, Dijkstra’s algorithm

is used to pre-compute the cost of the shortest path through each abstract node from the initial

configuration to the goal in the abstract space, as in PDBs. Like a heuristic, these abstract solution

costs give the ability to focus the RRT’s growth toward configurations that map to abstract states

with low costs. We now explain each of these steps in greater detail.

4.3.1 Abstraction

The abstraction is represented by a weighted directed graph that is small enough to be searched

exhaustively with Dijkstra’s algorithm. There are many possible techniques for generating an ab-

stract representation of a problem. In our implementation, we use a simple uniform discretization of

configuration space to create an n-dimensional grid, where n is less than or equal to the dimension-

ality of the configuration space. Each vertex in the abstract graph is a discrete configuration that

represents all configurations in the continuous space that fall within its Voronoi hyper-rectangle.

Adjacent vertices in the abstract graph are connected via an edge if neither vertex is obstructed by

an obstacle. In our implementation, a vertex is obstructed if its discrete configuration is contained

within an obstacle. The weight of each edge reflects an estimate of the cost of the navigating

between the two discrete configurations that it connects.

Figure 4-1(a) shows a polygonal map of the second floor of Kingsbury Hall at the University
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(a) (b)

(c) (d)

Figure 4-1: An example map showing abstraction (a), f values (b), an f -biased RRT (c) and regular

RRT (d).
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of New Hampshire along with a possible abstraction, represented as a coarse grid overlaid on the

continuous domain. Each cell of the coarse grid is a vertex in the abstract graph and the graph has

eight-connectivity. This is an extreme simplification, but as our experiments will show, it suffices

to guide motion planning.

For each motion planning query, we map the initial and goal configurations to their abstract

nodes in the abstract representation of the state space. We then compute the cost of the path from

the initial node through each abstract node to the goal node. Because we use a discrete abstraction,

this can be done in linear time in the size of the abstract space by using two calls to Dijkstra’s

single-source shortest path algorithm: one that computes the shortest path from the initial node to

each node, g(n) in A* terminology, and another that computes the shortest path from each node

to the goal node, h(n). The sum of these values gives the cheapest cost of a solution path passing

through the given node, f(n) = g(n) + h(n).

Figure 4-1(b) shows the f values for a motion planning problem using the abstraction from

Fig. 4-1(a). The initial configuration is shown as a light blue square in the lower-left corner and

the goal is shown as a green square in the upper-right corner. Each abstract node is shaded, with

black representing high f cost. As we can see, even this simple abstraction suffices to uncover that

it would be more desirable to focus RRT growth into the lighter areas of the map while spending

less time considering the dark portions.

4.3.2 Growing an f-biased Tree

To create an f -biased RRT, we proceed as in the standard RRT or RRT* algorithm, however, more

samples are taken from configurations that correspond to low cost abstract nodes. To accomplish

this, each node is assigned a score so that nodes with low f values have high scores and nodes

with high f values have low scores. These scores are then normalized to sum to 1 and the nor-

malized scores give the probability with which an abstract node is selected for sampling. Once

an abstract node is selected, a sample from the concrete configuration space is drawn uniformly

from its preimage—the set of concrete configurations that map to the selected node in the abstract

space.
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The score for each abstract node is given by s = fω
min

/fω, where fmin is the minimum f value

of all abstract nodes and ω is a configurable parameter representing the strength of the f -bias.

Increasing ω increases the influence of the abstract nodes that are closer to fmin, narrowing the

corridor from which most of the samples are drawn. Decreasing ω decreases the influence of the

abstract nodes that are closer to fmin and increases the amount of exploration. In our experiments,

we used ω = 4 as it was found to give good performance in a small set of preliminary experiments.

In some cases, an abstract node has an f value of infinity, for example, if it resides within

an obstacle. We would still like to generate samples from these areas to maintain guaranteed

completeness of the planner. When f is infinite, we define the score to be smin/2 where smin is

the minimum score of all nodes with finite f . The nth abstract node is selected for sampling with

probability pn = sn/
∑N−1

i=0 si. Finally, a sample is generated uniformly from among all possible

configurations in the preimage of the selected node. Figure 4-1(c) shows a completed f -biased

RRT, along with its solution path. For comparison, Fig. 4-1(d) shows the first solution found by an

unbiased RRT. Notice that, in the f -biased RRT, most of the exploration is focused in the lighter

cells that reside along the diagonal between the initial configuration and the goal. The unbiased

RRT required many more samples and explored the entire map.

4.4 Theoretical Analysis

Previous results on RRT and RRT* are robust enough to survive the bias introduced by our

technique.

Lemma 4. Under f -biasing, there exists a positive constant that bounds from below the probability

of selecting each configuration.

Proof: Under f -biasing, every abstract node has a positive probability of being selected to sample

within. This lower bound is defined as smin/2 where smin is the minimum score of all nodes with

finite f . The probability of the selecting the lowest probability abstract node is defined as pn =

sn/
∑N−1

i=0 si. Therefore every configuration in the preimage of an abstract node thus has positive

probability of being sampled by construction.
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Theorem 5. Using f -biased sampling does not disrupt the probabilistic completeness of the RRT

or RRT* algorithms.

Proof: Lemma 4 is exactly the condition required by the completeness proof for RRT given by

LaValle and Kuffner (LaValle & Kuffner, 2001), thus completeness is maintained. The completeness

proof of Karaman and Frazzoli for RRT* (Karaman & Frazzoli, 2011) is inherited directly from

RRT, thus RRT*’s completeness is also preserved.

Theorem 6. Using f -biased sampling does not disrupt the asymptotic optimality of the RRT*

algorithm.

Proof: The proof of RRT*’s asymptotic optimality (Karaman & Frazzoli, 2011) relies on the

rewiring step to monotonically decrease path costs, which requires positive probability of adding

any configuration to the vertex set. This property is ensured by Lemma 4. Said another way, RRT*

merely rewires the same vertex set as constructed by RRT. Using f -biasing preserves non-zero

probability of generating every possible RRT vertex set, hence it preserves asymptotic optimality.

4.5 Experimental Results

Next, we evaluate the performance of f -biased RRTs experimentally on three different path planning

domains.

4.5.1 Implementation Details

We attempted to obtain a copy of the RRT* implementation by Karaman and Frazzoli (Karaman

& Frazzoli, 2011) for comparison, however, the source code was not available at the time of our

request. Instead, we wrote our own implementation of RRT and RRT* in C++ using the same K-D

tree implementation that was used by Karaman and Frazzoli (available from http://code.google.

com/p/kdtree/). Our RRT* implementation also used their technique for reducing the size of the

ball from which nodes are considered for re-wiring as more samples are generated. All techniques

in our comparison used the same implementation and data structures; the only difference between
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the techniques was the decision of where in the configuration space the samples were generated.

All experiments were performed on a 3.16 GHz Core2 duo PC with 8GB RAM running Linux.

For f -biasing, the abstract node from which to sample was selected in constant time by inserting

a reference to each abstract node multiple times into a large array to approximate its probability

relative to the least probable node. An index into this array was then chosen uniformly at random.

An alternative, less memory hungry, approach is to use binary search to select the node. To reduce

the time spent by binary search, clustering can be used to group the abstract nodes into a small

fixed number of equiprobable bins that can be searched very quickly.

In timing results with f -biasing, we do not include the time required to build the abstraction

since it can be computed once for a given map and stored. Typically, the time required to build

the abstraction was only a few seconds, most of which was spent testing if abstract nodes are

blocked by obstacles in the configuration space. These tests can easily be performed in parallel,

allowing the abstraction creation time to be greatly decreased with modern multicore hardware. Our

timing results do include the time required to perform the Dijkstra shortest-path pre-computation

step for each instance, because this must be performed for each individual motion query. Our

implementation runs both Dijkstra searches in parallel as they are completely independent of one

another. Regardless, this time was found to be quite insignificant.

4.5.2 Straight-line Vehicle

Our first set of experiments uses a very simple vehicle motion model from Karaman and Frazzoli

(Karaman & Frazzoli, 2011) that we call the “straight-line vehicle.” The straight-line vehicle moves

straight and can instantly turn to any angle. The objective to minimize is the path length.

We begin by comparing unbiased RRT* with f -biased RRT* on a reproduction of the map used

in Karaman and Frazzoli’s Fig. 1 (Karaman & Frazzoli, 2011). They used this simple map to show

the benefits of RRT* over basic RRTs. Likewise, Fig. 4-2 uses this map to show the benefit of

f -biasing. Figures 4-2(a) and 4-2(b) show unbiased RRT* and f -biased RRT* respectively after

235 samples, when f -biasing finds its first solution. Figures 4-2(c) and 4-2(d) show the state of both

algorithms after 2000 samples. We can see that combining the sampling of RRTs with guidance
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(a) (b)

(c) (d)

Figure 4-2: The example of Karaman and Frazzoli after 235 iterations with unbiased RRT* (a) and

f -biased RRT* (b) and after 2000 iterations (c) and (d).
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Figure 4-3: Straight-line vehicle: f -biasing and RRT* improvement over unbiased RRT.

from heuristic search caused f -biasing to find its first solution more quickly and enabled it to

decrease the solution cost more quickly too.

The map in Fig. 4-2 is very simple, so our next results are on a set of 100 path planning problems

given by uniformly selected initial and goal locations on the more realistic map of Fig. 4-1. The

abstraction used for f -biasing was a uniform eight-connected grid of resolution 12x10.

First, we look at the improvement of f -biasing over standard RRT compared to the improvement

of RRT* over RRT. The left plot in Fig. 4-3 shows the first solution time and cost for RRT and

RRT* with and without f -biasing. The x axis shows the first solution time in seconds and the

y axis shows the first solution cost. Each glyph represents the mean over the 99 instances that

were solved by all techniques with RRT and the 100 instances solved by all techniques with RRT*

within a 90 second time limit. Error bars show the 95% confidence intervals on the mean. We

can see from this plot that f -biased RRT actually found its first solution significantly more quickly

than all alternatives and in addition, its first solution costs tended to be slightly cheaper than that

of unbiased RRT*. f -biased RRT* gave the best solution cost and took only slightly longer than

unbiased RRT.

RRT and RRT* are naturally anytime algorithms; they provide a stream of solutions of de-

creasing cost as they are given more time. One common way to compare anytime algorithms is by
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comparing their anytime profile, i.e., solution cost over time. We ran each biasing technique twice

with the same random seed for 90 seconds with RRT and RRT* on each of our 100 instances. The

first run computed the solution cost achieved at each sample. Because there are many iterations,

this cost computation required a non-negligible amount of CPU time, so the second run measured

the time at which each sample was taken without the cost computation. This data was used to

build anytime profiles.

The right plot in Fig. 4-3 shows the anytime profiles for RRT and RRT* with and without

f -biasing. The data points were computed in a paired manner by finding the best solution found

on each instance by the algorithms in the given plot and dividing this by the incumbent cost at

each time value on the same instance. By initializing incumbent scores to infinity, this technique

allows for comparison at times before all instances are solved. The lines show the mean over the

instance set and the error bars show the 95% confidence interval on the mean. The plot shows that

f -biased RRT and RRT* both find cheaper solutions faster than their unbiased counterparts.

Next, we compare f -biasing to both goal-biased and unbiased RRT and RRT*. The top row of

Fig. 4-4 shows the time and cost of the first solution for f -biasing, goal-biasing with 1%, 10% and

25% of the samples being the goal configuration and unbiased RRT and RRT*. f -biasing found its

first solutions significantly more quickly than the other techniques and the cost of its first solutions

tended to be lower. The bottom row of Fig. 4-4 shows anytime profiles. From the left plot, we can

see that when used in the RRT algorithm, f -biasing dominated the other techniques. In the right

plot, we can see the same behavior for RRT* except that more time was required to approach the

best cost solution. This is likely because of RRT*’s convergence to optimality: the best solution

found by RRT* was much cheaper than the best found by RRT and more time was used to find it.

Also, each iteration requires re-wiring.

4.5.3 Dubins Car

In this section, we evaluate the performance of f -biasing with the Dubins car (Dubins, 1957), which

has an x and y location and heading θ that is constrained by a fixed turning radius. The abstraction

used by f -biasing on this domain used a uniform grid of discrete x, y and θ combinations with
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Figure 4-4: Straight-line vehicle: first solution times and anytime profiles for RRT (left) and RRT*

(right).
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Figure 4-6: Hovercraft first solution times and anytime profile for RRT.

dimensions 75x65x4. In this set of experiments, we used the same instances that were used for the

straight-line vehicle with a time limit of 90 seconds for RRT and 180 seconds for RRT*.

The top two plots in Fig. 4-5 show the time and cost of first solutions. For RRT, f -biasing

found its first solutions significantly more quickly than the other techniques. For RRT*, however,

none of the techniques found their first solution significantly faster than the others. f -biasing did

not find its first solution faster in this setting because its biased samples created a very dense

tree and so RRT* performed a lot more expensive re-wiring. The bottom two plots show anytime

profiles. f -biasing had a better profile than all other techniques on both algorithms even though

it performed fewer samples within the time limit for RRT*. This is because f -biasing both solved

more instances and was able to find cheaper solutions with fewer samples than the other methods.

4.5.4 Hovercraft

The final domain that we present is path planning for a simple hovercraft. Each configuration

consists of 〈x, y, θ, δx, δy, δθ〉. x, y and θ represent the craft’s position and orientation. δx and δy

represent the current translational rate in each respective direction and δθ represents the rotational

velocity. This models a simple hovercraft with two fans: one propels the craft in the direction θ and

the other applies rotational force in either direction. This domain has the largest dimensionality
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and presents the most difficult motion model of all domains considered in this chapter.

For the experiments in this domain, we used 100 random start and goal configurations on the

map from LaValle and Kuffner (LaValle & Kuffner, 2001). The abstraction used for f -biasing was

the same as used for the Dubins car with dimensions 26x26x4. f -biased RRT solved 90% of all

instances within a 180 second time limit whereas goal-biased RRT with its best setting (1%) only

solved 74% of the instances and unbiased RRT only solved 75%. The left plot in Fig. 4-6 shows

the first solution costs and times for the 43 instances solved by all algorithms within the time

limit. The first solution costs from f -biasing were not significantly different from that of the other

techniques, however, it found these solutions significantly faster. The right plot shows the anytime

profile, where we can see that f -biasing gave the best performance. Achieving good performance

with such a basic abstraction for this complex domain suggests that f -biasing is robust to the

choice of abstraction.

4.6 Discussion

As we point out in Section 4.5.3, f -biased RRT* is not able to generate samples as quickly as

unbiased and goal-biased RRT* because it builds a denser tree and therefore requires more re-

wiring at every sample. The sample speed of f -biasing can be increased in a couple of ways.

First, Karaman and Frazzoli’s (Karaman & Frazzoli, 2011) k-nearest technique can be used to fix

the number of nodes tested for re-wiring at k, instead of checking all nodes within the ball. A

second possibility is to choose the ball size used to test for re-wiring dynamically based on the

sample density of the selected abstract node and its neighbors. Even without these optimizations,

our results show that f -biasing performs favorably as it is able to find cheap solutions with fewer

samples than alternative methods.

While the results presented in Fig. 4-6 show that f -biasing can give good performance even with

a simplistic abstraction, it is worth noting that the choice of abstraction can be important. If the

abstraction is too coarse, then it may not account for important obstacles in the planning problem.

If this occurs, then the sampling can be biased toward regions of space that contain only infeasible

plans due to the unaccounted obstacles. Given this, one might assume that a finer discretization
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of the abstract space will always perform better, as it is more informative, however, we have found

that coarser discretizations actually tended to perform better in our experiments.

We have shown that f -biasing works well for constructing RRTs. We are also interested in trying

to combine these ideas with other types of motion planning techniques. Probabilistic roadmaps

(PRMs) (Kavraki, Švestka, Latombe, & Overmars, 1996) are a popular alternative to RRTs that

work by constructing a roadmap of feasible paths between points that are sampled randomly from

the configuration space. Once the roadmap has been constructed, motion planning queries can

be performed by connecting the initial and goal configurations to any points on the roadmap and

performing a fast discrete graph search.

As with RRTs, it is possible to bias the selection of locations used to create a PRM. One

possibility for using the ideas presented in this chapter in conjunction with PRM construction

would be to compute the betweenness centrality (Brandes, 2001) of nodes in an abstract graph.

Betweenness centrality is a measure of the number of shortest paths upon which a node in a graph

resides. Sampling from locations in the abstract graph with higher betweenness centrality may lead

to more effective PRMs as the nodes in the roadmap may reside in areas of the space that are used

in many shortest paths.

4.7 Conclusion

We have presented f -biasing for RRTs, a new technique that combines guidance from heuristic

search with sparse sampling techniques from robotics. f -biasing effectively focuses the growth

of an RRT on areas of configuration space that are traversed by low-cost paths in an abstract

representation of the problem. This allows f -biased RRTs to find cheaper motion plans more quickly

than other sampling techniques. Our experimental results demonstrate that this new technique

outperforms unbiased and goal-biased RRT and RRT* on three different vehicle motion models:

a straight-line vehicle, a Dubins car, and a hovercraft. This work strengthens the connections

between motion planning in the robotics community and heuristic search in artificial intelligence.

In this chapter we employed abstraction ideas as well as traditional search node ranking using

g, h, and f values to identify portions of the state space likely to contain solutions. This is a
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similar use of non-classical planning ideas as the previous chapter where we used a layer of high

level reasoning to guide the low level construction of plans. By applying this sampling bias, we were

able to obtain performance better than some of the standard sampling biases in robotic motion

planning. This work was published in a 2012 SoCS extended abstract (Kiesel et al., 2012b) and a

University of New Hampshire technical report (Kiesel et al., 2012a).

In Chapter 5, we further build on these ideas of abstraction to guide sampling based motion

planning. We will borrow more ideas from the heuristic search community to modify the underlying

motion planning algorithm, not just the sampling bias, to optimize the metric: time to first solution.
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CHAPTER 5

Hybrid Motion Planning

5.1 Introduction

In this chapter we build on the success we saw in the previous chapter guiding low level motion

planning using a high level abstraction. We continue to address the problem of single-query kinody-

namic motion planning, a very common problem in robotics. Given a start state, description of the

obstacles in the workspace, and a goal region, find a dynamically feasible continuous trajectory (a

sequence of piece-wise constant controls) that takes the robot from the start state to the goal region

without intersecting obstacles (Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki, & Thrun,

2005; LaValle, 2006). As in the previous chapter, we work within the framework of motion trees,

popularized by sampling-based motion planning, in which the planner grows a tree of feasible mo-

tions from the start state, attempting to reach the goal state. This approach is appealing because

it applies to any vehicle that can be forward simulated, allowing the planner to respect realistic

constraints such as acceleration limits. Examples of algorithms taking this approach include RRT

(LaValle & Kuffner, 2001), KPIECE (Sucan & Kavraki, 2009), and P-PRM (Le & Plaku, 2014).

Although the figure of merit on which these algorithms are usually compared is the time taken

to find a (complete and feasible) solution, close examination of these algorithms reveals that their

search strategies are not explicitly designed to optimize that measure. RRT uses sampling with a

Voronoi bias to encourage rapidly covering the entire state space. KPIECE uses more sophisticated

coverage estimates to achieve the same end. It is focused on regions of the state space with low

motion tree coverage which helps to grow the tree outward, but is not focused on reaching the goal.

Coverage promotes probabilistic completeness but not necessarily finding a solution quickly.

In artificial intelligence, a central principle for exploring large state spaces is to exploit heuristic

information to focus problem-solving in promising regions. The A* heuristic graph search algorithm
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serves as the central paradigm. In motion planning, the P-PRM algorithm exploits heuristic cost-

to-go information to guide growth of its motion tree, with the aim of finding solutions faster than

unguided methods. While focusing on low cost regions directs sampling toward the goal, it ignores

the effort that can be required for a motion planner to thread a trajectory through a cluttered

area. In this way, cost-to-go estimates can encourage the search to focus on challenging portions

of the state space, slowing the search. Fundamentally, optimizing solution cost is not the same as

optimizing planning effort.

Recent work in heuristic graph search has recognized the separate roles of cost and effort

estimates in guiding search, particularly when solutions are desired quickly (Thayer & Ruml, 2009,

2011). In this chapter, we show how to exploit that idea in the context of motion planning. We

propose an algorithm, Bayesian Effort-Aided Search Trees (Beast), that biases tree growth through

regions in the state space believed to be easy to traverse. If motion propagation does not go as

anticipated, effort estimates are updated online based on the planner’s experience, and used to

redirect planning effort to more fruitful parts of the state space. We implemented this method in

the Open Motion Planning Library (OMPL) (Sucan, Moll, & Kavraki, 2012) and evaluate it in five

different simulated domains (Kinematic Car and Dynamic Car, Hovercraft, Blimp and Quadrotor).

The results suggest that Beast successfully uses effort estimates to efficiently allocate planning

effort: it finds solutions faster than RRT, KPIECE, and P-PRM and is the only method able to

solve all benchmark instances within the time limit. We see this work as a further demonstration

of how abstraction and other ideas from heuristic graph search and non-classical planning can be

useful in robot motion planning.

5.2 Previous Work

There has been much previous work on biases for sampling-based motion planners. The two most

prominent types in the recent literature have been to bias toward less explored portions of the state

space or to bias exploration toward regions of the state space believed to contain low cost solutions.

Both of these biases have shown strong results in finding solutions quickly. The two state of the

art algorithms considered in this chapter are KPIECE and P-PRM (Le & Plaku, 2014).
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5.2.1 KPIECE

Kinodynamic Planning by Interior-Exterior Cell Exploration, or KPIECE , is an algorithm that

uses a multi-level projection of the state space to estimate coverage in the state space. It then uses

these coverage estimates to reason about portions of the state space to explore next. Expansive

Space Trees (EST) (Hsu, Latombe, & Motwani, 1999) and Path-Directed Subdivision Tree (PDST)

(Ladd & Kavraki, 2005) also focus on less explored portions of the state space but have been shown

to be outperformed by KPIECE . The general all-around good performance of KPIECE has led to

its selection as the default motion planner in OMPL.

KPIECE is focused on quickly covering as much of the state space as possible. It always gives

priority to less covered areas of the state space. When an area of low coverage is discovered, it

attempts to extend the motion tree into that area. It uses a coarse resolution initially to find out

roughly which area is less explored. Within this area, finer resolutions can then be employed to

more accurately detect less explored areas.

While KPIECE targets exploring unvisited areas of the state space, this may not always be the

fastest approach to finding the goal. Certainly targeting exploration toward the goal could help

improve performance.

5.2.2 P-PRM

P-PRM (Le & Plaku, 2014) is based on ideas from an earlier planner called Synergistic Combination

of Layers of Planning (SyCLOP) (Plaku, Kavraki, & Vardi, 2010). It shares the intuition that

information from a discrete abstraction of the workspace can be used to identify low level paths

that may lead to the goal. While SyCLOP was shown to be very successful, in recent work P-PRM

has been shown to outperform SyCLOP in a variety of planning problems .

P-PRM uses the geometric component of the state space, position and orientation, to construct

a Probabilistic Roadmap (PRM) (Kavraki et al., 1996). It generates random states in the geometric

space, then connects each state to its nearest neighbors via an edge, forming a graph. The edges

in the graph are collision checked and removed from the graph if a collision along them is found.

The graph vertices represent regions of geometric space and the edges summarize the connectivity
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of the regions.

P-PRM runs a Dijkstra search out from the abstract region containing the concrete goal to

compute h-values, or heuristic estimates of cost to the goal. It then uses these heuristic values, and

the associated shortest paths from the goal to each abstract node, to bias sampling.

It searches by maintaining a queue of abstract states in the graph sorted by decreasing scores,

where the score is defined as:

score =
αNrSel

ǫ+ h

α is a parameter that must be greater than zero and less than or equal to one and NrSel is the

number of times the abstract state has been chosen. The intuition behind this parameter is to

discourage over-relaxation in the abstraction by artificially inflating the cost of associated regions

that may be impossible for the vehicle to traverse. No value was provided in the original paper.

We tried several values and found 0.5 to give the best performance and matched the reported

performance from the original paper (relative to KPIECE’s performance). h is the precomputed

heuristic value from the abstract graph from the current node and ǫ is used to avoid divide by zero

problems at the goal region where h = 0.

At each search iteration the abstract state with the highest score is selected. An abstract state

along the cheapest precomputed path rooted at the currently selected state is chosen. This state is

then used to create a random concrete state within some pre-specified state radius. This is now the

“target” state used; similarly to when plain RRT chooses a state uniformly at random. That means

that the nearest state in the existing motion tree is chosen as the root for the new propagation

which is steered (if possible) toward the random state. Any new abstract states touched by the

propagation attempt are added to the queue if not previously enqueued.

P-PRM also samples uniformly at random from the entire state space a certain user-provided

percentage of the time. The suggested value for this parameter is 0.85 which means that 15% of

the time, P-PRM is just running the basic RRT algorithm.

The other 85% of the time, P-PRM tries to pursue the completion of low cost paths by following

its heuristic estimates in the abstract space. It tries to avoid getting stuck during planning by

penalizing the score of abstract states when they are examined using the α term given above.
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5.2.3 Speedy Search

While RRT and KPIECE are often the reliable workhorses of motion planning, the success of

heuristically-informed graph search algorithms such as A* (Hart et al., 1968) in artificial intelligence

would suggest that brute-force expansion into all unexplored regions of the state space (in a manner

similar to Dijkstra’s algorithm) is not an optimal strategy. P-PRM has been shown to provide state

of the art performance by exploiting heuristic cost-to-go guidance. Yet recent results in the heuristic

graph search community show that exploring the state space based on cost often does not give the

best speedup.

In the context of discrete graphs, Greedy search, which focuses on nodes with low heuristic

cost-to-goal, is often surpassed by ‘Speedy search’, which focuses on nodes with a low estimated

number of hops (or graphs edges) to the goal (Thayer & Ruml, 2009; Wilt & Ruml, 2014). In this

chapter, we present one approach at adapting this idea to motion planning, in which the state and

action spaces are continuous and there is no predefined graph structure.

5.3 Exploiting Effort Estimates

While there is not a direct translation of the “number of edges to the goal” concept, there is still a

notion of search effort. In heuristic search, the fewer expansions needed to find the goal, typically

the quicker a solution is found. In sampling-based motion planning, the unit of measure would

be the number of samples, or propagation attempts used to build the motion tree. Each forward

propagation of the system state requires collision checking, which is computationally expensive.

The fewer propagation attempts made before finding the goal, typically the faster a solution is

found (assuming reasonable iteration overhead).

5.3.1 Overview

Bayesian Effort-Aided Search Trees (Beast) is a novel method that tries to find solutions as quickly

as possible by constructing solutions which it estimates require the least effort to build. It maintains

online Bayesian estimates of the effort of connecting abstract regions of the state space and allocates

102



its search effort to the region of the state space that is estimated to require the lowest effort to

connect to the abstract goal region.

Beast exploits a discrete abstraction of the state space. In the experiments reported below, we

use a PRM workspace abstraction very similar to the one used by P-PRM. We begin by identifying

the geometric component of the state space (again, position and orientation). In the experiments

reported below, the abstraction only exists in this subspace. We generate uniformly random states

in the abstract space (1000 in the experiments below). As in P-PRM, these states induce a division

of the state space into abstract regions (by associating any concrete state with its nearest abstract

state). Neighboring abstract states (the 5 nearest in the experiments below) are connected by

directed edges, forming a directed graph. If the abstract start and goal regions are not connected,

additional samples are taken until they are.

For each edge e, Beast maintains an effort estimate, ee(e), of how many attempts would be

required on average to propagate a concrete state contained in the abstract region represented by

the source vertex of the edge such that it resulted in a concrete state contained in the abstract

region represented by the end vertex. These estimates are initialized by using a geometric collision

check along the abstract edge. However, Beast explicitly acknowledges that this quick check in

the geometric space is only a rough approximation of a robot’s ability to steer from one region to

the other.

We represent our uncertain belief about each edge by regarding a propagation attempt as

sampling a Bernoulli variable. The uncertainty about each edge is maintained as a Beta distribution

(with parameters α, β) over its propagation success probability. In a Beta distribution, α is the

number of successful trials and β is the number of failed trials. The initial geometric collision

check provides some evidence about this probability, and then each propagation attempt during

planning provides additional evidence. In the experiments reported below, an edge with a detected

collision is initialized to α = 1, β = 10, and all other edges are initialized to α = 10, β = 1.

(Very similar performance was obtained by setting α = 1 and β = 1 and this can avoid minor

overhead of initialization collision checking.) Successful propagation attempts increase α by one

and unsuccessful propagation attempts increase β by one. Based on our belief, we estimate the
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Figure 5-1: The different types of edges reasoned about by Beast.

number of propagation attempts that will be necessary in order to have a successful one as α+β
α

.

Beast uses the abstract graph as a metareasoning tool to decide where it should spend its time

growing the motion tree. We only consider abstract regions touched by the motion tree and each

edge from the corresponding vertex in the abstract graph represents a possible propagation that

the algorithm could attempt. In this way, the edges represent work the algorithm might do and

thus they are at least as important as the vertices. This is similar to a traditional discrete graph

search frontier. We compute, for each directed edge e, the expected total effort, te(e), required to

reach the abstract goal if we start propagating a state from its start region through its end region

and onward to the goal. For “exterior” edges, whose start region has not yet had a successful

propagation into its end region, this is straightforward: the estimated effort to cross that edge plus

the estimated total effort-to-goal from the end vertex. “Exterior” edges are illustrated in Figure 5-1

in blue: 〈 ~BC, ~BI, ~HI, ~HJ〉. Therefore, the te( ~BC) is the estimated effort of ~BC plus the estimated

efforts of the green edges: 〈 ~CD, ~DE, ~EF , ~FG〉. More formally: if, for every vertex v in the abstract
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graph, we let te(v) be the minimum over its outgoing edges e of te(e), then:

te(e) = ee(e) + te(e.end)

“Interior” edges are more complex and are drawin in red: 〈 ~AB, ~AH〉. Unless the goal region has

been reached, any interior edge will lead to an exterior edge that has a lower total effort estimate,

so such edges may not appear to be useful for propagation. However, recall that our state space

abstraction might be very rough, and not all concrete states falling in the same abstract region

are necessarily equivalent. We may well want to propagate along an interior edge in order to add

additional states to the end region, in the hopes that this will increase the probability of being

able to propagate onward from there. An example of where propagating along an “interior” edge

( ~AH) would benefit a following edge ( ~HJ) is illustrated in Figure 5-1. The current motion tree

leads directly up to an obstacle and may be hard to propagate further, however there is additional

unexplored space to the left of where the current tree exists. We model this by assuming that an

additional state in the destination region will raise its α by 1/n, where n is the number of states

already in the region. (We want this bonus to inversely depend on the number of existing states,

to reflect the decreasing marginal utility of each additional state.) So for an interior edge e with a

destination vertex d that currently contains n states in its abstract region,

te(e) = ee(e) + min
e2∈d.out

e2.α+ 1/n+ e2.β

e2.α+ 1/n
+ te(e2.dest).

5.3.2 Details

Pseudocode for Beast is presented in Figure 5-2. The algorithm is passed an abstraction of the

workspace, a concrete start state and a concrete goal state. Beast first begins by initializing initial

edge effort estimates and then propagating these estimates through the abstract graph outward from

the region containing the concrete goal state (Line 3). For efficiency, the collision checking and

beta distribution initialization can be done lazily.

We use the pseudocode in Figure 5-3 to estimate the number of propagation attempts needed if

the planner were to start by propagating along a specific edge. For exterior edges, this effort value

is straightforward (Line 22).
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Beast(Abstraction, Start,Goal)

1. AbstractStart = Abstraction.Map(Start)

2. AbstractGoal = Abstraction.Map(Goal)

3. Abstraction.PropagateEffortEstimates()

4. Open.Push(AbstractStart.GetOutgoingEdges())

5. While NotFoundGoal

6. Edge = Open.Pop()

7. StartState = Edge.Start.Sample()

8. EndState = Edge.End.Sample()

9. ResultState = Steer(StartState, EndState)

// Or Propagate With Random Control

10. Success = Edge.End.Contains(ResultState)

11. If Success

12. Edge.UpdateWithSuccessfulPropagation()

13. If Edge.End == AbstractGoal

14. Open.Push(GoalEdge)

// Goal Region To Goal State

15. Else

16. Edge.UpdateWithFailedPropagation()

17. Abstraction.PropagateEffortEstimates()

18. Open.Push(Edge)

19. If Success

20. Open.Push(Edge.End.GetOutgoingEdges())

Figure 5-2: Pseudocode for the Beast algorithm.
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GetEffort(Edge)

21. If Not Edge.interior

22. Return ee(Edge) + te(Edge.End)

23. Else

24. Child Edges = Edge.End.GetOutgoingEdges()

25. Return ee(Edge) +

minChild∈Child Edges OptimisticBenefit(Child) +

te(Child.End)

OptimisticBenefit(Edge)

26. PositiveEffect = 1. / Edge.Start.NumStates

27. Optα = Edge.α + PositiveEffect

28. Return (Optα + Edge.β) / Optα

Figure 5-3: Pseudocode for calculating an edge effort value.
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On Line 25 for interior edges, we examine each of the children of the current edge to see which

child edge would require the least effort to arrive at the goal if it were provided another state in

its start region. We take the minimum effort over the children and add in the estimated effort of

propagating along the current edge.

If effort estimates were static, a single pass of Dijkstra’s algorithm would suffice to compute the

te values. In our case, edge effort estimates change over time so we use an incremental best-first

search algorithm inspired by D* Lite (Koenig & Likhachev, 2002) to avoid re-planning from scratch.

D* Lite updates the heuristic estimates for cost to go to the goal at each vertex in the graph, in

our case we are using effort (te) to go instead. We modified the termination criteria of D* Lite’s

propagation loop slightly to guarantee the entire graph is consistent rather than terminating when

the “agent’s” current position becomes consistent. While propagating effort at each vertex we also

store an effort estimate, te, at each edge which is calculated using GetEffort .

To reiterate, this value can be seen as an estimate of how many expected samples will be

required to reach the goal if you were to choose to propagate along an edge and then choose the

minimum effort edges thereafter. A queue called Open is then initialized with outgoing edges from

the abstract region containing the concrete start state (Line 4). Open is sorted in increasing order

of edge effort. The search always considers the least effort edge first.

The algorithm proceeds by popping the edge off Open with the lowest estimated effort (Line 6).

This edge is then sampled at its start abstract region and its end abstract region in lines 7-8. In

our implementation, the concrete state in the edge’s start region that has been selected the fewest

number of times is chosen as the StartState. A concrete state is chosen from the edge’s abstract

end region uniformly at random within some user provided radius centered around the region’s

generator. In our experiments we tried several values and found a radius of 6 provided good visual

coverage over abstract states and also provided good overall algorithm performance.

An attempt is then made to grow the tree from StartState to EndState using a steering function

(Line 9). In our implementation if no steering function was available in OMPL, we instead generated

10 random controls, applied each to StartState and the resulting motion that got closest to EndState
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was chosen. 1

If the newly propagated motion at any point reached the target abstract region (the selected

edge’s end region), the edge is updated with a successful trial (Line 10-12). This simply adds one

to the α value of the beta distribution associated with this edge.

If the target region is not reached, the β value is incremented (Line 16). With each trial to

propagate along an edge we update our belief about the effort required to reach the goal by using

the edge. This effectively changes the edge “cost” in the abstract graph and we use our incremental

search to update the effort estimates throughout the graph based on this local update (Line 17).

If the edge was successfully propagated along, we also add its child edges (outgoing edges from

the current edge’s end region) to the Open list if not already there (Line 20). We re-add the current

edge to the Open in all outcomes (Line 18).

There is also a special case (Line 13) added which enables us to use sparse abstractions. With

sparse abstractions we can compute our effort values more efficiently during each iteration. However,

when the goal abstract region is reached, with a sparse abstraction, it may cover a large portion of

the state space. Growing the tree into a possibly large goal region may not be focused enough to

find a state close to the goal state. To combat this we add a special GoalEdge to Open (Line 14).

This is an edge that when expanded will return a StartState from the goal abstract region and an

EndState focused around2 the actual concrete goal state (wherever it may be within the abstract

goal region).

5.4 Experiments

All experiments were run using control algorithms from the OMPL framework where available

(KPIECE and RRT). P-PRM was implemented following closely along with the description and

1This functionality was implemented at the control sampler level in OMPL for each domain so any algorithm using

“sampleTo” provided by the domain’s control sampler received equal benefit. The only algorithm in this chapter that

does not use “sampleTo” is KPIECE which uses its own algorithm specific strategy for choosing controls.

2This was achieved by leveraging OMPL’s builtin “GoalSampleableRegion” class and its “sampleGoal” function-

ality.
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pseudo code included in the paper. Experiments also used OMPL’s implementation of a Kinematic

Car, Dynamic Car, Blimp and Quadrotor vehicles, as detailed below. We implemented a Hovercraft

vehicle in OMPL following Lynch (1999).

5.4.1 Kinematic Car

The mesh used for the Kinematic Car vehicle is shown in Figure 5-4 panel (a). The equations

defining the Kinematic Car’s motion and control inputs in OMPL are as follows:

ẋ = u0 · cos(θ),

ẏ = u0 · sin(θ),

θ̇ =
u0
L
· tan(u1)

where the control inputs (u0, u1) are the translational velocity and the steering angle, respectively,

and L is the distance between the front and rear axle of the car which is set to 1.

5.4.2 Dynamic Car

The mesh used for the Dynamic Car vehicle is shown in Figure 5-4 panel (a). The equations defining

the Dynamic Car’s motion and control inputs in OMPL are as follows:

ẋ = v · cos(θ),

ẏ = v · sin(θ),

θ̇ =
v ·m
L
· tan(φ),

v̇ = u0,

φ̇ = u1

where v is the speed, φ the steering angle, the controls (u0, u1) control their rate of change, m is

the mass of the car (set to 1), and L is the distance between the front and rear axle of the car (also

set to 1)
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(a) (b)

(c) (d)

Figure 5-4: Aerial vehicles illustrations

5.4.3 Hovercraft

The mesh used for the Hovercraft vehicle is shown in Figure 5-4 panel (a). The equations defining

the Hovercrafts’s motion and control inputs from Lynch (1999) are as follows:

ẋ =
F

M
cos(θ)− Bt

M
x,

ẏ =
F

M
sin(θ)− Bt

M
y,

θ̇ =
τ

0.5 cdotM ·R2
− Br

M
· θ

where F is the force exerted by the thrusters and τ is the torque exerted by the thrusters. Bt and

Br are the translational and rotational friction coefficients (both set to 0). M is the mass of the

robot and R is the radius of the robot (both set to 1).
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5.4.4 Blimp

The mesh used for the Blimp vehicle is shown in Figure 5-4 panel (b). The equations defining the

Blimp’s motion and control inputs in OMPL are as follows:

ẍ = uf · cos(θ),

ÿ = uf · sin(θ),

z̈ = uz,

θ̈ = uθ

where (x, y, z) is the position, θ the heading, and the controls (uf , uz, uθ) control their rate of

change.

5.4.5 Quadrotor

The mesh used for the Quadrotor vehicle is shown in Figure 5-4 panel (c). The equations defining

the Quadrotor’s motion and control inputs in OMPL are as follows:

mp̈ = −u0 · n− β · ṗ−m · g,

α = (u1, u2, u3)
T ,

where p is the position, n is the Z-axis of the body frame in world coordinates, α is the angular

acceleration, m is the mass, and β is a damping coefficient. The system is controlled through

u = (u0, u1, u2, u3).

In the Kinematic and Dynamic Car domains the goal radius was set to 0.1, the remaining

domains each used a goal radius of 1. The goal distance of a state was based only on the distance

in the XY or XYZ dimensions. Other parameters that were used included a propagation step value

of 0.05, min and max control durations of 1 and 100 respectively, and intermediate states were

included during planning. The workspace was bounded by −30 ≤ x ≤ 30, −30 ≤ y ≤ 30 and

−5 ≤ z ≤ 5.

KPIECE and RRT were run using their default parameters in OMPL. P-PRM was also run

using its suggested parameters described in the paper. The state radius size for sampling was
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shared between P-PRM and Beast. This value was set to 6, which gave good visible coverage

over the abstract regions and the best performance over those state radii tried: {2,4,6}. We also

leveraged OMPL’s built in sampleNear functionality for this purpose.

The workspace obstacle mesh used for the experiments is presented in Figure 5-4 panel (d).

For each vehicle, 5 start and goal pairs were used, and for each start and goal pair 50 different

random number generator seed values were used. This provided 250 runs for each of the domains.

The start states were biased toward the center of the workspace while the goal was biased toward

the lower center of the workspace. This set-up tends to generate problems in which the optimal

solution threads its way carefully between the obstacles, but it is much easier to take a more costly

route around the obstacles. This wide diversity of planning time/solution cost trade-offs directly

tests the ability of Beast to estimate planning effort and adjust its behavior accordingly. A motion

planner that explicitly tries to find plans quickly ought to exhibit superior performance. A planning

timeout of 60 seconds was used.

5.4.6 Results

The results of the experiments are presented in Figure 5-5. Each box represents the middle 50% of

the data, with a horizontal line at the median. Whiskers extend to the furthest point within 1.5

times the interquartile range. The remaining outliers are plotted with circles. The 95% confidence

interval around the mean is depicted with a gray rectangle. The plots in each panel are sorted

according to their means. In order to have enough data points to create plots, algorithm runs

that timed out without providing a valid solution are still included in the plot. These runs are

represented by the time collected by OMPL after the timeout was issued. Several of the plots have

been clipped at the top so that the top two performers remain legible.

In Kinematic Car domain, Beast very clearly outperforms the other three algorithms. In the

Dynamic Car domain, Beast is still the best performer, but is more similar to P-PRM. The other

algorithms are performing much worse.

In the Blimp domain, Beast has the lowest mean planning time as well as the lowest variance

in its performance. In the Quadrotor domain, Beast again has the lowest mean, but P-PRM
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Figure 5-5: Computation time for 5 start goal pairs and 50 random seeds (250 instances).
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RRT KPIECE P-PRM BEAST

Kinematic Car 0 99 0 0

Dynamic Car 108 189 0 0

Hovercraft 116 8 0 0

Blimp 221 238 11 0

Quadrotor 12 2 0 0

Figure 5-6: Number of unsolved instances for 5 start goal pairs and 50 seeds (250 instances).

appears to have slightly lower variance.

A video of the sampling and tree growth of each of the algorithms considered in this half of

the chapter can be found at https://www.youtube.com/watch?v=Or8sQBOrVh4. It is a top down

visualization of a Quadrotor planning instance. It illustrates RRT’s slow coverage of the entire

state space, KPIECE’s rapid coverage of the state space, P-PRM’s focus on estimated low cost

paths and Beast’s focus on finding low effort solutions.

The number of runs where each algorithm was unable to solve an instance is provided in Figure 5-

6. In the Blimp domain, Beast is the only algorithm that is able to find a solution to all the

instances within the timeout. In the Quadrotor domain, Beast and P-PRM are both able to find

solutions to all instances while KPIECE and RRT are not able to within the timeout.

5.5 Discussion

One of the major benefits of Beast is that it explicitly focuses on areas of the state space that it

believes will be easy to traverse while heading toward the goal. KPIECE will eventually explore

the same regions of the state space but does so without focusing on paths toward the goal. P-PRM

does focus on paths leading to the goal, but focuses on paths associated with low cost. These paths

can be arbitrarily difficult to construct given obstacle configurations.

This is shown in Figure 5-7 where P-PRM generates many samples (green dots) along abstract

paths to the goal, but it is challenging to grow the motion tree (red lines) toward them. Eventually
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Figure 5-7: P-PRM sampling and tree growth example in the Quadrotor domain (top down view).
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Figure 5-8: Beast sampling and tree growth example in the Quadrotor domain (top down view).
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from the uniform random sampling and increasing cost estimates for the states it has selected many

times, search begins to spill around and through the obstacles (red circles).

Another feature of Beast that helps it construct its tree more efficiently is that it focuses its

tree growth either internal to the existing tree or directly along the fringe of the existing tree.

This focus on the boundary of the motion tree is very similar to that of KPIECE, yet the two

methods allocate their exploration effort very differently. P-PRM does not focus its sampling near

the existing tree and can generate samples arbitrarily far away, which are less helpful when growing

the tree through tight spaces.

There are other motion planners that leverage heuristic cost-to-go, but in ways very different

from Beast. Informed RRT* (Gammell, Srinivasa, & Barfoot, 2014) uses ellipsoidal pruning

regions to ignore areas of the state space that are guaranteed not to include a better solution.

BIT* (Gammell, Srinivasa, & Barfoot, 2015) uses heuristic cost estimates directly in its search

strategy. Their algorithm tries to expand from the start state toward the goal state through a

field of randomly generated samples within the current cost bound. They search for edges in this

field in a best first manner looking at effectively f values of nodes. For kinodynamic planning it

requires a boundary value problem solver to rewire trajectories between sampled states, making it

inapplicable to many problems.

Xie, van den Berg, Patil, and Abbeel (2015) propose a combination of BIT* with a sequential

quadratic programming implementation of a boundary value problem solver. They show that state

of the art performance can be attained with this method rather than avoiding the use of a two point

boundary value problem. However, after contacting the authors to ask for implementation details,

they shared with us that the solver they used has since transitioned to a commercial product and

the existing freely available products simply can not match their reported performance.

We have presented a new algorithm called Bayesian Effort-Aided Search Trees. Beast exploits

and updates Bayesian estimates of propagation effort through the state space to find solutions

quickly. Results on a variety of domains showed that Beast has the lowest mean time to a solution

and was the only algorithm to find solutions to every instance in the benchmark set. We see this

work as reinforcing the current trend toward exploiting ideas from AI graph search in the context
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of robot motion planning, and providing further evidence that searching under time pressure is a

distinct activity from searching for low-cost solutions. This work was published in a 2016 ICAPS

PlanRob paper (Kiesel & Ruml, 2016).

Finding solutions quickly is an important feature in many applications, but convergence to an

optimal solution is also highly desirable. In the next section, we combine our effort based planner

Beast with heuristic cost estimates, yielding an anytime planner which quickly finds a solution

and then spends its remaining planning time improving its incumbent solution cost.

5.6 Anytime Search

A common trend between AI graph search and sampling-based motion planning has been the

concept of anytime planning. In an anytime planning setting, there is an unknown deadline by

which a solution needs to be returned. The strategy most planners take in this setting is to find a

solution as quickly as possible and improve that solution as time permits. With the success of the

Beast algorithm, we will now introduce the Anytime-Beast (A-Beast) algorithm which builds

upon this success. Intuitively, A-Beast leverages Beast to find a solution as quickly as possible

and then finds improving solutions by restricting its search to portions of the state space it believes

contain lower cost solutions than those already found.

5.6.1 Previous Work

There are several sampling-based motion planning algorithms that operate in this anytime setting

but they make assumptions about the solvability of a boundary value problem induced by trying

to connect two arbitrary continuous states exactly. As discussed in the previous section, one such

algorithm is BIT* (Gammell et al., 2015). BIT* relies on the ability to sample the state space

sparsely, and connect states to locally sampled states. This is not always easy to do numerically

and it can take a long time for popular methods to converge to a solution with low enough error to

be considered as solved. RRT* (Karaman & Frazzoli, 2011) is an older algorithm that attempts to

rewire the existing motion tree by similarly requiring exact solutions to the boundary value problem

posed by connecting a state to local states within some hypersphere.
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General Cost Pruning

There are algorithms that are able to operate in an anytime setting and can guarantee asymptot-

ically optimal convergence without requiring the use of a boundary value problem solver. Such

algorithm are presented by Hauser and Zhou (2015). In this algorithm, they add an additional

dimension to the underlying planning problem, representing cost. They are then able to provide

this problem to an existing motion planner, such as RRT, and rely on its constraint checking to

prune states from its tree that would exceed the current cost bound. Each time a solution is found

the cost bound is reduced and the planner restarts from scratch.

Stable Sparse RRT

Another algorithm that is able to provide convergence guarantees (without a boundary value prob-

lem solver) is Stable Sparse RRT (SST) and its asymptotically optimal variant (SST*) (Li, Little-

field, & Bekris, 2015). The ideas leveraged in this work are similar to the duplicate detection ideas

in discrete graph search when deciding how to handle multiple paths to the same vertex in the

graph. There has been much work on this in the heuristic search community (Likhachev, Gordon,

& Thrun, 2003; Hansen & Zhou, 2007; Thayer, Ruml, & Bitton, 2008). In fact there has even

been earlier work leveraging these ideas in lattice-based motion planning (Gonzalez & Likhachev,

2011). In this work, the authors introduce Anytime Repairing A* with Equivalence Classes. These

equivalence classes are non-grid aligned duplication detection regions that allow for the identifica-

tion of dominated states in an action set dictated partitioning of the space. They recognize the

incompleteness of applying strict pruning based on dominated states and therefore introduce an ǫ

multiplicative penalty to the heuristic value of a dominated state.

SST and SST* attempt to track minimal cost paths to lazily instantiated regions in the state

space. As mentioned earlier, this is similar to the notion of duplicate detection. SST is provided

with a “selection radius” and “pruning radius”. SST* requires a few additional parameters used

for dynamically shrinking the size of both of these values over time.

The “pruning radius” value defines the size duplicate detection regions. When a propagation

occurs and a new state is being added to the motion tree, the pruning radius around the new state
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Figure 5-9: SST style pruning.

is considered with all of its previously contained states. Figure 5-9 shows the cases of this purning.

If it is empty, the new state defines a new region of the state space, a new duplication detection

region (Figure 5-9 region ‘A’). The new state is also defined as the representative for that region,

being the state in it with the lowest g value. When a new state is going to be added into this same

region, it is compared against the minimal g value state, the representative for the region. If the

new state has a larger or equal g value, this new motion tree branch is discarded. This is the case

in (Figure 5-9 region ‘B’, the existing state has a higher g value than the new state and is removed.

If the new state has a smaller g value, the new state becomes the representative for the region and

the old state is marked as “inactive”, and the tree is possibly cleaned up.

The tree cleanup process is one of the benefits of using SST. This helps maintain a sparse

tree which enables faster nearest neighbor queries against the standard KD-tree data structure

commonly used for tracking the motion tree. States can be safely removed from the tree using a

leaf to root sweep. At a leaf, there are no children, so if the state is “inactive”, it can be removed

from the tree. The algorithm then proceeds to its parent: if this state has no “active” children, it

can be removed. This effectively removes any states from the motion tree that are no longer needed

to maintain the motion tree. Any “inactive” state, with no “active” children, is essentially a “dead

subtree”, and can be safely removed. This can be seen in (Figure 5-9. The region defined by ‘B’

contains a state that can be safely removed from the tree since no other states rely on its presence
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in the tree. This process can also be implemented lazily to avoid unnecessary tree traversals.

The search strategy used in SST is similar to RRT, wherein a random sample is generated within

the state space, a selection process is applied, the motion tree is propagated from the selected state,

and finally for SST only, the duplicate detection reasoning is applied.

Anytime Explicit Estimation Search

The last algorithm of significant relevance to A-Beast is Anytime Explicit Estimation Search

(Thayer, Benton, & Helmert, 2012). In this work, the authors adapt EES (Thayer & Ruml, 2011),

a discrete graph search algorithm, to an anytime setting. Anytime EES operates similarly to EES

continually searching for the nearest solution (in terms of distance to goal) within the current cost

bound, which in the AEES is dictated by the current incumbent.

5.6.2 A-BEAST

In the anytime version of Beast, A-Beast, we adopt ideas from all of these previous works. We

add three new major components to the algorithm. From a high level they all have to do with

various aspects of cost reasoning. The first of the three is cost pruning the motion tree based on

ideas from Hauser and Zhou (2015). We are very easily able to prune any extensions to the motion

tree that exceed the cost of our current incumbent.

The second is to directly apply the ideas from SST and SST* to the insertion and maintenance

of the motion tree. We use this algorithm as a filter to help decide which states and motions we add

into the tree. By doing this, we can continually reduce cost in the motion tree as the planner has

more time. RRT* could also be leveraged for the same purpose if the underlying problem admitted

closed form solutions to the boundary value problem for the motion model. We do not consider

these types of problems in this work.

Lastly, to help A-Beast focus its search, we introduce cost reasoning along each edge. We

maintain a belief about how expensive we believe a path through an abstract edge will be. This

is a similar notion to how we tracked an estimate of how difficult we thought constructing a path

through an edge would be. We can then create an estimate of the probability that a solution less
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than the current incumbent could exist through this region/edge. This will be explained in detail

later on. However, we can then emulate the ideas from Anytime EES by searching for the lowest

effort solution with a high probability of being within the current bound.

The pseudocode for A-Beast is presented in Figure 5-10. The algorithm operates along the

same lines as the original Beast algorithm. The major changes to be discussed are on Lines 6, 7,

8, 11, 12, and 25.

The algorithm begins similarly to Beast. In A-Beast however, we track an incumbent which

is initially set to infinity. The algorithm then proceeds to initialize its abstraction and add the

initial edges to the open list. On Line 6 the loop changes to a time based loop which allows the

algorithm to continue searching until the time runs out. To reiterate, in this anytime context, there

is a time limit but it is not known to the algorithm.

The edge selection process in Line 7 is only slightly more complicated than its predecessor. In

Beast the “best” edge was simply the one with the lowest estimated effort to goal. This updated

version needs to take into account a notion of cost. At a high level, we want to focus our search

on edges that have a low effort to goal and a high probability of containing solutions with a cost

less than the incumbent. We need to consider a probability because there is much uncertainty in

the cost to an abstract state and from that state to the goal. We create informed estimates based

on cost estimates computed from the abstract graph as well as providing online updates to our

estimates based on cost experience while constructing the motion tree.

For each edge, we track a g, cost-to-come, and h, cost-to-go, estimate. The g estimate is in

the form of a Gaussian distribution estimated using the g values of the “active” states that fall

within an edge’s start abstract region. We incrementally track the Gaussian for each edge using

the following update rules:

µ′ = µ+
x− µ

|history |
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A-Beast(Abstraction, Start,Goal)

1. Incumbent = INFINITY

2. AbstractStart = Abstraction.Map(Start)

3. AbstractGoal = Abstraction.Map(Goal)

4. Abstraction.PropagateEffortEstimates()

5. Open.Push(AbstractStart.GetOutgoingEdges())

6. While HaveMoreTime

7. Edge = SelectEdge(Incumbent)

8. StartState = SSTSelect(Edge.Start.Sample())

9. EndState = Edge.End.Sample()

10. ResultState = Steer(StartState, EndState) // Or Propagate With Random Control

11. If ResultState.g ≥ Incumbent

12. OR Not SSTUpdate(ResultState)

13. Edge.UpdateWithFailedPropagation()

14. Continue

15. Success = Edge.End.Contains(ResultState)

16. If Success

17. Edge.UpdateWithSuccessfulPropagation()

18. If Edge.End == AbstractGoal

19. Open.Push(GoalEdge) // Goal Region To Goal State

20. Else

21. Edge.UpdateWithFailedPropagation()

22. Abstraction.PropagateEffortEstimates()

23. If Success

24. Open.Push(Edge.End.GetOutgoingEdges())

25. CheckGoal(ResultState, Open)

Figure 5-10: Pseudocode for the A-Beast algorithm.
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CheckGoal(ResultState,Open)

26. If Goal(ResultState)

27. Incumbent = State.g

28. Open.clear()

29. Open.Push(AbstractStart.GetOutgoingEdges())

Figure 5-11: Pseudocode for the handling a new path to the goal

and

t1 =σ2(|history | − 1)

t2 =(x− µ)(x− µ′)

σ′ =

√

t1 + t2
|history | (5.1)

The h value is a scalar that is extracted from the abstract graph. This is simply the Euclidean

distance between generators in the abstract graph of the edge in question’s start region, along the

shortest path to the abstract goal region scaled by the maximum velocity of the vehicle. This value

is not an admissible estimate of cost-to-go because it can overestimate the actual cost-to-go. The

simplest reason for this is because the generators exist centered in abstract regions which can cause

an abstract path to pass widely around obstacles whereas the true shortest path could hug more

closely to obstacles. The last component used to construct an estimate of the cost of a solution

passing through an abstract edge is an estimate of the error between the actual h cost values if the

abstract graph were followed and those extracted from the abstract graph. This error estimate is

also tracked as a Gaussian distribution. It is constructed by comparing the difference in g values

from the abstract graph and the g values from the motion tree. Comparing these two values provides

an estimate of how much the abstract distances in our graph differ from what the true capabilities

of the vehicle are. By using g values to construct this error term, we can incrementally update it as

search is progressing rather than waiting to arrive at the goal to compute the difference in h values

from the true cost-to-goal found. The total estimate of cost through an edge to the goal is then:
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SelectEdge(Incumbent)

30. Loop Over edge ∈ Open

31. Return edge ∝ edge.g + edge.h < Incumbent

Figure 5-12: SelectEdge function called from Line 6 in the A-Beast pseudocode.

edgecost = edgeg + edgeh · errorglobal

Based on this estimate we then calculate the probability of a solution with cost less than the

incumbent existing through an edge using the cumulative density function:

P (edgecost < incumbent) =
1

2

[

1 + erf

(

incumbent− edgecost.µ

edgecost.σ
√
2

)]

As show in Figure 5-12, we approximate choosing the lowest effort edge with the greatest probability

of containing a solution path less than the incumbent by iterating through the Open list, sorted on

effort, and returning an edge with probability proportional to the previously described probability.

On Line 8, we adopt a strategy similar to SST’s when selecting a state in the existing tree to

propagate from. Instead of a uniformly random sample state, we use a random state within the

selected edge’s start abstract region. We then select the nearest “active” state to the target state

with minimum g value.

With a state from within the motion tree and a target state selected the algorithm proceeds

as Beast would. It propagates from the selected motion tree state toward the target state. In

the experiments that follow, controllers were used if available in OMPL, otherwise 10 random

trajectories were constructed and the one that minimized the difference between the initial state

and target state was selected.

After the trajectory is constructed, the resulting state is evaluated against the current incumbent

cost bound in Line 11. If the new state exceeds the cost bound, the trajectory is not added to

the motion tree and the resulting propagation attempt would be recorded as a failure. This is

126



SSTSelect(State)

32. States = NearestWithin(State, SelectionRadius)

33. Return argmins∈States:s.active s.g // This set may be empty

34. k = 1

35. While True

36. States = KNearest(State, k)

37. Return argmins∈States:s.active s.g

38. k += 5

Figure 5-13: SSTSelect function

similar to how cost pruning can be seen as additional cost obstacles along an additional axis in the

state space. However, this subtlety has another effect in A-Beast’s reasoning. When states were

originally pruned in Beast, it was because of obstacle collisions. Therefore, the effort estimates

reflected the raw estimate of how difficult it was traverse along an edge. However, with the addition

of cost reasoning, the effort estimates become a moving estimate of how difficult it is to traverse

along an edge given the current cost bound. As the cost bound dictated by the stream of incumbent

solutions shrinks, more expensive edges, with regard to cost, are seen as harder to propagate along

with respect to the current constraints.

Note thatA-Beast uses g cost pruning rather than f cost pruning. With an admissible heuristic

estimate of cost to goal, h, we could construct an admissible f value for a state:

f = g + h

However in our experiments, using an admissible estimate of cost-to-go in the concrete space (that

did not overestimate the actual cost3) proved to be a weak contribution to the pruning function

3The heuristic that was being computed was the direct Euclidean distance between the state and goal scaled by
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SSTUpdate(State)

39. Witness = ClosestWitness(State)

40. If Witness == None Or distance(Witness, State) > PruningRadius

41. Witness = New Witness

42. Witness.state = State

43. Witness.rep = State

44. If Witness.rep == State Or State.g < Witness.rep.g

45. OldRep = Witness.rep

46. Witness.rep = State

47. MarkInactive(OldRep)

48. CleanupTree()

49. Return True

50. Return False

Figure 5-14: SSTUpdate function

and added unnecessary overhead. This is why we used a g value instead of an f value.

If the cost check is not violated, the next check is to apply the logic from SST on Line 12. The

logic is contained within Figure 5-14. This function encapsulates the ideas from SST of checking

whether or not a new region is reached or if an existing region is reached via a cheaper path. If a

cheaper way is found to an existing region, the previous representative for that region is marked as

inactive and replaced with the new state. The tree is then examined to see if any inactive branches

can be removed.

If the pruning decides that the new tree branch should be pruned, it is not added to the motion

tree and the propagation attempt is seen as a failure. Similar reasoning is applied to the propagation

failure here as in the general cost pruning. As the algorithm runs, the g value of the representative

the maximum velocity of the vehicle.
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of each region will decrease. It will at some point become very difficult to reduce the g value any

further and the algorithm will recognize this through its tracking effort estimates.

If the pruning allows the addition of the new branch, it is added and the original Beast logic

is applied. In the original Beast algorithm, when an initial solution was found, the algorithm

terminated. In A-Beast, a new state is checked to see if it is satisfies the goal criteria on Line 25.

In Figure 5-11 if the state is a goal state, the incumbent is updated, the open list is cleared, and

the initial abstract edges are re-added to the open list. The motion tree and the distributions are

all maintained, but the best first search among edges to propagate along is restarted with an empty

open list.

5.7 Experiments

We ran similar experiments for A-Beast as we did with Beast, however we added several new

workspaces. In Figure 5-15 are the 6 workspaces. Panels (a)-(e) were used for the 2 dimensional

workspace vehicles (Kinematic Car, Dynamic Car, Hovercraft), while (e)-(f) were used for the 3

dimensional workspace vehicles (Blimp and Quadrotor).

All experiments were run in OMPL. In order to encourage coverage of all algorithms we allowed

each run to execute for 5 minutes. For each vehicle and workspace pairing we present 6 plots. In

the legend of each plot, an algorithm name will be suffixed with “{+}” to notate that the algorithm

was able to solve all instances in the set within the timeout.

Each plot includes 5 anytime algorithm variants: A-Beast using SST (static radii) and SST*

(dynamically decreasing radii), the original SST and SST* algorithms, and Restarting RRT with

Pruning. The A-Beast algorithms follow directly from the description above. SST and SST*

follow from the original journal paper as well as the existing OMPL implementation which had to be

slightly modified. (The new implementation outperforms the existing implementation.) Restarting

RRT with Pruning is a straightforward algorithm where a plain RRT is constructed and each time

a goal is found, the algorithm restarts using pruning on the previous incumbent.

Also included are three single shot planning algorithms from the previous section for comparison

purposes. KPIECE is included as well as P-PRM and the original Beast. The inclusion of this
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(a) (b)

(c) (d)

(e) (f)

Figure 5-15: Workspaces used in the A-Beast experiments. (a) Single wall, (b) ladder, (c) parking

lot, (d) intersection, (e) forest, (f) cube world
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algorithms can help create a strong comparison between the two types of planning.

In all line plots, the legend is sorted in the order of the lines for easier comparison of algorithms.

The first plot in each series is instance coverage as a function of time. This is a very important

metric to exemplify how quickly algorithms are able to solve all instances within the set.

The next plot is solution cost as a function of time. At a given time point, if an algorithm has

not solved an instance, the solution cost for that instance is considered to be a large finite constant:

100,000. Using a large finite constant rather than infinity allows us to compute a finite average

across the x-axis. This leads to algorithms not being shown on the plot until they have provided

at least one solution for every instance in the set.

The next plot is Goal Achievement Time (GAT) as a function of time (Kiesel, Burns, & Ruml,

2015). This metric is how quickly a goal is actually achieved after the instance was issued. It is

the sum of planning time and execution time. This is a very practical metric when a solution will

actually be executed. Minimizing planning time can result in very long solutions, while minimizing

solution cost can result in very long planning times. These plots are targeted to reward a balance

between these two quantities.

The next plot is another GAT plot. However, in this case, we assume an oracle that could decide

when the optimal time to terminate planning would be to give the best GAT for the planning period.

Also, under each algorithm label is the mean planning time from which the GAT values were taken.

The next plot in the series is an anytime solution quality plot which is the IPC Anytime Metric.

These plots show solution quality as a function of time. They attempt to reward coverage and

low solution cost by rolling these values together. This type of plot is used by the International

Planning Competition and has become their traditional anytime plot. As you may notice, they can

be hard to interpret without seeing the underlying data. For example, it may be desirable to solve

all instances rather than only find low cost solutions in only a subset of instances. However, it is

difficult to extract coverage information and cost information when only solution quality is shown.

The last plot in the set shows how frequently solutions are being found by each algorithm. It

maybe be very desirable, when the planning deadline is not known, to find improving solutions as

quickly as possible with small cost deltas rather than finding solutions infrequently with larger cost
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deltas. This notion is described by Thayer (2012).

5.7.1 Kinematic Car

Figure 5-16 through Figure 5-20 present the results of A-Beast in the kinematic car domain over

each of the workspaces shown in Figure 5-15.

We can immediately see that the A-Beast variants are able to solve all instances in the set

within the timeout. Beast and P-PRM are also able to find solutions to all instances and do so

slightly faster than A-Beast as is illustrated in the coverage plots. KPIECE is unable to find

solutions to all instances in any of the workspaces within the timeout.

As shown in the cost plots, while Beast and P-PRM are able to find solutions slightly faster,

their solutions are often about twice as expensive as the solutions found by A-Beast. Eventually,

after significantly more time in some cases, the SST variants find solutions to all instances with

better cost than A-Beast.

In terms of the average goal achievement time across the planning duration, the A-Beast

algorithms are consistently the best performers. Beast and P-PRM consistently follow as the

third and fourth best while the SST variants are consistently fifth and sixth. Not surprisingly, in

terms of best GAT across the entire planning time, the A-Beast are best as shown in the next

GAT box plots.

In the Anytime Solution Quality plots, the SST variants perform best, followed by the A-Beast

algorithms. This is not too surprising because the solution quality metric has to do with factor

of best solution found and the SST variants eventually find the cheapest solutions in the planning

duration.

In the plots showing time since last solution found, it can be seen that in most cases, the A-

Beast variants are finding solutions more frequently than the other algorithms. The exception

is the forest workspace where the SST variants are finding solutions more frequently on average.

However, the performance difference is small in this case.
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Figure 5-16: Kinematic car results in the forest workspace.
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Figure 5-17: Kinematic car results in the single wall workspace.
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Figure 5-18: Kinematic car results in the ladder workspace.
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Figure 5-19: Kinematic car results in the parking lot workspace.
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Figure 5-20: Kinematic car results in the intersection workspace.
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5.7.2 Dynamic Car

Figure 5-21 through Figure 5-25 present the results of present the results ofA-Beast in the dynamic

car domain over each of the workspaces shown in Figure 5-15.

The dynamic car results are very similar to the kinematic car results. A-Beast, Beast, and

P-PRM are the only algorithms to solve all instances across all workspaces. The SST variants and

Restarting RRT with Pruning start to be unable to solve all instances in some of the workspaces

within the timeout. Again, KPIECE is unable to solve the entire instance set for any workspace

with the dynamic car.

A-Beast, Beast, and P-PRM are all quite competitive with each other in terms of the time

until all solutions are found in each of the workspaces. Beastand P-PRM slightly outperform

A-Beast again with this vehicle. In terms of cost, we can see that A-Beast, while slightly slower

to get full coverage, is on average finding solutions about half as expensive as Beast and P-PRM.

For average GAT across the planning duration, A-Beast is consistently best, with the exception

of the forest workspace where Beast slightly outperforms A-Beast using SST. In this case, A-

Beast with SST* is still the better than Beast. When using an oracle to select the best time

to terminate planning and start executing to minimize GAT, this domain is more diverse. In

some workspaces A-Beast performs best, while in others one of the SST variants performs best.

However, on average Beast has fewer outliers in the box plots than the SST variants.

In the anytime solution quality plots, the SST variants still perform best where they are able

to have full coverage over the instance for the workspace. The exception here is in the forest

workspace where A-Beast performs better on average across the planning duration. In the time

since last solution found plots, the A-Beast algorithms initially are able to find solutions at a

good pace, but then start taking longer between finding solutions. A-Beast only is able to find

solutions on average the most frequently in the forest workspace. In the other workspaces A-Beast

dominates the beginning of the planning duration but is eventually overtaken by the SST variants

and Restarting RRT with Pruning.
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Figure 5-21: Dynamic car results in the forest workspace.
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Figure 5-22: Dynamic car results in the single wall workspace.
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Figure 5-23: Dynamic car results in the ladder workspace.
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Figure 5-24: Dynamic car results in the parking lot workspace.
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Figure 5-25: Dynamic car results in the intersection workspace.
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5.7.3 Hovercraft

Figure 5-26 through Figure 5-30 present the results of A-Beast in the hovercraft domain over each

of the workspaces shown in Figure 5-15.

In the hovercraft domain, the dynamics of the vehicle start to be more difficult to control. As

a result, more algorithms start being unable to find solutions to all the instances. A-Beast with

SST*, Beast, and P-PRM are now the only algorithms to find solutions to all instances within

the timeout. These three algorithms, and in some cases A-Beast with SST fight for the position

of top performer in terms of time to full coverage. It is interesting to observe that in this domain,

the A-Beast variants begin to outperform in some workspaces, the Beast and P-PRM algorithms

with respect to this metric (even though they are all pretty close).

In terms of cost, we can see that when an A-Beast variant has full coverage, its solution cost

is roughly 1/3 less than that of Beast and P-PRM. In the cases where an SST variant finds full

coverage, it is also finds solutions roughly 1/3 less than A-Beast.

The GAT plots over time show that an A-Beast variant of Beast performs best with the

exception of in the parking lot workspace where P-PRM performed slightly better. For the oracle

GAT plots, A-Beast with SST* is consistently the best.

Similarly in terms of solution quality over time, the A-Beast perform second best to the SST

variants with the exception of the forest workspace where the A-Beast algorithms dominate. The

time since last solution found plots show a similar story to the previous workspaces. The A-

Beast variants perform strongly at the start of planning but are eventually surpassed by another

algorithm, typically the SST variants.

5.7.4 Quadrotor

Figure 5-31 through Figure 5-32 present the results of A-Beast in the quadrotor domain over each

of the workspaces shown in Figure 5-15.

In the quadrotor domain, we see a similar trend to all previous domains where A-Beast,

Beast, and P-PRM vie for the top spot. In the cost plots, the A-Beast variants are best in both

workspaces. In the GAT plots over time, the A-Beast algorithms are the strongest performers.
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Figure 5-26: Hovercraft results in the forest workspace.
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Figure 5-27: Hovercraft results in the single wall workspace.
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Figure 5-28: Hovercraft results in the ladder workspace.
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Figure 5-29: Hovercraft results in the parking lot workspace.
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Figure 5-30: Hovercraft results in the intersection workspace.
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However, in the GAT oracle plots, the A-Beast are consistently third and fourth best. The top two

performers in these two workspaces for this metric switch between Restarting RRT with Pruning,

KPIECE, and P-PRM. In terms of anytime solution quality, for the first time, Restarting RRT with

Pruning does very well. The next best performers are A-Beast and SST variants. Similarly in the

solution time delta plots, it also does the best in the two workspaces. The next best performers

are the A-Beast variants.

5.7.5 Blimp

Figure 5-33 through Figure 5-34 present the results of A-Beast in the blimp domain over each of

the workspaces shown in Figure 5-15.

The blimp vehicle in the forest workspace has proved very difficult to solve within the timeout.

The only algorithm to solve the entire set isBeast. TheA-Beast variants, P-PRM, and Restarting

RRT with Pruning all approach full coverage but never quite make it during the timeout. As a

result the cost plot and GAT plots for the forest domain do not provide additional comparative

information. However, in the anytime solution quality and time since last solution found, the

A-Beast algorithms dominate.

In the cube world workspace, A-Beast with SST, Beast, and P-PRM are able to find full

instance coverage within the timeout. In this workspace, the cost plots show that the solutions

found are all very comparable so the only real benefit is the time at which the solutions were found.

In the GAT plots, Beast performs best on average over the duration while given an oracle to choose

when to stop planning and start executing; P-PRM performs best. On the solution quality plots

P-PRM performs best on average but the confidence intervals on the means for the top algorithms

are all heavily overlapping. In this workspace, the A-Beast algorithms find solutions much more

frequently than all the other algorithms.

5.8 Discussion

One of the major benefits of Beast was that it explicitly focused on areas of the state space that

it believes will be easy to traverse while heading toward the goal. It ignored any information it
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Figure 5-31: Quadrotor results in the forest workspace.
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Figure 5-32: Quadrotor results in the cube world workspace.
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Figure 5-33: Blimp results in the forest workspace.
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Figure 5-34: Blimp results in the cube world workspace.
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could have gathered regarding cost of the solutions it was finding. In A-Beast, we take this extra

information into account to find solutions quickly and improve on them as time allows.

As can be seen in the diverse set of experiments performed, A-Beast was not always the best

across all metrics on all domains and workspaces. However, it was always a strong performer for all

metrics. None of the other algorithms had the same level of consistency offered by A-Beast. It is

able to leverage reasoning about easy to construct solutions to find an incumbent quickly and also

use cost reasoning to find cheaper solutions, sometimes as much as half as costly as its predecessor,

Beast.

In this Chapter we presented two new algorithms, Beast and A-Beast which apply non-

classical planning ideas to guide sampling based motion planning. The algorithms are able to

provide state of the art performance in this area demonstrating the power of non-classical planning

in robotics research. This has continued the trend through this Section of the dissertation illus-

trating ways that non-classical planning can assist in focusing state space exploration in problems

of interest to the robotics community.
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CHAPTER 6

Conclusion

Classical planning has developed a powerful set of abstractions and assumptions that enables the

study of the underlying characteristics of real world problems. While these abstractions and assump-

tions are beneficial in academic research, they prove to be a barrier against the direct application

of classical planning to real world problems and systems. As such, non-classical planning needs to

be developed, constructing the necessary bridges between classical planning’s assumptions and the

hard truths of operating in the real world. These techniques will remove many of the assumptions

that simply do not hold while operating in the real world.

The thesis of this dissertation is the same as its title: robotics needs non-classical planning.

The robotics community can benefit from many ideas about high level reasoning from the planning

community. Similarly, the planning community can benefit from addressing challenges posed by

the applications and domains considered by the robotics community.

To that effect this dissertation has provided two contributions. The first in Part 1 is how un-

certainty in the world model can be addressed through a non-classical planning algorithm called

hindsight optimization. We considered two realistic sources of uncertainty: temporal uncertainty

and open worlds. We presented the OH-wOW algorithm to handle open world uncertainty along

with the Tu-Hop algorithm to handle temporal uncertainty (as well as physical location uncer-

tainty). These works were published in an 2013 ICAPS PlanRob paper (Kiesel et al., 2013), in a

University of New Hampshire technical report (Kiesel et al., 2012), and in a 2014 ICAPS PlanRob

paper (Kiesel & Ruml, 2014).

The second contribution was the application of abstractions and techniques from the heuristic

search community to motion planning. In Part 2, we demonstrated the power of abstraction

in a complicated task and motion planning problem with temporal constraints. We presented

156



the WAMP problem as well as a framework for finding solutions to this new problem. We then

presented an f -biased sampling strategy for sampling base motion planning. Finally, we provided a

state of the art motion planning algorithm for minimizing time to first solution and then extended

this algorithm to find a stream of improving solutions which provides robust performance across a

variety of domains and workspaces. This demonstrates how combining high level discrete reasoning,

characteristic of heuristic search, can aid lower level sampling-based motion planning resulting in

faster solving times and better solution quality.

This work was published in a 2012 ICAPS paper (Kiesel et al., 2012), a 2012 SoCS extended

abstract (Kiesel et al., 2012b), a University of New Hampshire technical report (Kiesel et al., 2012a),

and a 2016 ICAPS PlanRob paper (Kiesel & Ruml, 2016).

The sum of these works highlights the benefit and need for non-classical planning in the form of

high level reasoning in robotics problems. In many cases, the application of non-classical planning

ideas allow agent to focus on the decision of which of the immediately available actions to take

next as shown in Section 1. Alternatively, the application of non-classical planning ideas can allow

for very focused search throughout very large state spaces. Without the application of these ideas

the problems studied in Part 2 of this dissertation could not have been solved as quickly, if at all.

The hope of this work is to bring attention to the need for further collaboration between the AI

Planning and Robotics communities.
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Appendix A

Completeness Proof for Beast

(Kunz & Stilman, 2015)

Given RRT’s completeness proof.

Assume there exists an ǫ-hypertube of solutions to the motion planning problem. This ǫ-

hypertube will traverse through a sequence of abstract regions called an abstract solution.

Define: A neighboring region is a region that shares at least one boundary with another region.

Assume: In the abstraction, for each abstract region, there exists a set of abstract edges which

connect it to at least all neighboring abstract regions.

The set of hyperplanes between each neighboring region and a base region define a convex

hyperpolygon.

Lemma 1: The abstract solution is a sequence of neighboring regions, for which there exists a

sequence of edges in the abstraction.

By definition of abstract solution this is true.

Lemma 2: If a low level path must be found along an abstract edge, BEAST will eventually

find it.

Lemma 3: BEAST will eventually examine the sequence of edges connecting the abstract solu-

tion.

Theorem: BEAST will find a solution if a solution exists.
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S̆tĕpán Kopr̆iva, S̆ĭslák, D., Pavĺıc̆ek, D., & Pĕchouc̆ek, M. (2010). Iterative accelerated A* path

planning. In Proceedings of the Foty-nineth Conference on Decision and Control.

Vansteenwegena, P., Souffriaua, W., & Oudheusdena, D. V. (2011). The orienteering problem: A

survey. European Journal of Operational Research, 209, 1–10.
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