
Goal Reasoning as Multilevel Planning

Alison Paredes and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

alison, ruml at cs.unh.edu

Abstract

There has been much recent interest in the topic of goal rea-
soning: where do an agent’s goals come from and how is it
decided which to pursue? Previous work has described goal
reasoning as a unique and separate process apart from pre-
viously studied AI functionalities. In this paper, we argue
an alternative view: that goal reasoning can be thought of
as multilevel planning. We demonstrate that scenarios previ-
ously argued to support the need for goal reasoning can be
handled easily by an on-line planner, and we sketch a view of
how more complex situations might be handled by multiple
planners working at different levels of abstraction. By con-
sidering goal reasoning as a form of planning, we simplify
the AI research agenda and highlight promising avenues for
future planning research.

Introduction

It is widely understood that plan synthesis is only part of
the functionality that an agent needs with respect to tak-
ing intelligent action. For example, Molineaux, Klenk, and
Aha (2010) posit a capacity for goal reasoning, which cre-
ates the goals that the agent’s planner might attempt to
achieve, determines which goals the agent will pursue at any
particular moment, and monitors goal achievement. (They
also include a sophisticated component for estimating the
state of the world and updating the agent’s model, given its
actions and their observed consequences, but this is not our
concern here.) In this paper, we consider whether goal rea-
soning is best thought of as a capability distinct from plan
synthesis and action selection, or whether it might be pos-
sible to unify these two functionalities, thereby simplify-
ing the AI research agenda. After reviewing the proposals
of Molineaux, Klenk, and Aha (2010) regarding goal rea-
soning and their experimental benchmark scenarios, we in-
troduce a new benchmark domain, called Harvester World,
that captures many of the features of prior benchmarks.
We then demonstrate a relatively simple planner, called
GROH-wOW, that achieves high performance in Harvester
World. We argue that this result undercuts the empirical
support for goal reasoning claimed by Molineaux, Klenk,
and Aha (2010) on the basis of their experiments. We then
speculate about how goal reasoning functionality might be
exhibited by multiple planners working together in various
relationships.

Goal Reasoning as a Separate Module

A planner takes a model of the environment, a state and
a goal and returns either an action or an entire plan. A
goal reasoner takes a model of the environment, a current
state and a goal, and returns either the same goal or a new
one (Klenk, Molineaux, and Aha 2013). It also uses a se-
quence of expected states which should result from each ac-
tion taken in the plan and the observed result of the previous
action in the plan to: 1) detect discrepancies between ex-
pected states and the observed current state, 2) explain these
discrepancies, which may modify the current model of the
environment, 3) generate new goals which might be appli-
cable in this new understanding of the environment, and 4)
finally, decide which among the current goals and any newly
generated goals should be pursued next.

For example, in a real-time strategy game such as Bos
Wars (formally known as Battle of Survival), a game very
similar to Starcraft, a planner might be given the goal to
move a friendly harvester unit to its home base. The plan-
ner returns a sequence of actions such as, move the harvester
from point A to B to C to D around an known obstacle un-
til it reaches the base. For the use of the goal reasoner, the
planner might also return a sequence of expected states such
as after moving the harvester from point A to point B, the
harvester is at point B. After each action is executed in a
plan, the goal reasoner should get the game’s current state,
which in this case would be the observation that the har-
vester is at point B. Given this information, the goal rea-
soner might conclude that it should continue to pursue its
current goal to move the harvester to its home base. In a
partially observable environment, however, it is possible that
the goal to move the harvester to its home base is not the
best one to pursue in the long run, and it is part of the goal
reasoner’s responsibility to figure that out. For example, it
might make more sense to first deploy some kind of defenses
before sending the harvester home because we have reason
to believe that an enemy may be lurking nearby.

Klenk, Molineaux, and Aha (2013) implement a planner
with a goal reasoner and test it in comparison to planning
without one. In these experiments, the goal reasoner per-
formed better than either planning once off-line or replan-
ning to the initial goal. In their scenarios, the most success-
ful behavior involved responding to unobserved factors in
a partially observable environment. The tests used two dif-



ferent simulations, an instance of the open source Battle of
Survival (an older version of Bos Wars) and a proprietary
Navy training simulation; in all scenarios there was some
element of partial observability.

In this paper we focus on the three scenarios run in Battle
for Survival (BoS): 1) Resource Gathering, 2) Escort, and
3) Exploration. In all of these scenarios the current state of
the game could be described in terms of the units, such as
a friendly harvester or not so friendly enemy, and whether
harvestable things like titanium deposits have been gathered.

Actions in the BoS scenarios describe low level move-
ments of units such as moving a harvester one step in some
direction. Goals are represented as high level tasks such as
moving the harvester to its home base rather than moving the
harvester one step north. Consequently, planning involves
figuring out which low level actions to string together to ac-
complish the high level action.

In the resource gathering scenario the location of har-
vestables may be only partially known. For example, it is
possible that there could be a more conveniently located ti-
tanium deposit than the one the agent knows about. In the
escort scenario, the location of enemy units is initially un-
known until an enemy attacks, by which time it is too late
to deploy defenses. In the exploration scenario, some paths
may be impossible, making some goals unachievable. In all
of these scenarios, planning with a goal reasoner performed
better than without one. Klenk, Molineaux, and Aha inter-
preted this success as providing support for goal reasoning
as a separate functionality alongside planning.

Goal Reasoning as Planning

But we hypothesize that the right type of planner might do
just as well without an explicit goal reasoner. To test this
hypothesis, we synthesized a new domain, called Harvester
World, that captures the essential features of the benchmarks
in Klenk, Molineaux, and Aha (2013) and implemented a
planner for it. The previous benchmarks share the following
important features: 1) partial observability: the agent does
not necessarily see every aspect of the state, such as the lo-
cations of harvestables; 2) open world: the agent does not
necessarily know about all the objects that exist; 3) on-line
sensing: the agent learns more about the world as it takes ac-
tions; 4) multi-unit: the agent controls multiple moving ob-
jects in the environment which might move simultaneously;
and 5) adversarial: there may be other agents whose goals
conflict with that of the agent. Harvester World is a single
domain that captures all of these features.

Harvester World

Harvester World takes place on a two-dimensional grid sim-
ilar to BoS (see Figure 1) and supports test cases similar to
the three scenarios described in the previous section. While
both time, states and actions are discrete, the world state is
only partially observable, there may be adversaries, and the
agent may need to control multiple movable units. A sim-
ulator controls the ground truth of an instance of Harvester
World, and at each time step, the simulator requests an ac-
tion from the agent, attempts the action in the ground truth

Figure 1: An example Harvester World instance: B = base,
D = defender, E = enemy, H = harvester, F = food. Left map
represents ground truth; right map represents the agent’s cur-
rent belief state.

representation and moves other factors of the environment
forward, and returns an observation to the agent which the
agent then uses to update its belief state.

Individual grid cells can allow movement or be fixed im-
passable obstacles. The harvester’s home base (B in Fig-
ure 1) is also fixed. The grid also contains harvestable food
(F). Food can be harvested by the agent when it is in the
same cell. As soon as one food is harvested, another will
sprout somewhere else in the map (the law of conservation
of food). The agent controls the harvester (H) and a defender
unit (D), and the grid may also contain an enemy unit (E).
The agent can sense the state of the cell it is in, but cannot
see food elsewhere and cannot see an enemy further than one
cell away. For example, if an enemy is adjacent to the har-
vester then the harvester immediately discovers it without
any uncertainty about whether or not it is an enemy.1

The harvester can move in the four cardinal directions
or stay still. It may also choose whether or not a defender
should move to the location of the harvester. Hence there are
a total of eight actions which may be considered at each step.
In BoS it is possible to move a defender independently of
the harvester with the intention of strategically placing it in
a way that would prevent the harvester from taking damage
from an enemy unit. Our simplification does not preclude
this effect, it only simplifies the number of actions needed to
achieve it. Other actions were hard-wired into the agent and
do not require deliberation: if the harvester is not carrying
food and enters a cell with food, the food is harvested; if the
harvester reaches the base while carrying food, the food is
delivered.

The enemy’s policy is also hard-wired and known to the
agent. An enemy unit will immediately move out of a cell
containing the defender. Otherwise, at every timestep the en-
emy will attempt to move to the next location, either North,
South, East or West, along the shortest path toward the har-
vester’s current location, taking obstacles and the defender
into account. We compute this via Dijkstra’s algorithm out-
ward from the agent.

The objective of the game is to maximize accumulated
reward. As in BoS, the successful player should try to maxi-
mize the amount of resources it collects while minimizing

1For those familiar with BoS, we omit the scout from our do-
main because we have tried to keep our problem succinct; a scout
only increases the range at which an enemy is discovered and thus
the size of the problem needed to demonstrate interesting behavior.



Figure 2: An example Resource Gathering scenario

Figure 3: An example Escort scenario

the damage it takes from enemies and the amount of re-
sources it spends to play. Every move of the harvester costs
-1, even if the action does not complete because an obstacle
is in the target location. Moving a defender costs -1 for each
cell it traverses on its way to the harvester. If the harvester
delivers food to the base, this earns +50. If the harvester is
in the same location as an enemy, this penalizes the agent
-10.

Using Harvester World, we were able to reproduce the
three BoS scenarios described in the previous section by
varying which features should be hidden from our agent.
To model Resource Gathering, we configured a world that
contained a base, a harvester initially located at the base,
and two food sources located in two different locations some
distance from the base (see Figure 2 for an illustration). Ini-
tially only the base, the harvester and the location of one of
the food are known to the agent, making the current state of
the world only partially known. An efficient plan should be
able to maximize the amount of food it can collect in limited
amount of time by harvesting the food closest to the base,
including recognizing when newly discovered food is closer
than the previously known food.

To model Escort we configured a world that contained a
base, a harvester and a defender both initially located at the
base, an set of obstacles which partition the world into de-
fensible regions, and one food located some distance from
the base (see Figure 3 for an illustration). Initially only the
base, the harvester, the defender and the obstacles are known
to our agent. The belief state does not include the location of
the enemy as well as the location of food. An efficient plan
should be able to maximize the amount of food it can collect
in a limited amount of time while minimizing the damage
it takes from enemies and the resources it spends to defend
against them.

To model Explore we configured a world that contained a
base, a harvester, a set of obstacles and two food (see Fig-
ure 4 for an illustration). Initially only the obstacles are hid-
den from the planner. An efficient plan should be able to
get both food, detouring around any discovered obstacles, if
there is an open path to both, or give up on one if it turns out
all paths to it are impassable.

Figure 4: An example Explore scenario

HOP(s)
1. for i from 1 to N do
2. wi ← sample world consistent with current belief
3. foreach action a applicable in s
4. s′ ← a(s)

5. c← (
∑

N

i
plancost(s′, wi))/N

6. Q(s, a)← C(s, a) + c
7. return argmin

a
Q(s, aA)

Figure 5: Sketch of hindsight optimization

A Planner for Harvester World

Harvester World exhibits partially observable state, an ad-
versary, and multiple units that need to be controlled by
the planner. This is well beyond the scope of classical
planning tasks. To handle this problem, we turn to an ap-
proximate method for planning in large partially-observable
Markov decision processes: hindsight optimization (Yoon et
al. 2008; 2010). Hindsight optimization planning has been
shown capable of performing better than reactive planning
in a partially observable environment when we are unsure if
and when new goals may arrive (Burns et al. 2012). In their
planner OH-wOW, Kiesel et al. (2013) showed that hind-
sight optimization can be used to plan on-line in open worlds
where the existence of important objects is unknown. We
extend the work of Kiesel et al. (2013), hence our planner
for Goal Reasoning with Optimization in Highsight in Open
Words is called GROH-wOW.

Fundamentally, hindsight optimization works by sam-
pling from a model of all possible realizations of the un-
certain features in the current state, and then finding the best
deterministic plan in each of these sampled world, and using
the values of these plans to estimate the value of the agent’s
possible successor states and hence determine what the best
next action is. See Figure 5 for a pseudocode sketch (C(s, a)
is the cost of taking action a in state s). Sampling avoids ex-
plicitly representing a belief distribution over a large number
of possible states, and the fully specified worlds allow con-
ventional fast deterministic planning techniques to be used.
Despite its practicality, unlike methods such as UCT (Kocsis
and Szepesvári 2006), hindsight optimization is well-known
to not be guaranteed to converge to the optimal action in the
limit of infinite sampling. We use the hindsight optimiza-
tion strategy within a receding horizon paradigm: the deter-
ministic planner looks ahead only to a limited horizon while
finding the maximum reward plan for each sampled world,
then the agent takes a single action and the cycle repeats.



Figure 6: Search tree

Following the algorithm sketched above, GROH-wOW
has two main parts: the agent’s action planner, which takes a
model of Harvester World, samples from it and passes these
samples on to the deterministic planner, and the determin-
istic planner subroutine, which will then find the best plan
in each of these samples and return to the action planner the
value of each. The hindsight optimization planner will then
use these values to find the expected value of each of the im-
mediate successors of the current state and return the action
that leads to the next state with the highest expected reward.
The action is executed and a set of observations is returned
which may be used to update the agent’s belief model, which
will be given to the hindsight optimization planner at the
next timestep to use when determining the next action.

Sampling over the remaining uncertainty in the belief
state given to the planner is intended to resolve all ambiguity
in the current state in order to leverage deterministic plan-
ning. In Harvester World this means resolving two different
types of uncertainty and partial observability such as where
the enemy is located and stochastic effects such as where
food may grow next. We model this uncertainty as a uni-
form distribution over unknown factors in a belief state. For
example, to model Resource Gathering the belief state given
to the sampling function might omit the location of food. It
might assume that there are at most two food in the world,
but the belief state does not provide the location of both of
them. Sampling a world from this belief would result in one
that contains both foods at a specific locations, e.g. food at
positions 2 and 3 in Figure 2. We can then plan to move the
harvester to the food at 2 and back to the base for a reward
of +50 − 3. The belief state might also contain ambiguity
about future states. Since in Harvester World the amount of
food in the world never diminishes, gathering food implies
that new food must have grown somewhere. Hence when we
sample a world, we also determine exactly where food might
grow in the future, resolving both the uncertainty regarding
where food is located now but also how its location might
possibly change. Sampling resolves all ambiguity into a set
of possible worlds to pass along to the deterministic planner.

Deterministic Planner

The deterministic planner uses a basic breadth-first search
from each of the now complete models of the current state
out to a given time horizon, enumerating all states which
can be reached within t = horizon − 1 time steps. It then
considers the plan with the highest reward among all of the
states reachable at t = horizon , and returns this value to the
hindsight optimization planner to aggregate.

To make deterministic planning faster, we note that there
are only a few ‘macro actions’ worth considering. In the
Resource Gathering scenario there are three macro actions
that it makes sense for the deterministic planner to consider:
move the harvester to the base, move the harvester to the
known food at a specific location, or move it to the unknown
food at a different location. This would have been impracti-
cal without having first sampled a world where the location
of the unknown food can be known, but in hindsight opti-
mization it becomes a simple matter of planning the shortest
path from where ever the harvester is now to the closest food
and back to the base for the optimal reward, assuming this
can be completed within the given horizon. If a goal would
take longer to complete than the remaining time, then we
consider the macro action incomplete and its result is the
state of the world up to the horizon. These macros reduce
the branching factor and search depth that the deterministic
planner must search. Additional strategies, such as design-
ing a heuristic reward-to-go function, are also possible.

In the Escort scenario the deterministic planner has four
macro actions to reason about after sampling determinizes
the unknown attributes of the model: move the harvester to
a food, move both the harvester and the defender to a food,
move the harvester to the base, or move both the harvester
and the defender to the base. Recall at each time step we
simulate the movement of the enemy. We can do this during
planning as well since we assume that, while we do not know
exactly where our enemy is, we have a reasonable model of
how it moves. (In the absence of a good model, we would
just sample possible enemy actions.) If the enemy, wherever
sampling has imagined it might be, would interrupt the com-
pletion of any of the macro actions above, then we consider
the macro action incomplete, like we do when we have run
out of time. Its result is the state of the world when encoun-
tering the enemy.

In the Exploring scenario, the deterministic planner must
reason about the same three macro actions used in Resource
Gathering but with some nuance. While the existence of ob-
stacles are initially unknown in the model given to the hind-
sight optimization planner, for simplicity we do not spec-
ulate about where they could be. Instead as obstacles are
discovered, macro actions like moving harvester to food at
position (A, 0) in Figure 4 potentially become more expen-
sive to complete. The deterministic planner is able to take
these changes into consideration when deciding if it should
first get the food at (A, 0) and drop it off at the base before
getting the food at (B, 3). If the shortest path to (A, 0) be-
comes too long or even impossible because of obstacles then
it should choose to get the food at (B, 3) first.

Experimental Results

The central empirical question at issue in this paper is
whether a planner that lacks an explicit goal reasoning com-
ponent can perform well in Harvester World instances sim-
ilar to the problems considered by Klenk, Molineaux, and
Aha (2013). We addressed this question by running GROH-
wOW on each of the BoS scenarios.



Figure 7: Example sequence in a Resource Gathering in-
stance

Figure 8: Example step in an Escort instance

Experiment 1: To demonstrate Resource Gathering we
ran hindsight optimization on a single instance of Har-
vester World configured for Resource Gathering as de-
scribed above for 10 time steps on a 10 x 1 grid, with a
sample size of 10 and a horizon of 20, which would allow
enough time to foresee the value of getting food located as
far away as position 9 and bringing it back to the base. Fig-
ure 7 illustrates our results. The top map describes an in-
termediate state from the perspective of the simulator; it is
perfectly known. The bottom map describes the agent’s be-
lief state at that time. In the simulation’s initial state the
harvester (H) is at the base (B) and the planner knows about
the food (F) at position 7. At each time step the simulator
gives our planner an incomplete model of the world, and the
agent returns a single action to the simulator. In this test,
the harvester discovered food at position 4 and thereafter the
planner determined it should return to base instead of con-
tinuing to the original food at position 7. Thus on-line plan-
ning can recognize an opportunity as well as a system using
a goal reasoner.

Experiment 2: To demonstrate our planner in the Escort
scenario, we configured 10 instances of the Escort scenario,
varying the initial location of the base, where the harvester
and defender start, the hidden enemy and a hidden food. The
number of obstacles in each scenario was constant and their
location was known to the planner. We ran each of these
10 scenarios for 100 time steps, allowing the hindsight opti-
mization planner to sample 10 worlds at each time step, and
gave the deterministic planner a horizon of 10 time steps.
Figure 8 illustrates one time step in one problem instance.
In this example the agent decided to move the harvester (H)
along with the defender (D) East away from the base (B)
before the location of the enemy was ever revealed, illustrat-
ing the ability of hindsight optimization to consider unob-
served factors such as the possible location of the enemy. All
problem instances exhibited similar behavior as the agent

Figure 9: Example sequence in an Explore instance

explored the map and collected food.

Experiment 3: To demonstrate hindsight optimization in
the Explore scenario, we configured an instance of Harvester
World with two food, one of which was unreachable due to
obstacles. We made the location of all of the food known but
not the location of obstacles, and allowed the deterministic
planner a horizon of 10. We did not need to sample more
than one possible world since the location of the food was
known. As figure 9 illustrates, the agent initially attempted
to get the food in the lower left corner by exploring the cells
along the left side of the grid where it discovered two obsta-
cles which precluded its ability to get the food it was initially
after; it then went for the food on the right side of the grid.
This behavior highlights the influence of the objective func-
tion in goal reasoning. Once the obstacles at (A, 1) and (B,
0) have been discovered there is no plan which sends the
harvester to the food at (A, 0) that could improve the total
expected reward measured by the objective function so the
food at (A, 0) is abandoned.

Discussion

So far we have shown that a hindsight optimization planner
can perform well in the same class of problems as was pre-
viously thought to require goal reasoning. That is not to sug-
gest that these problems do not require goal reasoning, just
that a discrete goal reasoner is not necessarily required to
achieve the desired functionality. We propose that our plan-
ner demonstrates many of the aspects of goal reasoning. We
explore this with reference to Johnson et al. (2016)’s goal
lifecycle.

In previous work goal reasoning has been organized into
discrete steps defining a goal lifecycle. A goal must be for-
mulated, selected, expanded, committed, dispatched, and
then execution and resolved (Johnson et al. 2016; Roberts
et al. 2016). We consider these in turn. If one were to in-
terpret existing food as goals for planning with low-level
actions, then we could view grounding a belief state into
a set of completely known worlds as formulating a set of
goals. For example in Figure 7, in the belief state the lo-
cation of only one food is known; there is one known goal,
retrieving the food at position 7. Sampling however could
result in a world in which there is a food at position 0, in
which case sampling generates the additional goal, retriev-
ing the food at position 0. Selection is then the process by
which our planner decides which food to pursue first; the
low-level planner will recommend the order that gets us the
most expected reward within the planning horizon. Expan-



sion is finding the action that best follows this longterm
plan. Goal evaluation metrics used in previous work
like principles and intensity levels (Johnson et al. 2016;
Cox, Dannenhauer, and Kondrakunta 2017) are encapsu-
lated in the idea of a reward. For example, the ordering of
macro actions in optimal plans represent the most efficient
ordering of goals as high-level tasks to achieve the best pos-
sible total reward without having to be explicitly prioritized.

In these ways, one can view our planner as engaging in
the elements of goal reasoning. However, there is also a
more subtle interpretation. One can also find goal reason-
ing in how hindsight optimization uses the objective func-
tion to estimate the expected reward and choose the next
low-level action toward this ‘estimated goal.’ Goal gener-
ation in this sense could be seen as the process of finding
the number of times we should be able to put the harvester
at the base with food within the planning horizon. Selecting
one of these goals (or abstract plans) is easy when the world
is completely known; there is only one optimal number of
times harvester can be at the base with food. Goal expan-
sion then is deciding which low-level action is the best next
step in making the harvester arrive at the base with food the
expected number of times. This is simply the next action
along the plan that puts the world in a state with the best
possible reward within the planning horizon according to the
objective function.

The selection step in the goal lifecycle becomes more in-
teresting in a partially known world because the true goal,
the number of times we can make the harvester at the base
with food true, is unknown as well, but with hindsight opti-
mization we can estimate this quantity and estimate the true
goal; the expected value of the true goal is the expected value
of the optimal plans across all possible worlds. Selection
can be interpreted as the process by which hindsight opti-
mization finds this estimate. Given the current belief state,
the selected goal is the estimated number of times we could
expect to put the harvester at the base with food. Because
each grounded version of the belief state has the potential
to change the costs involved in achieving the goal state and
so change the number of times it can be achieved within the
planning horizon, the goal in each possible world may vary,
but sampling from the belief space allows us to quickly find
an estimate of the true goal. Then in the expansion step of
the goal lifecycle we can use this estimate of the true goal
to compare how much each low level action is expected to
move the agent closer to the estimated goal.

After selection and expansion our agent immediately dis-
patches the next action with the promise of achieving the se-
lected goal. The effect of the next action, along with any new
information about the environment, is then incorporated in
the next round of goal reasoning. Because every new obser-
vation has the potential to dramatically change the expected
value of the goal, such as we saw in the Explore scenario
when the discovery of obstacles surrounding the food at (A,
0) made one of the food unreachable, an on-line planer can
be said to repeat goal reasoning at every time step, beginning
with the evaluation of the state resulting from the previous
action and possibly selecting a new goal.

Goal Reasoning as Multilevel Planning
Although we have demonstrated how an appropriate plan-
ner like GROH-wOW can handle the types of goal reason-
ing tasks present in Harvester World and simple scenarios of
its type, we do not mean to claim that a single planner can
give high performance in truly huge domains such as dealt
with by human emergency responders and battalion com-
manders. It seems clear that for planning over very long
horizons or with huge action spaces, hierarchical techniques
will be necessary. But again, it does not necessarily follow
that a separate goal reasoning component is necessary. In-
stead, we speculate that multiple levels of planning may be
appropriate. These planners might coordinate their compu-
tation in various ways — we will sketch three. In the most
classic approach, a high-level planner might generate a plan
of very high-level actions, such as establish communications
network, rescue survivors, and treat wounded, while a low-
level planner might treat just one of the high-level actions as
a goal to achieve through the generation and coordination of
many lower-level actions. In this way, subgoals are created
that allow low-level planning to be limited to subproblems
with shorter solutions, speeding search. In this sense, the
high-level plan is a form of loose guidance using landmarks
for the low-level planning.

This arrangement raises the question of domain and goal
representation for the high-level planner. Using the concept
of reward, we believe that a high-level planner can reason
about even abstract concepts such as keeping friends safe by
postulating the existence of unseen adversaries, reasoning
about their behavior, and selecting actions such as defensive
patrolling. As we have shown, there is nothing inherent in
a partially observable stochastic adversarial domain that de-
mands a goal reasoner.

This traditional concept of multi-level planning, in which
the actions of one level are goals for the next, is just one way
in which multiple planners can be coordinated to solve large
problems. A second way is by viewing a plan at the higher
more abstract level as establishing constraints on the possi-
ble state space to be considered by the lower-level planner.
The lower-level planner considers only concrete states that
project into the abstract states visited by the abstract plan. In
this way, the high-level planner specifies a kind of tunnel in
the state space that constrains the search of the lower-level
planner (Gochev et al. 2013). In this view, the states spaces
of the two planners must be similar enough to be aligned
with projection, with one just being more abstract than the
other.

Finally, a third method of coordination is to use the high-
level planner to guide the lower-level planner in a more flex-
ible way. The previous tunnel method can be seen as the
high-level planner pruning away concrete states that map
to abstract states that are not in the plan. In a sense, such
concrete states are given heuristic values of infinity (Holte
1995). A more flexible method is to use the high-level
planner directly as a heuristic function, allowing it to return
values smaller than infinity and allowing the low-level plan-
ner to eventually expand states that project outside of the
initial high-level plan if necessary. Planning in an abstract
representation of the problem has been shown to be an effec-



tive heuristic (Hoffmann and Nebel 2001). One can regard
our Harvester World planner as being of this type, as the de-
terministic planner finds more abstract plans, which are used
to evaluate states for the low-level action planner.

Conclusion

Despite agreement on the observable capabilities of agents,
such as dealing with multiple goals in a dynamic partially-
observable world with adversaries, it is not obvious how
those capabilities might be implemented in various compu-
tational modules. Locating goal reasoning in a specialized
module is certainly one way to go. However, our results
show that the empirical evidence presented for that archi-
tectural commitment may not uniquely support that choice.
While Harvester World is certainly beyond the classical
planning problem setting, we have demonstrated that mod-
ern planning technology can handle partially-observable
open worlds with multiple units and adversaries. We have
also speculated about three possible ways in which multiple
levels of planners might be arranged to handle more chal-
lenging domains.

Acknowledgements

We would like to thank Mak Roberts, Will Doyle, Tianyi
Gu, Jordan Ramsdell and our anonymous reviewers for their
thoughtful comments. We also gratefully acknowledge sup-
port from NSF (grant 1150068).

References

Burns, E.; Benton, J.; Ruml, W.; Do, M. B.; and Yoon, S.
2012. Anticipatory on-line planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS-12).

Cox, M. T.; Dannenhauer, D.; and Kondrakunta, S. 2017.
Goal operations for cognitive systems. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17).

Gochev, K.; Cohen, B.; Butzke, J.; Safonova, A.; and
Likhachev, M. 2013. Path planning with adaptive dimen-
sionality. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS-13).

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Holte, R. C. 1995. The tradeoff between speed and optimal-
ity in hierarchical search. Technical Report 95-19, Univer-
sity of Ottawa Computer Science.

Johnson, B.; Roberts, M.; Apker, T.; and Aha, D. W. 2016.
Goal reasoning with information measures. In Proceedings
of the Fourth Annual Conference on Advances in Cognitive
Systems (ACS-16).

Kiesel, S.; Burns, E.; Ruml, W.; Benton, J.; and Kreimen-
dahl, F. 2013. Open world planning for robots via hindsight
optimization. In Proceedings of the ICAPS Workshop on
Planning and Robotics.

Klenk, M.; Molineaux, M.; and Aha, D. W. 2013.
Goal-driven autonomy for responding to unexpected events
in strategy simulations. Computational Intelligence
29(2):187–206.

Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the 17th European Con-
ference on Machine Learning (ECML-06), 282–293.

Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-
driven autonomy in a navy strategy simulation. In Proceed-
ings of the Twenty-Fourth AAAI Conference on Artificial In-
telligence (AAAI-10).

Roberts, M.; Shivashankar, V.; Alford, R.; Leece, M.;
Gupta, S.; and Aha, D. W. 2016. Goal reasoning, planning,
and acting with actorsim, the actor simulator. In Proceedings
of the Fourth Annual Conference on Advances in Cognitive
Systems (ACS-16).

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of AAAI.

Yoon, S.; Ruml, W.; Benton, J.; and Do, M. B. 2010.
Improving determinization in hindsight for on-line proba-
bilistic planning. In Proceedings of the Twentieth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-10).


