
Lessons Learned in Applying Domain-Independent Planning to High-Speed
Manufacturing

Minh Do and Wheeler Ruml
Embedded Reasoning Area
Palo Alto Research Center
{minhdo,ruml}@parc.com

Abstract

Much has been made of the need for academic planning re-
search to orient towards real-world applications. In this pa-
per, we relate our experience in adapting domain-independent
planning techniques to a real industrial problem. We present
a simpler formulation of a temporal planning graph-style
heuristic, show how to extend it to take resources into ac-
count, and evaluate its importance in practice. We also de-
rive several general lessons from our experience which might
guide researchers looking to increase the relevance of their
work or industrial practitioners seeking to apply planning re-
search to real problems.

Introduction
In our previous work (Ruml, Do, and Fromherz, 2005), we
described a manufacturing problem domain that emphasizes
on-line continual problem solving. This paper makes two
main contributions: (i) heuristic extension techniques utiliz-
ing logical and resource mutexes to meet the productivity of
the more complicated and faster manufacturing plants built
recently, and (ii) the lessons learned in adapting domain-
independent planning techniques in a real-world application.

Domain background: The domain is based on a manufac-
turing process control problem encountered by one of our
industrial clients. It involves planning and scheduling a se-
ries of job requests which arrive asynchronously over time.
The plant runs at high speed, with several job requests arriv-
ing per second, possibly for many hours. Therefore, the first
requirement for the planner is to be able to produce plans
consistently within a fraction of a second while being able to
run for a long period of time. It needs to take into account all
the real-time constraints such as various delays in network
communication or in getting machine controller’s responses.
The typical plants can be schematically represented as a net-
work of transports linking multiple machines from a few to
a few hundred machines and transports (Figure 1). Most
manufacturing actions require the use of physical plant re-
sources, so planning for later jobs must take into account
the resource commitments in plans for previous jobs, some
are already released for production.

To summarize, our domain is finite-state, fully-
observable, with classical goals of achievement. How-
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Source 1

Source 2

Machine 1

Machine 2

Machine 3

Machine 4

Destination 1

Destination 2

Figure 1: A schematic view of a manufacturing plant.

ever, planning is on-line with additional goals arriving asyn-
chronously. Actions have real-valued variable durations and
use resources. Plans for new goals must respect resource
allocations of previous plans. Execution failures can occur,
but are rare enough that we don’t explicitly plan ahead for
them. A more detailed discussion on this manufacturing do-
main can be found in (Ruml et al., 2005).

Our current main objective function is to optimize the
productivity of the manufacturing plant. The combination
of this objective function, the highly-reconfigurable nature
of our domain, the wide variety of plant designs, and the
real-time aspect in which plans of different jobs interact
in many different ways, make this a suitable planning
domain for domain-independent planning techniques. Any
pre-compiled domain control rules will not likely to work
for different plants with very different types of design and
machines, and may also prune optimal solutions when
the machine is reconfigured due to user input or runtime
exceptions.

Our Approach: We model this manufacturing domain as
a temporal extension of STRIPS. Before planning begins,
a domain description and part of the initial and goal states
are provided. Then the problem descriptions arrive on-line,
containing logical goal state and part of initial state. The ini-
tial state is then built by combining the logical initial state
provided with the resource allocations for plans of previous
jobs. Our action representation is similar to the durative ac-
tions in PDDL2.1 with extensions are: (1) variable action
duration with upper and lower bounds; (2) explicit repre-
sentation of different types of resources; (3) actions have
“setup-time”. One action may require multiple resource al-
locations that can overlap with action duration arbitrarily.

We have implemented our own temporal planner using an
architecture that is adapted to this on-line domain. The over-



all objective is to minimize the end time of the known jobs.
The planner uses state-space regression to plan each job,
but maintains as much temporal flexibility as possible in the
plans by using a simple temporal constraint network (STN)
(Dechter, Meiri, and Pearl, 1991). As we and our customer
start exploring more complicated plants, it became obvious
that our early implementation based on the admissible tem-
poral h1 heuristic (Haslum and Geffner, 2001) and a “lifted”
hybrid regression planner (Ruml et al., 2005) is not power-
ful enough. After experimenting with grounded progression
planner, our current algorithm of choice is a fully grounded
regression planner with more informed heuristics based on
mutual-exclusion reasoning and runs an order-of-magnitude
faster than the previous planner and match the productivity
of bigger manufacturing plants. The planner has also been
used for several purposes such as: system analysis to help
find good plant configurations and to simulate higher level
job selection.

Heuristic Extensions
Our overall objective function is to minimize the earliest
possible end time of the plan for the current job. We want
effective planning heuristics that are:
• Admissible: maintaining high productivity of the plant is

an important criterion for our customer.
• Informed and easy to compute: in most cases, we are only

allowed a fraction of a second to find a feasible plan.
In the previous implementation, to estimate the remaining

makespan in a regression temporal planner, we built the
bi-level temporal planning graph (Smith and Weld, 1999)
without mutex that estimates the fastest way to achieve the
logical state L as the maximum over the times taken to
produce the individual literal in L. We have improved on
this heuristic by taking different types of mutual exclusion
relations into account.

Logical mutexes: In our graph expansion algorithm, for
each action a and fact f , we store the first time points ta

and tf at which a and f appear in the temporal planning
graph. For mutex propagation, we also store the first time
point at which each pair of facts (f1, f2) of actions (a1, a2)
become non-mutex.

1. ∀f, a, f1, f2, a1, a2 : ta = tf = t(f1,f2) = t(a1,a2) = ∞.
2. ∀f, f1, f2 ∈ I : tf = 0, t(f1,f2) = 0.
3. Dynamically update the values of ta, tf , t(f1,f2), t(a1,a2)

starting from the initial state I and time t = 0 as follows:
• ta = max(setup time(a), max(tf : f ∈

Prec(a)), max(t(f1 ,f2) : f1, f2 ∈ Prec(a))) (1)
• tf = min(ta + dur(a) : f ∈ Eff(a)) (2)
• t(f1,f2) = min(t(a1,a2) + max(dur(a1), dur(a2)) :

f1 ∈ Eff(a1), f2 ∈ Eff(a2)) (3)
• t(a1,a2) = max(ta1

, ta2
, max(t(f1,f2)) : f1 ∈

Prec(a1), f2 ∈ Prec(a2) (4)
4. Stop when ∀g, g1, g2 ∈ G : tg, t(g1,g2) < ∞ or fix-point.

The time point at which all the goals are achieved
pair-wise non-mutex is the heuristic value (under)estimating

Function CheckEarliest(r, t, d)
R = {[s1, e1], [s2, e2], ...[sm, em]}: allocs of r.
min time := t
for k := 1 to m do

if Earliest(sk) > min time + d then
Return min time

else
min time := Earliest(ek)

Return(min time)
end function;

Figure 2: Check the earliest time for a resource allocation

the remaining makespan. The planning graph expansion
process is not done once but may be revisited if goals
representing a regressed state do not appear non-mutex in
the graph and we haven’t reached the fix-point computation
in the last round of expansion.

Incorporating resource mutexes: The planning graph dis-
cussed until now assumes the interference relations only oc-
cur between actions related to a given job that we are plan-
ning for. However, most of the time, the plant is not empty
and there are plans for jobs that are either (i) executing; or
(ii) found by the planner but haven’t been sent to the plant.
Those plans already made resource reservation, either fixed
(for (i)) or flexible (for (ii)), and can interfere with actions
related to the current job because they can compete for the
same resource.

Thus, to improve the heristic estimate, we take into ac-
count resource mutexes, thus incorporating scheduling re-
source contention constraints into the temporal planning
graph. In short, to find the earliest time ta at which
an action a can possibly execute, the condition is not
only that all of a’s preconditions appear non-mutex in the
planning graph but also that there is no resource con-
flict between any resource r used by a and all current
allocations of r (given to previous plans and by exter-
nal processes.). If the resources used by a is Ra =
{(r1, o1, d1), (r2, o2, d2), ..., (rn, on, dn)}1, then the algo-
rithm recursively calls CheckEarliest(ri, ta + oi, di) (Fig-
ure 2) to find the earliest possible time for ta at which there
will be no resource conflict with previous allocations of ri.

With resource mutexes, the starting times of actions are
adjusted to higher than the time points at which their precon-
ditions can be achieved. However, tG still underestimates
the first time that we can achieve the goals and thus is still
an admissible heuristic for our main objective function of
minimizing the end time of current job.

Empirical Evaluation
The planner as described in this paper is fully implemented
in OCaml and is used both by us and by our industrial
research partner to control different manufacturing plants.
Figure 3 and 4 show the performances of our planner in two
of the biggest built prototype plants by our customer and us.

1Allocation (r, o, d) of a means a uses r starting from offset o
from the starting time of a for a duration of d



0

0.5

1

1.5

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

jobs

ti
m

e 
(s

ec
)

no-mutex
logical mutex
log + res mutex
productivity level

Figure 3: Performance in the plant by our industrial partner.

0.01

0.1

1

10

1 6 11 16 21 26 31 36 41 46

jobs

ti
m

e 
(s

ec
)

nomutex
logical mutex
log + res mutex
productivity level

Figure 4: Performance for the current plant built by us.

The plant in Figure 3 is a simpler one with 25 main com-
ponents and 35 action schemata with the productivity of 170
jobs per minute (i.e. 0.353sec/job). The shortest possible
plan contains 8 actions and the planner needs to handle the
interaction of around 100 actions. The planner with no mu-
tex, only logical mutexes, and both logical and resource mu-
texes take respectively an average of 0.4191, 0.0732, and
0.0458 secs to solve one job.

The plant in Figure 4 is more complicated with around
90 machines, 212 action schemata with the shortest possi-
ble plan contains 16 actions. The planner needs to regularly
reason about the interactions between more than 150-200
actions. The productivity level is 200 jobs-per-minute (i.e.
60/200 = 0.3sec/job). Without mutex, the planner quickly go
over the base time of 0.3 second after a few jobs. With mu-
texes (logical, resource) the planner generally output plans
faster than 0.3 secs and occasionally takes more than 0.3
seconds. However, because it plans ahead 10 jobs , those
jumps in plan time still doesn’t hurt the planner in matching
with the full productivity of the plant. The planner aver-
ages 0.1336 secs with only logical mutexes and 0.0928 secs
(1.44x improvement) with both types of mutexes.

Lessons Learned
Given that our real-time planning domain is substantial
more complicated than the traditional STRIPS domain but
we still are able to use A∗ search algorithm with admissible
heuristics to find reasonable size optimal plans (15-40
actions) while maintaining consistencies with hundreds
more actions of other plans previously found in short time
(fraction of a second), there are lessons learned in making it

possible. In this section, we list the most important ones and
hope that they can be useful for both application developers
and academic researchers in planning.

Modeling is important: We model the domain using the
two-layer modeling language. Through discussion with
our users and industrial partners, we feel that the machine-
centric language used by the end-user involving modules,
machine instances, inter-connections is easier for them
to understand and the compiled-down representation is
much easier for us to adopt STRIPS planning techniques.
We also experienced that while modeling, knowing the
search algorithm and the heuristics that we will use, careful
modeling the actions, goals, and initial states can produce
quite different results. We experienced a scenario in
which adding two extra predicates representing subgoal
completion achieved the speedup of nearly 10x for some
product lines. While we solely encode the domain “physics”
but not any search guidance, we want to emphasize that
the same “physics” can be represented differently, even if
limited to STRIPS, and finding the right mix with the search
algorithm of choice can dramatically affect the planner’s
performance. As application developers, not having to
work with fixed benchmark domain representation allows
us to exploit another dimension in modelling to improve
planner’s performance.

The most suitable planning algorithm depends on the
application specifications: We went through several
implemetations of different planning algorithms before
finally settled for the backward state-space planner. It is
much faster than forward-planner, which is dominating
the planning competition. Therefore, understanding your
domain, the important constraints involved, your objective
function, and how different planning algorithms work can
help selecting the most suitable planning strategy.

Having a fast and robust temporal reasoner is very impor-
tant: In our planner, even though the source code for the
Simple Temporal Network (STN) totals less than 200 lines
of code, it’s very important in handling all temporal rela-
tions between actions and resource allocations in a single
plan and between different plans. In a real-world application
where there are various temporal constraints and factored
in delays such as “communication delays”, “setup-time”,
“coordination delay” and time synchronization problem
between the planner and the other components in the overall
control architecture, rapidly keeping the overall temporal
consistency is one of the most important things to keep the
planner running without interruption for a long period of
time.

Many uses of the planner: Besides its main job of con-
trolling different plants, the planner is also recently used
extensively for system analysis purpose. Thus, the planner
is tested against (i) different plant designs; (ii) plants
with various broken machines for reliability analysis. Our
customer just finished running an extensive test consists of
11760 different planner runs for variations of a single plant
configuration. Recently the planner is also used to test the
performance of the job-sequencer. We managed to finish a



job mix of 50000 jobs without any break, which is more
intensive than the regular real-life plant operation. Besides
those activities, there are also intentions to use the planner
in the near future for other purposes such as sophisticated
objective functions, to handle machine dynamics. Through
all those experiences, we learned that when a planner is
successfully used for one application, it’s likely to be useful
for many other related applications, some may seem to be
very different with the original one.

Exceptions: Given that the planner interacts with other parts
that are either higher or lower on the control hierarchy,
exceptions can come at various forms. The user can recon-
figure the machines, other processes may request resource
allocation repeatedly (cyclic resource allocations), and the
machines in the plant can break down in different ways. We
believe that besides our domain, similar exceptions would
occur in most applications where the planner interacts
with physical world. While robust exception handling
(replanning) is important, and in fact we plan to dedicate
most of our near-future research on this topic, we found that
there are much less research on this topic compared to other
branches of domain-independent planning.

Above are some of our observations and lessons learned
from working on developing and deploying our planner. It
may be from one domain, and it may not endure the level of
complexity of other well-known domain but we hope that it
can help researchers to develop planning techniques that are
more ready to be used in the real-world environment and are
also useful for planning application developer to pick out the
right approaches.

Related Work
The dynamic programming rules used in building the tem-
poral planning graph are similar to the the way planner TP4
(Haslum and Geffner, 2001) calculating its h2 heuristic and
TPG planning in building the temporal planning graph with
some slight differences. While there are some surveyed
work (Smith, Frank, and Jonsson, 2000) of integrating plan-
ning and scheduling (Ghallab and Laruelle, 1994; Muscet-
tola, 1994; Beck and Fox, 1999), we are not aware of any
similar work using scheduling constraints to improve plan-
ning heuristic.

There are several successful deployed planning system
such as EUROPA/MAPGEN(Bresina, Jonsson, Morris, and
Rajan, 2005), HSTS(Muscettola, 1994), or IxTeT(Ghallab
and Laruelle, 1994). However all of them use domain-
knowledge search guidances for their applications while our
planner do not rely on domain knowledges.

Fromherz, Saraswat, and Bobrow (1999) discuss on-line
constraint-based scheduling methods for controlling physi-
cal machines. They use precomputed plans and their for-
malization cannot model systems such as ours with possible
cycles and an infinite number of potential plans.

Future Work
There are several challenges with using and extending our
planner. First, as our industrial partner aiming for more am-
bitious projects that involve faster, more complicated, and

higher number of components, the planning problems that
we need to solve become harder. At the same time, because
the plants will have a higher productivity, the planner will
have less time to find a plan. The second challenge is related
to the highly-reconfigurable nature of our domain. One re-
quirement for the planner is that it should work well even
if some error occurs and some components of the plant go
online/offline at any given time. Effective handling various
types of exception is one of the most critical problem for us
at the moment.

We plan to investigate the multi-objective optimization
planning algorithm to support different quality criteria. An-
other direction is to investigate a different objective entirely:
minimizing machines “wear and tear”. Under this objective,
one would like the different machines in the plant to be used
the same amount over the long term. However, because ma-
chines are often cycled down when idle for a long period and
cycling them up introduces wear, one would like recently-
used machines to be selected again soon in the short term.
Optimize this objective function alone, or in conjunction
with our current time-based criteria pose great challenge.

Acknowledgments
The members of our research group provided helpful com-
ments and suggestions. Our industrial collaborators not only
provided domain expertise but were invaluable in helping us
to simplify and frame the application in a useful way.

References
Beck, Chris, and Mark Fox. 1999. Scheduling alternative

activities. In Proc. of AAAI-99).
Bresina, John, Ari Jonsson, Paul Morris, and Kanna Rajan.

2005. Activity planning for the mars exploration rovers.
In Proc. of ICAPS05, 40–49.

Dechter, Rina, Itay Meiri, and Judea Pearl. 1991. Temporal
constraint networks. Artificial Intelligence 49:61–95.

Fromherz, Markus P.J., Vijay A. Saraswat, and Daniel G.
Bobrow. 1999. Model-based computing: Developing
flexible machine control software. Artificial Intelligence
114(1–2):157–202.

Ghallab, Malik, and Hervé Laruelle. 1994. Representation
and control in IxTeT, a temporal planner. In Proc. of
AIPS-94, 61–67.

Haslum, Patrik, and Héctor Geffner. 2001. Heuristic plan-
ning with time and resources. In Proc. of ECP-01.

Muscettola, Nicola. 1994. HSTS: Integrating planning and
scheduling. In Intelligent scheduling, ed. Monte Zweben
and Mark S. Fox, chap. 6, 169–212. Morgan Kaufmann.

Ruml, Wheeler, Minh Binh Do, and Markus Fromherz.
2005. On-line planning and scheduling for high-speed
manufacturing. In Proc. of ICAPS05, 30–39.

Smith, David E., Jeremy Frank, and Ari K. Jonsson.
2000. Bridging the gap between planning and schedul-
ing. Knowledge Engineering Review 15.

Smith, David E., and Daniel S. Weld. 1999. Temporal plan-
ning with mutual exclusion reasoning. In Proc. of IJCAI-
99, 326–333.


