
Metareasoning for Interleaved Planning and Execution

Amihay Elboher1, Shahaf S. Shperberg1, Solomon E. Shimony1, Wheeler Ruml2

1Ben-Gurion University, Israel
2University of New Hampshire, USA

{amihaye,shperbsh}@post.bgu.ac.il, shimony@cs.bgu.ac.il, ruml@cs.unh.edu,

Abstract

Agents that plan and act in the real world must deal with the
fact that time passes as they are planning. When timing is very
tight, there may be insufficient time to complete the search
for a plan before it is time to act. By executing actions before
search concludes, one gains time to search by making plan-
ning and execution concurrent. However, this incurs the risk
of making incorrect action choices, especially if actions are
irreversible. This tradeoff between opportunity and risk is the
metareasoning problem addressed in this paper.
We begin by formally defining this as an abstract metarea-
soning problem, and setting it up as an MDP. This abstract
problem is itself intractable. We show special cases that are
solvable in polynomial time, present heuristic solution algo-
rithms, and examine their effectiveness on instances gener-
ated according to distributions that represent typical planning
problems.

1 Introduction
Agents that plan and act in the real world must deal with
the fact that time passes as they are planning. For example,
an agent that needs to get to the airport may have two op-
tions: take a taxi, or ride a commuter train. Each of these
options can be thought of as a partial plan to be elaborated
into a complete plan before execution can start. Clearly, the
agent’s planner should only elaborate the partial plan that in-
volves the train if that can be done before the train leaves. In
another example, suppose the planner has two partial plans
that are each estimated to require five minutes of compu-
tation to elaborate into complete plans. If only six minutes
remain until they both expire, then we would want the plan-
ner to allocate almost all of its remaining planning effort to
one of them, rather than to fail on both. An abstract model
for handling these issues [called Allocating Effort when Ac-
tions Expire (AE)2] was proposed in (Shperberg et al. 2019),
and is the basis for the research presented in this paper.

Now, suppose further that the estimated time to complete
each plan is seven minutes, that the planner has already de-
termined that the first action in the commuter train plan is
to ride the elevator down to the first floor, which takes two
minutes, and that the first action in taking a taxi is to call

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for a taxi (two minutes) which cannot be done while rid-
ing the elevator, which has no cellphone reception. The only
apparent way to plan successfully thus involves starting to
act before planning is complete. However, doing so may in-
validate potentially valid plans. This paper proposes a disci-
plined method for handling such tradeoffs.

The idea of starting to perform actions in the real world
(also known as base-level actions) before completing the
search goes back at least as far as Korf’s (Korf 1990) real-
time A* (RTA*). The difference from the RTA* paradigm is
that our scenario is more flexible; the agent does not have a
predefined time at which actions must be executed. Rather,
it must reason about when base-level actions should be ex-
ecuted in order to maximize the probability of successful
and timely execution. Note that we assume here that the
world is deterministic, the only uncertainty we model here
is at the meta-level, due to uncertainty about how long plan-
ning/search will take and about the time it will take the (un-
known at search time) resulting plan to reach a goal state.

In this work we define the above tradeoffs as a formal
problem of decision-making under uncertainty, in the sense
defined by (Russell and Wefald 1991). Attempting to do so
for an actual planning or search algorithm is far too com-
plicated, even under our assumption of a deterministic real
world. We thus adopt the aforementioned (AE)2 scheme,
which defined an abstract metareasoning problem of allocat-
ing processing time among n search processes, and extend
it to allow execution of actions in the real world (which, fol-
lowing (Cashmore et al. 2018), we call base-level actions),
in parallel with the search processes.

The formal problem presented in this paper, called inter-
leaving planning and execution when actions expire (IPAE
for short), assumes that each process has already computed
a known (possibly empty) prefix action sequence, the initial
actions in the solution, and that there is an as-yet-unknown
remainder of the action sequence to be executed. A distri-
bution over the length of the remainder is given. The metar-
easoning problem we define is as in (AE)2, to find a policy
that maximizes the probability of a timely action sequence.
However, unlike (AE)2, in our extension the agent can actu-
ally start executing base-level actions (from one or more of
the action sequence prefixes) in parallel with continuing the
computation.

We then show that IPAE is a generalization of (AE)2, and

is thus also intractable, even under the very limiting assump-
tion of known deadlines and remainders. Still, we cast IPAE
as an MDP, so that we can define and analyze optimal poli-
cies, and even solve IPAE optimally for very small instances
using standard MDP techniques like value iteration.

We describe several efficient ways of solving IPAE, al-
though not necessarily optimally, and evaluate them empiri-
cally. In this paper, we examine only the one-shot version of
the metareasoning problem. Integrating this into a temporal
planner or search algorithm can involve solving this problem
repeatedly, possibly after each node expansion, in addition
to gathering the requisite statistics. These issues are ongoing
work and beyond the scope of the current paper. When test-
ing our algorithms, we use scenarios based on search trees
generated by running A* on sliding tile puzzle instances.

2 Background: Metareasoning in Situated
Planning and Search

In situated temporal planning, each action a has a latest
start time ta and a a plan must be fully generated before
its first action can begin executing. This induces a deadline
(although this deadline may be unknown, since the actions
in the plan are not known until the search terminates).

For a partial plan available at a search node i in the plan-
ner, this can be modeled by a random variable di, denoting
the unknown deadline by which any potential plan expanded
from node i must be generated. Thus, the planner faces the
metareasoning problem of deciding which nodes on the open
list to expand in order to maximize the chance of finding a
plan before its deadline.

Shperberg et al. (2019) proposed a model of this problem
called (AE)2 (‘allocating effort when actions expire’) which
abstracts away from the planning problem and merely as-
sumes n independent processes. Each process attempts to
solve the same problem under time constraints. In the con-
text of situated temporal planning using heuristic search,
each process may represent a promising partial plan for the
goal, implemented as a node on the open list eager to have
its subtree explored. But the abstract problem may also be
applicable to other settings, such as algorithm portfolios or
scheduling candidates for job interviews. For simplicity, we
assume a single processor, so the core of the metareasoning
problem is to determine how to schedule the n processes on
the single processor.

When process i terminates, it delivers a solution with
probability Pi or, otherwise, indicates its failure to find one.
An mentioned above, each process has an uncertain deadline
defined over absolute wall clock time by which its computa-
tion must be completed in order for any solution it finds to
be valid. For process i, let Di(t) be the CDF over wall clock
times of the random variable denoting the deadline. The ac-
tual deadline for a process is only discovered with certainty
when the process completes. This models the fact that a de-
pendence on an external timed event might not become clear
until the final action in a plan is added. If a process termi-
nates with a solution before its deadline, we say that it is
timely. Given Di(t), we assume w.l.o.g. that Pi is 1, other-
wise one can adjust Di(t) to make the probability of a dead-

line that is in the past (thus forcing the plan to fail) equal to
1− Pi.

The processes have known search time distributions, i.e.
performance profiles (Zilberstein and Russell 1996) de-
scribed by CDFs Mi(t), the probability that process i needs
total computation time t or less to terminate. Although some
of the algorithms we present can handle dependencies, we
make the typical metareasoning assumption in our analy-
sis that all the random variables are independent. Given the
Di(t) and Mi(t) distributions, the objective of (AE)2 is to
schedule processing time between the n processes such that
the probability of at least one process finding a timely solu-
tion is maximized.

A simplified discrete-time version of the problem, called
S(AE)2, can be cast as a Markov decision process. The
MDP’s actions are to assign (schedule) the next time unit
to process i, denoted by ci with i ∈ [1, n]. Action ci is al-
lowed only if process i has not already failed. A process is
considered to have failed if it has terminated and discovered
that its deadline has already passed, or if the current time is
later than the last possible deadline for the process.

The state variables are the wall clock time T and one state
variable Ti for each process, with domain N∪{F}, although
in practice the time domains of T, Ti are bounded by the lat-
est possible deadlines. Ti denotes the cumulative time as-
signed to each process i until the current state, or that the
process failed (indicated by F). We also have special termi-
nal states SUCCESS and FAIL. Thus the state space is:

S = (dom(T)× ×
1≤i≤n

dom(Ti)) ∪ {SUCCESS, FAIL}

The initial state has T = 0, and Ti = 0 for all 1 ≤ i ≤ n.
The transition distribution is determined by which process
i has last been scheduled (the action ci), the Mi distribu-
tion (which determines whether currently scheduled pro-
cess i has completed its computation), and Di (which de-
termines the revealed deadline for a completed process, and
thus whether it has succeeded or failed). If all processes fail,
transition into FAIL (with probability 1). If some process is
successful, transition into SUCCESS. The reward is 0 for all
states except SUCCESS, for which the reward is 1.

The S(AE)2 problem is NP-hard, even for known dead-
lines (denoted KDS(AE)2) (Shperberg et al. 2019).

2.1 Greedy Schemes
As solving the metareasoning problem is NP-hard, Shper-
berg et al. (2019) used insights from a diminishing returns
result to develop greedy schemes. Their analysis is restricted
to linear contiguous allocation policies: schedules where the
action taken at time t does not depend on the results of the
previous actions, and where each process receives its allo-
cated time contiguously.

Following their notation, we denote the probability that
process i finds a timely plan when allocated ti consecutive
time units starting at time tdi

as:

si(ti, tdi
) =

ti∑
t′=0

(Mi(t
′)−Mi(t

′−1))(1−Di(t
′+tdi

)) (1)

When considering linear contiguous policies, we need to
allocate ti, tdi pairs to all processes (with no allocation over-
lap). Note that overall a timely plan is found if at least one
process succeeds, that is, overall failure occurs only if all
processes fail. Therefore, in order to maximize the proba-
bility of overall success (over all possible linear contiguous
allocations), we need to allocate ti, tdi

pairs so as to maxi-
mize the probability:

Ps = 1−
∏
i

(1− si(ti, tdi
)) (2)

Using LPFi(·) (‘logarithm of probability of failure’) as
shorthand for log(1 − si(·)), we note that Ps is maxi-
mized if the sum of the LPFi(ti, tdi) is minimized and that
−LPFi(ti, tdi) behaves like a utility that we need to max-
imize. For known deadlines, we can assume that no policy
will allocate processing time after the respective deadline.
We will use LPFi(t) as shorthand for LPFi(t, 0).

To bypass the problem of non-diminishing returns, the no-
tion of most effective computation time for process i under
the assumption that it starts at time td and runs for t time
units was defined as:

ei(td) = argmin
t

LPFi(t, td)

t
(3)

The notion here is slightly generalized, as Shperberg et al.
(2019) actually had ei, which equals ei(0) here. We use ei
to denote ei(0) below.

Since not all processes can start at time 0, the intuition
from the diminishing returns optimization is to prefer pro-
cess i that has the best utility per time unit, i.e. such that
−LPFi(ei))/ei is greatest. But allocating time to process i
delays other processes, so it is also important to allocate the
time now to processes that have an early deadline. Shper-
berg et al. (2019) therefore suggested the following greedy
algorithm: Iteratively allocate tu units of computation time
to process i that maximizes:

Q(i) =
α

E[Di]
− LPFi(ei)

ei
(4)

where α and tu are positive empirically determined parame-
ters, andE[Di] is the expectation of the random variable that
has the CDF Di (a slight abuse of notation). The α param-
eter trades off between preferring earlier expected deadlines
(large α) and better performance slopes (small α).

The first part of Equation 4 is a somewhat ad-hoc mea-
sure of urgency, which additionally performs poorly if the
deadline distribution has a high variance. A somewhat more
advanced greedy scheme was defined by Shperberg et al.
(2021) in an attempt to define the notion of urgency more
precisely, and uses the notion of a damage caused to a pro-
cess if its computation is delayed by some time tu. This is
based on the available utility gain after the delay of tu.

An empirically determined constant multiplier γ was used
to balance between exploiting the current process reward
from allocating time to process i now and the loss in reward
due to delay. Thus, the delay-damage aware (DDA) greedy
scheme was to assign, at each processing allocation round,
tu time to the process i that maximizes:

Q′(i) =
γ · LPFi(ei(tu), tu)

ei(tu)
− LPFi(ei, 0)

ei
(5)

2.2 DP Solution for Known Deadlines
For KDS(AE)2 (known deadlines S(AE)2), it suffices to ex-
amine linear contiguous policies sorted by an increasing or-
der of deadlines (Shperberg et al. 2019), formally:
Theorem 1. Given a KDS(AE)2 problem, there exists a lin-
ear contiguous schedule with processes sorted by a non-
decreasing order of deadlines that is optimal.

Theorem 1 was used in (Shperberg et al. 2021) to obtain
a dynamic programming (DP) scheme.
Theorem 2. For known deadlines, DP according to

OPT (t, l) = max
0≤j≤dl−t

(OPT (t+j, l+1)−LPFl(j)) (6)

finds the optimal schedule in time polynomial in n, dn.
For explicit Mi representations, evaluating Equation 6 in

descending order of deadlines runs in polynomial time.

3 Interleaving Planning and Execution
In this paper, we extend the abstract S(AE)2 model to ac-
count for execution of actions during search. We assume
that each process has already constructed a sequence of ac-
tions, which will be the prefix of any complete plan below
the node the process represents. For each process, there is
a plan remainder that is still unknown. These assumptions
make sense if we equate each such process with a node in
the open list of a typical algorithm that searches from the
initial state to the goal, and adds an action when a node is ex-
panded. Here, the prefix is simply the list of operators lead-
ing to the current node. The rest of the action sequence is the
remaining solution that may be developed in the future from
each such node. However, here too we will abstract away
from the actual search and model future search results by
distributions.

Thus, in addition to distributions over completion times,
for each process i we have a plan prefix Hi (H for head),
containing a sequence of actions from a set of available
”base-level” actions B. Each action b ∈ B also has a dead-
line D(b). Upon termination, a process i delivers the rest of
the action sequence βi of the solution in one chunk. As βi
is unknown prior to termination, we assume a known distri-
bution Ri on dur(βi), the duration of βi, and that the actual
duration becomes known on termination.

Actions from any action sequence Hi may be executed
(in sequence) even before having a complete plan. Execu-
tion changes the state of the system and we adjust the set
of processes to reflect this: any process where the already
executed action sequence is not a prefix of its partial plan
becomes invalid. Executing any prefix of actions from any
Hi with the first action starting no earlier than time 0 (repre-
senting the current time), and such that the next action in the
sequence begins at or after the previous action terminates,
and is executed before its deadline, is called a legal execu-
tion. Any suffix βi is assumed to be composed of actions that

cannot be executed before the process i terminates, thus the
execution of βi may only begin after process i terminates.
We also assume that base-level actions are non-preemptible
and cannot be run in parallel. However, computation may
proceed freely while executing a base-level action.

As in S(AE)2, we have a deadline for each process, but
with a different semantics; unlike S(AE)2, here the require-
ment is that the execution terminates before the (possibly
unknown) deadline; a sequence of actions fully executed be-
fore its deadline is henceforth called a timely execution. We
assume that there is a known distribution (of a random vari-
ableXi) over deadlinei the deadline for process i, and again
that its true value becomes known only once the search in
process i terminates. A typical application for such a set-
ting is having to solve a physical puzzle while in a room
with walls moving in upon the occupant, as in some famous
movie scenes. In this case, the deadline is the same for all
processes, and is known approximately in advance, that is,
all the Xi are equal.

It is easy to see that an execution of a solution delivered by
process i is timely just when the remainder βi begins execu-
tion in time to conclude before its deadline; that is, just when
start(βi) ≤ deadlinei − dur(βi). Since before computa-
tion completes these are random variables, then start(βi)
is also constrained by a random variable, which we call the
induced deadline for process i, and denote it by the random
variableDi. By construction, we haveDi = Xi−Ri, which
is well defined whether or not the Ri and Xi are dependent.

Thus, we will simply assume that the induced deadline
distribution Di is given, and can ignore Xi and Ri hence-
forth. Note that the semantics of the induced deadline is that
for a process i to be timely it must meet two conditions: 1)
complete its computation, as well as 2) complete execution
of all its action prefix Hi before the induced deadline Di.

The Interleaving Planning and Execution while Actions
Expire problem (IPAE), is thus defined as follows. We have
a set of base-level actions B, each action b ∈ B has dura-
tion dur(b) > 0. Given n processes, each with a (possibly
empty) sequence Hi of actions from B, a performance pro-
file Mi, and an induced deadline distribution Di, find a pol-
icy for allocating computation time to the n processes and
legally executing base-level actions from someHi, such that
the probability of executing a timely solution is maximal.
Example 1. Extending the instance from the introduction
where an agent needs to reach to the airport either by com-
muter train or by taxi. We have two processes: process 1
for the plan with the commuter train, and process 2 for the
taxi plan. Suppose the unit of time is one minute, and we
have to get to terminal D at the airport 30 minutes from
now. The train (which leaves six minutes from now) takes
22 minutes, but the planner has not yet checked what to do
at the end of the ride: the train may get to terminal D di-
rectly in which case no additional time is needed (say prob-
ability 0.8), or it may only stop at terminal A, requiring an
additional five minutes to travel to terminal D (thus missing
the deadline). Similar conditions may exist for the taxi plan,
with the ride taking 20 minutes to get to the airport termi-
nal D, but there also needs to be a payment step at the end,
the length of which the planner has not yet determined (say

one or ten minutes, each with probability 0.5). Representing
this as IPAE, we have H1 = [take elevator, ride train] and
H2 = [phone, take elevator, take taxi], with dur(phone) =
dur(take elevator) = 2, dur(ride train) = 22,
dur(take taxi) = 20, The remainder durations are dis-
tributed: for β1 we have R1 ∼ [0.8 : 0 ; 0.2 : 5], and
for β2 we have R2 ∼ [0.5 : 1 ; 0.5 : 10]. The dead-
lines are certain in this case, X1 = X2 = 30 with prob-
ability 1, and the induced deadlines are thus distributed:
D1 ∼ [0.8 : 30 ; 0.2 : 25] and D2 ∼ [0.5 : 29 ; 0.5 : 20].
Suppose remaining planner runtime for the train plan will
take seven minutes with certainty, and for the taxi plan it is
distributed: [0.5 : 1; 0.5 : 8]. The optimal policy here is to
run process 2 for one minute. If it terminates and reveals
thatD2 = 29, then call for a taxi and proceed (successfully)
with the taxi plan. Otherwise (process 2 does not terminate,
or terminates and reveals that D2 = 20), start executing the
actions from H1: take the elevator and run process 1, then
take the train and continue running process 1, hoping to find
that D1 = 30. This policy works with probability of success
PS = 0.25 + 0.75 ∗ 0.8 = 0.85.

We make the following simplifying assumptions:

1. Time is discrete, and the basic unit of time is 1 (as as-
sumed in S(AE)2).

2. The action durations dur(b) are known for all b ∈ B.

3. The variables with distributions Di, Mi are all mutually
independent.

4. The individual action deadlines D(b) are irrelevant (not
used, or equivalently set to be infinite), as the overall pro-
cess induced deadline distributions Di are given.

Although assumption 4 is easy to relax, doing so compli-
cates the analysis and is thus made to improve clarity. Our
algorithm implementations actually do allow for individual
action deadlines. Observe that any instance of S(AE)2 can
be made into an IPAE instance, by just setting all Hi to
be null. Therefore, finding the optimal solution to IPAE is
also NP-hard, even under assumptions 1-4. Thus, the initial
analysis in the paper will also make the assumption that the
induced deadlines are known, so as to try to get a pseudo-
polynomial time algorithm for computing the optimal pol-
icy. Note that having a known deadline (e.g. we know that
the room’s walls will crush the agent in two minutes exactly)
does not entail that the induced deadline is known, as typi-
cally dur(βi) will be unknown before the solution is known,
and therefore the induced deadline will be unknown before
termination. That is, it is possible that process i will find a
solution, and only then discover that it cannot be completed
on time, even for known deadlines.

4 Stating IPAE as an MDP
Under the additional assumptions 1 through 4 in Section 3,
we state the IPAE optimization problem as the solution to
the following MDP, similar to the one defined for S(AE)2.
The actions in the MDP are of two types: the base-level ac-
tions from B, and actions ci: that allocate the next time unit
of computation to process i. We assume that ci can only be

done if process i has not already terminated and has not be-
come invalid by execution of base-level actions. An action b
from B can only be done when no base-level action is cur-
rently executing and b is the next action in some Hi after
the common prefix of base-level actions that all remaining
processes share.

The states of the MDP are defined as the cross product of
the following state variables:

1. Wall clock (real) time T ,

2. Time Ti already assigned to each process i, for all i from
1 to n. These variables will also be used to encode process
failure to find a timely solution, thus dom(Ti) ∈ N∪{F}.
The value F is also used to indicate any process i withHi

inconsistent with the already executed base-level actions.

3. Time left W until the current base-level action completes
execution.

4. The number L of base-level actions already initiated or
completed.

We also have special terminal states SUCCESS (denot-
ing having found and can execute a timely plan) and FAIL
(no longer possible to execute a timely plan). Thus, the state
space of the MDP is:

S = (dom(T)× dom(W)× dom(L)×
×1≤i≤ndom(Ti)) ∪ {SUCCESS, FAIL}

The identity of the base-level actions already executed is
not explicit in the state, but can be recovered as the first L
actions in any prefix Hi, for a process i not already failed.

The initial state S0 has elapsed wall clock time T = 0,
no computation time used for any process, so Ti = 0 for all
1 ≤ i ≤ n, and no base-level actions executed or started so
W = 0 and L = 0. The reward function is 0 for all states,
except SUCCESS, which has a reward of 1.

The transition distribution is determined by which pro-
cess i is being scheduled (a ci action) or how execution has
proceeded (a b action). For simplicity we assume that only
one action is applied at each transition, although base level
and computation action can overlap in real (wall clock) time.

Let S = (T,W,L, T1...Tn) be a state, and S′ be a state
after an action is executed. We use the notation var[state] to
denote the value of state variable var in state, for example
T [S] denotes the value of T in S, that is, the value of the
wall-clock time in state S.

For a base-level action, b ∈ B, which is only allowed
if W [S] = 0, the transition is deterministic: the count of
executed actions increases, and all processes incompatible
with b fail. That is, W [S′] = dur(b), L[S′] = L[S] + 1,
T [S′] = T [S], and:

Ti[S
′] =

{
Ti[S] if Hi[L[S] + 1] = b
F otherwise

A computation action usually advances the wall-clock
time, i.e. T [S′] = T [S]+1 andW [S′] = max(0,W [S]−1).
As a result, some processes may no longer be able to deliver
a timely solution at all, we call such processes, as well as
the computation actions of such processes tardy, as defined

below. Consider any process i that might be given a com-
putation time unit in state S and (possibly) terminating and
delivering a solution. The time at which this execution of the
solution can complete is given by the following equation,
where [i..j] denotes a sub-sequence from i to j, inclusive,
and dur(.) of a sequence of actions is the sum of durations
of the actions in the sequence:

ti[S] = T [S] +W [S] + dur(Hi[(L[S] + 1)..|Hi|]) + 1

That is, ti[S] equals time now, plus time remaining until the
current base-level action (if any) terminates, plus the dura-
tion of the tail of theHi prefix, plus the 1 time unit allocated
now. The probability that this is a timely execution is thus
1 − D(ti[S]). A process for which D(ti[S]) = 1 has zero
probability of delivering a timely execution and is called a
tardy process. Thus, when doing a computation action, each
process i that is tardy at S fails, that is, Ti[S′] = F with
probability 1; unless all processes are tardy in which case
we fail globally, i.e. S′ = FAIL. In the above cases, the
transitions are deterministic.

We allow a computation action ci only for processes i that
have not failed and are not tardy at S. For such a valid action
ci, we have T [S′] = T [S]+1 andW [S′] = max{0,W [S]−
1}, and Tj [S′] = Tj [S] for all j 6= i that are non-tardy. With
probability PC,i = mi(Ti[S]+1)

1−Mi(Ti[S]) process i now terminates,
given that it has not terminated before. Thus with probabil-
ity 1 − PC,i the process does not terminate, in which case
we get Ti[S′] = Ti[S] + 1. If the process does terminate,
as stated above, it delivers a timely solution with probabil-
ity 1 − D(ti[S]) in which case we set S =SUCCESS. The
solution fails to meet the induced deadline with probability
Di(t), in which case we have Ti[S′] = F , unless in the re-
sulting S′ there is no longer any non-tardy process that has
not failed, in which case set S′ =FAIL.

5 Known Induced Deadline IPAE: Properties
We need only policies that start from the initial state S0, so
we can represent a policy as an and-tree rooted at S0, with
the agent’s action as an edge at each state node, leading to a
chance node with next possible states as children.

A policy tree in which every chance node has at most one
non-terminal child is called linear, because it is equivalent
to a simple sequence of meta-level and base-level actions.
This can be extended to the case where there may be more
than one non-terminal child, as long as there is only one such
child with non-zero probability, thus we call these types of
policies linear as well. With this definition of linear policies,
we have:

Lemma 3. In IPAE with known induced deadlines, there
exists an optimal policy that is linear.

Proof. Observe that transitions for base-level actions are de-
terministic, and thus it is sufficient to consider deliberation
actions ci at any state S. Examining the transition distri-
bution in this case, the chance node has at most only two
non-terminal children: one where process i terminates and
fails, and one where it does not terminate. However, since
the induced deadlines are all known then in fact Di(ti[S])

is either 0 or 1. However, the case Di(ti[S]) = 1 means
process i is tardy, so ci is not allowed. In the remaining
case, Di(ti[S]) = 0 and the chance node has only one non-
terminal child with non-zero probability.

For known induced deadlines it is thus sufficient to find
the optimal linear policy, represented henceforth as a se-
quence σ of the actions (both computational and base-level)
to be done starting from the initial state and ending in a ter-
minal state, unless we land in a terminal state due to pre-
vious actions in the sequence. Denote by CA(σ) the sub-
sequence of σ that contains just the computation actions of
σ. Likewise, denote by BA(σ) the sub-sequence of σ that
contains just the base-level actions of σ. Denote by σi↔j the
sequence resulting from exchanging the ith and jth actions
in σ. We call a linear policy contiguous if the computation
actions for every process are all in contiguous blocks, for-
mally:

Definition 1. Linear policy σ is contiguous iffCA(σ)[k1] =
CA(σ)[k2] = ci implies CA(σ)[m] = ci for all k1 < m <
k2 and all computation actions ci.

Theorem 4. In IPAE with known induced deadlines, there
exists an optimal policy that is linear and contiguous.

Proof. From the proof of Lemma 3, for known induced
deadlines an optimal linear policy is non-tardy, and any pro-
cess that terminates results in SUCCESS. Due to indepen-
dence between the Mi, the probability of termination (and
thus success) of each process depends only on the total pro-
cessing time ai allocated to it, and equals Mi(ai). There-
fore, the total probability of success is invariant to the order
of computation actions, as long as all computation actions
do not cause i to become tardy. It is thus sufficient to show
that every linear non-tardy policy can be re-arranged into
one that is contiguous.

Let σ be an optimal linear policy, and k be the latest in-
dex where contiguity is violated in CA(σ). That is, the sub-
sequence CA(σ)[(k + 1)..|CA(σ)|] is contiguous, but we
have CA(σ)[k] = cj , CA(σ)[k + 1] = ci 6= cj , and there
exists m < k such that CA(σ[m]) = ci. Then, CA(σ)m↔k

still results in a non-tardy policy when replacing CA(σ) by
CA(σ)m↔k in σ. That is because the moved cj is made
earlier, so cannot become tardy due to this change, and the
moved ci also does not become tardy as there is a later ci that
is non-tardy. Also, CA(σ)m↔k[k...|CA(σ)|] is contiguous
by construction. This exchange step can be repeated until
the policy becomes contiguous.

Theorem 4 is an extension of a similar theorem that holds for
S(AE)2, to linear policies that contain base-level actions.

However, we still need to deal with scheduling the base-
level actions. We show below that schedules we call lazy,
are non-dominated. Intuitively, a lazy policy is one where
execution of base-level actions is delayed as long as possible
without making the policy tardy or illegal (base-level actions
overlapping).

Definition 2. A linear policy σ is lazy if σi↔i+1 is tardy or
illegal for all i where σ[i] ∈ B.

Note that if σ[i] is a base-level action, an optimal policy
will always schedule computation at σ[i + 1], since the du-
ration of any base-level action is strictly positive and com-
putation is better than idling.

Theorem 5. In the IPAE with known induced deadlines,
there exists an optimal policy consisting of a lazy contigu-
ous linear policy.

Proof. Define a lexicographic ordering >L on linear poli-
cies w.r.t. the index at which their base-level actions occur.
x >L y if, for some k ≥ 0 the first k base level actions in x
and y start at equal indices respectively, and the k+1 action
of x starts later than that of y. Let σ be the optimal contigu-
ous linear policy that is greatest w.r.t.>L. Assume in contra-
diction that σ is not lazy. Then by definition there exists an
index i such that σ[i] ∈ B and σi↔i+1 is legal and non-tardy
and contiguous (no change in order of computation actions).
Note that σi↔i+1 has the same computation time assigned
to each and every process, as σ, so, being non-tardy, has the
same probability of success as σ. Since σi↔i+1 >L σ and is
also optimal, we have a contradiction.

6 Pseudo-Polynomial Time Algorithms
Since with known deadlines there exist pseudo-polynomial
time algorithms for S(AE)2, it is of interest whether this is
the case for IPAE as well. The key notion allowing this to
work for S(AE)2 is that there exists an linear contiguous
policy that assigns the processing in order of deadlines.

Unfortunately, this is not the case for IPAE because the
timing of the base-level actions affects the order in which
computation actions become tardy. Nevertheless, under ad-
ditional restrictions it is still possible to get a pseudo-
polynomial time algorithm. The idea is to find cases where
the assignment ordering still holds, and then one can still use
the dynamic programming scheme from S(AE)2.

6.1 Bounded Length Prefixes
We observe that if we can pre-determine the time when base-
level actions are executed, then it is possible to get an equiva-
lent S(AE)2 problem which can be solved by DP in pseudo-
polynomial time. The number of such possible base-level
action schedules is exponential in the maximum number of
base-level actions in any of the Hi prefixes. Thus, under the
assumption that this length is bounded by a constant K, we
get a pseudo-polynomial time algorithm. Equivalently, we
can artificially disallow executing more than a constant K
actions before computation is complete, thus achieving the
same effect.

First, observe that the sequences of actions we need to
consider are only one of the Hi, as any action not in such
a sequence would invalidate all the processes and thus is
dominated. Consider the set of all linear contiguous policies
that have a specific execution start time for all the actions
in Hi, which we denote by the function Ii which maps ac-
tions in Hi to their start time. Note that this schedule for i
may leave room for additional computations from other pro-
cesses j, up until such time as j is invalidated by i. Under
a specific Ii function, we can define an effective deadline

deff
j for each process j, beyond which there is no point in

allowing process j to run. Note that the effective deadline
is distinct from the known induced process deadline, which
we will denote as di. The effective deadline is defined as
follows. Let k ∈ Hi be the first index at which prefix Hj

becomes incompatible with Hi. Then process j becomes in-
valid at time Ii(k). Also, consider any indexm < k at which
the prefixes are still compatible. The last time at which ac-
tion Hi[m] may be executed to achieve the known induced
deadline dj is ti,m = dj − dur(Hj [m..|Hj |]). That is, pro-
cess j becomes tardy at ti,m unless base-level action Hi[m]
is executed before then. The effective deadline deff

j for pro-
cess j is thus:

deff
j = min(Ii(k), {ti,m : ti,m < Ii(Hi[m])}) (7)

Theorem 6. Among the set of linear contiguous policies for
a specific Hi and initiation function Ii, there exists an opti-
mal policy where the processes are allocated in an order of
non-decreasing effective deadlines.

Proof. (outline): For the base-level action commitments Ii,
by construction, process j results in a timely execution iff it
terminates in time before deff

j . Thus, linear contiguous poli-
cies that have computational actions cj only before deff

j are
optimal w.r.t. the commitment Ii. The probability of success
of such policies is given by Equation 2. The resulting limited
problem setting is such that now the conditions of Theorem
1 apply.

Due to Theorem 6, using the effective deadlines as the
process deadlines takes into account the base-level actions,
so we can now use the DP for S(AE)2 to get an optimal
computation-time policy and compute its success probabil-
ity. Now we need to simply iterate over all possible Hi and
all possible action initiation times in each Hi, and deliver
the policy with the highest probability of success.

6.2 The equal slack case
We call the difference di − dur(Hi) the slack of process i,
because it is the maximum time we can delay the actions
in Hi in order to have a timely execution when process i
terminates. The special case of known induced deadlines
where the slack of all processes is equal affords a pseudo-
polynomial time algorithm using this scheme.

In the equal slack case, for each of the Hi sequences, it
is sufficient to consider the actions in Hi to be executed
contiguously, with the first action at time equal to the slack
di − dur(Hi). Now the effective deadline deff

i for each pro-
cess j equals the time at which the first action b ∈ Hi which
is incompatible with Hj occurs, or di otherwise. Thus in
this case we have only one initiation function Ii we need to
consider for each Hi, so only need to run the DP scheme n
times, regardless of the length of the Hi.

7 Algorithms for the General Case
The pseudo-polynomial time algorithm in Section 6 only ap-
plies when the deadlines are known and when the number of
the base-level actions in eachHi is small. Therefore, we now
propose several sub-optimal algorithms for the general case.

Max-LETA. The Max-LETA schema is defined using
as a parameter an algorithm A for the S(AE)2 problem.
First, we treat the problem as a known-deadline problem
by considering the minimal value in the support of Di for
each i. (Other methods of fixing the deadline can be used,
such as taking the expectation.) Then, for every process i,
Max-LETA fixes the base-level actions to be at the Latest
Execution-Time at which every action in the head needs to
be executed (with respect to the known deadline). By fix-
ing the base-level actions to those induced by process i, the
IPAE problem instance can be reduced to an S(AE)2 in-
stance. Then algorithm A can be executed on the S(AE)2
instance and return a linear policy Pi and a success prob-
ability of that policy. Max-LETA chooses the linear policy
with the highest success probability among all Pis.

K-BoundedA. K-BoundedA is similar to Max-LETA

with one difference. Instead of fixing the base-level actions
only to the latest start-time of every process i, K-BoundedA
considers all possible placements for the first K actions,
while the rest of the time-allocations are determined using
the latest start-times.

Monte-Carlo tree search (MCTS). Since the IPAE prob-
lem can be defined as a finite-horizon MDP, standard heuris-
tic search algorithms that operate on such MDPs can be ap-
plied. One such algorithm is the prominent MCTS (Browne
et al. 2012). The MCTS version of MCTS that we have
implemented uses UCT, which applies the UCB1 formula
(Auer, Cesa-Bianchi, and Fischer 2002) as a scheme for se-
lecting nodes and a random rollout policy that uses −LPF
as a value function for sampled time allocations.

8 Preliminary Empirical Evaluation
Our experimental setting is inspired by movies such as Indi-
ana Jones or Die Hard in which the hero is required to solve a
puzzle before a deadline or suffer extreme consequences. As
the water jugs problem from Die Hard is too easy, we have
selected the well-known 15-puzzle problem instead. In order
to build IPAE problem instances, we first collected data by
solving 10, 000 problem instances and recording the number
of expansions required by A* to find a solution for each ini-
tial state in order to find an optimal solution, and the actual
solution length. Then, we have created two CDF histograms
for each initial h-value: the required number of expansions
and the optimal solution lengths. IPAE problem instances
of N processes were generated by drawing a random 15-
puzzle problem and running A* until the open-list contains
at least N search nodes, with N ∈ {2, 5, 10, 20, 50}, and
then choosing the first N . Each open-list node i becomes an
IPAE process, with Mi being the node-expansion CDF his-
togram corresponding to h(i), Ri as the solution-cost CDF
histogram (to represent the remaining duration of the plan),
and Hi as the list of actions that leads to i from the start
node. We assumed that each base-level action requires 3
time units to be completed. Finally, in order to have chal-
lenging deadlines, we have usedXi = 4×h(i) (representing
the deadline for reaching the goal). Note that even thoughXi

is known, Di is unknown as Ri is unknown.

Figure 1: Success Probability (left) and Runtime (right) as a function of # processes

The following algorithms were empirically evaluated in
our experiments. From S(AE)2, we implemented: the ba-
sic greedy scheme (BGS) (Shperberg et al. 2019), delay-
damage aware (DDA) (Shperberg et al. 2021), and dynamic
programming (DP). In order to naively adapt S(AE)2 al-
gorithms and other basic schemes to the IPAE problem
settings, we define a demand-execution version thereof. A
demand-execution algorithm first decides which process i
should be allocated the next time unit; then checks if a
base-level action b is required for ci to be non-tardy. If
so, the action b is executed before ci. We have evalu-
ated a demand-execution version of the S(AE)2 algorithm
(eBGS and eDDA), demand-execution most-promising pro-
cess (eMPP) that allocates consecutive time to the process
with the highest probability to meet the deadline; if the pro-
cess fails to find a solution, eMPP recomputes the proba-
bilities with respect to the remaining time. Finally, we have
implemented the algorithms described in Section 7. Specif-
ically, we have evaluated Max-LETBGS, 2-boundedBGS, and
MCTS with an exploration constant c =

√
2 and a budget of

100 rollouts before selecting each time allocation.
Figure 1 shows the average probability of success (left)

of each algorithm (y-axis), as well as the average runtime
(right), both vs. number of processes in the configuration (x-
axis). First, the results indicate that the demand-execution
version of the S(AE)2 significantly improves over the basic
version, e.g. for 50 processes DDA has a probability suc-
cess of 0.18, while eDDA has a probability of 0.78 to find
a timely action sequence. MCTS demonstrates poor perfor-
mance both in terms of probability of success and in terms
of runtime; this indicates that finding specialized heuristics
tailored to the problem has a merit over using general pur-
pose algorithms for (approximately) solving MDPs, as the
search space is extremely large. The most competitive algo-
rithms in terms of both probability of success and runtime
are eBGS, eMPP and MAX-LETBGS which result in the best
probability of success for 10, 20 and 50 processes, respec-
tively, and were very competitive overall. In the future, we

intend to explore the effect of different deadlines and differ-
ent time units required for each base-level action in order to
have a better understanding of the strengths and weaknesses
of each algorithm.

9 Conclusion
Planning and search are generally intractable, so it is un-
realistic to assume that time stops during planning. Hence
the need for situated planning and search, especially when
timely results are needed. In many cases, it may be possible
to start executing a partially developed plan while continu-
ing to search, thus allowing additional time to deliberate at
some risk of performing actions that do not lead to a solu-
tion.

This paper extends the abstract metareasoning model for
situated temporal planning proposed in (Shperberg et al.
2019) to allow for interleaving action and deliberation. As
our abstract problem IPAE is NP-hard, even for known dead-
lines and known remaining sequence duration, we identified
special cases where a psuedo-polynomial time algorithm can
be developed, namely bounded-length plan prefixes and the
equal-slack case.

Additional algorithms were developed for the general
case of unknown deadlines and suffix durations. Experi-
ments based on search trees for sliding tile puzzles show
that algorithms based on ideas from the known-deadline case
show promise. There is still work to be done in improving
both these algorithms’ results and their runtime, which is un-
derway. A key issue is actually using the proposed scheme
to initiate action during planning and search, which is non-
trivial and has not been attempted here.

10 Acknowledgments
This work was funded by NSF-BSF via grant No. 2008594
(NSF), by grant No. 2019730 (BSF), and by the Frankel cen-
ter for CS at BGU.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing 47(2): 235–256.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte-
Carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1): 1–43.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal Planning While
the Clock Ticks. In ICAPS, 39–46. AAAI Press.
Korf, R. E. 1990. Real-Time Heuristic Search. Artif. Intell.
42(2-3): 189–211.
Russell, S. J.; and Wefald, E. 1991. Principles of Metarea-
soning. Artif. Intell. 49(1-3): 361–395.
Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019. Allocating Planning Effort
When Actions Expire. In AAAI, 2371–2378. AAAI Press.
Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In ICAPS.
Zilberstein, S.; and Russell, S. J. 1996. Optimal Composi-
tion of Real-Time Systems. Artif. Intell. 82(1-2): 181–213.

