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Abstract Motion planning in continuous space is a fundamental raisgiroblem
that has been approached from many perspectives. Rapiplgrang Random Trees
(RRTs) use sampling to efficiently traverse the continuaus laigh-dimensional
state space. Heuristic graph search methods use lower samsbolution cost to
focus effort on portions of the space that are likely to bedraed by low-cost solu-
tions. In this paper, we bring these two ideas together intatigue called -biasing:
we use estimates of solution cost, computed as in heurisdicch, to guide sparse
sampling, as in RRTs. Estimates of solution cost are quiciyiputed using an ab-
stract version of the problem, then an RRT is constructedidsiy the sampling
toward areas of the space traversed by low cost solutionsruhd abstraction. We
show thatf-biasing maintains all of the desirable theoretical prépsiof RRT and
RRT*, such as completeness and asymptotic convergencetitnadiy. We also
present experimental results showing thdiiasing finds cheaper paths faster than
previous techniques. We see this new technique as stremigththe connections
between motion planning in robotics and combinatorial deam artificial intelli-
gence.

Key words. motion planning, heuristic search, rapidly-exploringdam trees, ab-
straction

1 Introduction

We begin by recalling Dijkstra’s aIgorithrE|[4], the well-awn search technique for
finding paths in a discrete state space graph. Dijkstrasrélgn explores a graph
by visiting its nodes in ascending order according to the nesessary to reach
them and it is guaranteed to find a cheapest path from anlindgi@e to any node
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in the graph. Unfortunately, the search is unfocused andewjlore portions of the
graph that lead away from the goal as well as those that |lemalrtbit. To allevi-
ate this problem, the A* algorithrm[G] uses a cost-to-goraate called a heuristic.
When a heuristic estimate is available, A* always visitséewodes than Dijkstra’s
algorithm, as it avoids portions of the graph that only paptte in high cost solu-
tions.

Rapidly-exploring random trees (RRT@[ll] are a populehméque for motion
planning in continuous spaces. The RRT algorithm buildea &f paths by sam-
pling configurations. The point in the tree nearest to eash semple is steered
toward the sample, creating a new path segment and a new mdlde iree. RRTs
are complete in the limit of infinite samples, however theyndbd optimize for low
cost solutions. Karaman and Frazzoli's RRT* algoritfﬂn [fjwires the tree when
lower cost paths can be found to existing nodes near eachesaoipt. RRT* is both
complete and asymptotically optimal. However, much likgkEtra’s algorithm for
discrete graph search, RRT* will expend effort exploringtjpms of configuration
space that lead exactly away from the goal as well as towards i

The main contribution of this paper is a new technique caflddasing, named
after the valuef used by A* to order its search effort. Just as A* improves over
Dijkstra’s algorithm,f-biasing focuses exploration of RRT-based algorithms tdwa
areas that are more likely to lead to the goal configuratind ta do so via low cost
trajectories. To usé-biasing, we first solve a discretized and abstracted veisio
the motion planning problem. Then, using the cost estinfatasd in the abstracted
problem, we bias the location of samples in the RRT so thgtdihe more likely to
be drawn from portions of configuration space that containdost solutions to the
abstracted problem.

After discussing the method in detail, we prove thdtiasing maintains the com-
pleteness and convergence properties of RRT and RRT*. Wiectiraparef -biased
RRT and RRT* to their unbiased and goal-biased versiongusiree vehicles of
increasing complexity: a simple straight-line vehicles thubins car, and a hover-
craft. f-biasing finds its first solutions more quickly in all doma@sept Dubins
car with RRT*, where our current-biasing implementation has more re-wiring
overhead and this is only as fast as the other methods. Wesladso anytime pro-
files that demonstrate thdtbiasing both solves more problems and is able to im-
prove its solution quality more quickly than other techr@guFinally, we show how
f-biased RRT can provide a larger improvement over unbiag&dtRan the RRT*
algorithm. Broadly, we see this work as strengthening thmeotions between mo-
tion planning in robotics and combinatorial search in aitfiintelligence that were
pioneered by algorithms like RRT* and 16].

2 Previous Work

We begin with a discussion of related work in both heuristiarsh and robotics.
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2.1 Heuristic Search

A* [E] is an optimal search algorithm for discrete grapEls [BF visits nodes in
increasing order of estimated solution cdgh) = g(n) 4+ h(n), whereg(n) is the
cost of the path from the initial node to nodandh(n) is the heuristic value af,
estimating the cost from to a goal node. In this paper, we are bringing the use of
heuristics to the area of continuous motion planning. Taisas the question: where
do heuristics come from?

One technique for creating heuristics is by relaxing thestraints of the prob-
lem. Essentially, this technique adds extra edges betwagsghat do not exist in
the original problem. Likhachev and Ferguson [15] provide examples of relax-
ation as applied to motion planning problem. The first exanigpkheir removal of
obstacles from a motion planning problem to create a simplaxed problem that
can be solved quickly. The second example is the ignoringebfale dynamics in
order to relax motion constraints. Solutions to these eglars are lower bounds on
the cost-to-go in the original problem and are used to guédec.

Currently, some of the most powerful heuristics used by #zech and Al plan-
ning communities are created using abstraction. An aligiracs a many-to-one
mapping from the search space to a smaller abstract repagisenof the search
space. For example, Remolina and Kuipe [18] topoldgieaps are a form of
abstraction created by mapping regions of space to singlesio a map. Sturtevant
and Geisberge@O] also present an overview and a compasfsecent advances
in the area of abstraction-based heuristics for grid padhf

Pattern databases (PDEE) [2] are one of the most populaaatish-based meth-
ods and are closest in spirit tobiasing. A PDB contains the cost-to-goal for ev-
ery state in an abstract representation of the search spaoguted by performing
Dijkstra’s single-source shortest path algorithm in reegrom the abstract repre-
sentation of the goal to every node in the abstract stateesfiaaing search, the
abstract costs from the PDB are used as admissible hewesdtinates for search
states: when a heuristic estimate is needed for a node, lingosocost for the ab-
stract representation of the node is used as the estimate.

2.2 Rapidly-exploring Random Trees

Rapidly-exploring random trees (RRT@[ll] grow a tree fribma initial configu-
ration toward random samples in configuration space. Eachtion of the RRT
algorithm samples a random configuration, finds the nodedrrtre that is nearest
to the sample, and then adds a new node to the tree by stebantgarest node
toward the sample. In the limit of infinite samples, an RRTI d@nsely cover the
configuration space.

The RRT* aIgorithm|I_|7] is a simple modification to the stardl®RT algorithm
that allows it to find cheaper motion plans faster. Wheneveew node is added
to the tree, nearby nodes are updated if they can be reachadtyaper path via
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the new node. The re-wiring performed by RRT* is closely agalis to a common
technique used in heuristic search algorithms, such asrAtyhich, whenever a
cheaper path with a lowey value is found to a node, the cheaper path is used
and the more expensive path is discarded. This can be seefoan af dynamic
programming. Unlike A*, however, RRT* makes no use of a h&igiestimator.

Other variants of the basic RRT algorithm have been propeseth as bidirec-
tional RRT m)]. In this paper, we only evaluatebiasing on the basic RRT algo-
rithm and RRT*, however any sampling technique, sucli-ksasing, could easily
be applied to bidirectional RRTSs.

2.2.1 RRT Sampling Schemes

Previous authors have also recognized that uniform exjdorégs not the most ef-
ficient choice for a single query motion planning algoritifhere are a variety of
previous proposals for biasing sample selection in an g@itéondecrease the time
required to find the first solution, improve the handling ofigation near obsta-
cles, and increase the exploration of the configurationespgdost of the techniques
summarized here are discussed in greater detail by La\ile [

Unbiased Random Sampling: Unbiased random sampling, the method that was
originally proposed for generating an RRT, has the benefibwéring the configu-
ration space without prejudice and is appropriate for dosaihere no prior knowl-
edge or only inaccurate knowledge is available. The foll@abiasing techniques
attempt to exploit additional information to find bettergins faster.

Goal-biased Sampling: Goal-biased samplinﬂh3] selects the goal configura-
tion, or configurations near the goal, more often than umfesampling in an at-
tempt to grow the RRT more quickly toward the goal. There a@ major flavors
of goal biasing. First, the goal configuration itself can blested as a sample with
some fixed probability, otherwise an unbiased sample is used. The second version
of goal biasing selects configurations near the goal instéaaly the goal itself.
One common method for this is to use a Gaussian distribdfi@n19] around the
goal configuration. These both can overcome minor localaabess, however, if a
configuration lies in a heavily obstructed part of the spacdrbm the goal, it will
be difficult for the tree to escape the obstructions.

Heuristic-biased Sampling: Urmson and Simmonﬂbl] introduced heuristic-
biased sampling, which biases samples to be nearer to thmes nhat the RRT
reached via lower cost paths. This method has been showndtaHeaper motion
plans, however, its biasing is based on the cost of pathgifoyrthe RRT regard-
less of whether or not these paths lead toward the goal. Lijestta’s algorithm,
heuristic-biased sampling will explore portions of thespthat lead away from the
goal if it has reached them via cheaper paths than thosenlgaolivard the goal.
Instead, we would like to sample from areas that we expea todversed by cheap
trajectories that actually reach the goal.

Path-biased Sampling: The previous method that is most similar to ours is path-
biased samplin@ 9]. While it was developed indeperggrdth-biasing is sim-
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ilar because it can be seen as using the solution to an abstraienplified repre-
sentation of the motion planning problem such as a discédeog visibility graph
]. An RRT is then constructed by choosing samples aloegstiiution path of
the abstract problem with a probabilipyand uniformly otherwise. Using this tech-
nique, samples tend to occur along a possible low cost tajeérom the initial
configuration to the goal.

Basic path-biasing fails if the path found in the simple peoi doesn’t take
into account constraints of the complex motion plannindpem. To hedge against
this possibility, Krammer et aI[|[9] propose a modified vatithat draws samples
from a Gaussian distribution around the abstract solutath.pAs we discuss next,
f-biasing uses a more principled approach by selecting smigm areas of the
configuration space with a probability based on the solutiost in the abstract
space. Effectivelyf-biasing takes into account all low-cost paths in the abstra
space simultaneously instead of focusing on a single pattth€&more, we will
demonstrate that this is effective even for vehicles witmptex dynamics, such as
a hovercraft.

3 f-biased Sampling

We have discussed heuristic search and the benefits thastlmausing a heuristic
to focus its effort on areas of a search space that residesodst solutions. Next,
we saw that many of the most powerful state-of-the-art Is¢ius are created by us-
ing abstraction, and lastly, we described RRTs, which usessp uniform random
sampling to explore the continuous and high-dimensionalreaf motion planning
problems.f-biased sampling combines these three ideas: heuristiclgebstrac-
tion, and sample-based motion planning. The first step imgusin f -biased RRT is
to create an abstract representation of the motion plardongain. Next, Dijkstra’s
algorithm is used to pre-compute the cost of the shortehtthabugh each abstract
node from the initial configuration to the goal in the abstepace, as in PDBs. Like
a heuristic, these abstract solution costs give the abdifpcus the RRT’s growth
toward configurations that map to abstract states with logtscaMe now explain
each of these steps in greater detail.

3.1 Abstraction

The abstraction is represented by a weighted directed dgheplis small enough to
be searched exhaustively with Dijkstra’s algorithm. Thare many possible tech-
niques for generating an abstract representation of a gmabin our implemen-
tation, we use a simple uniform discretization of configimraspace to create an
n-dimensional grid, whera is less than or equal to the dimensionality of the con-
figuration space. Each vertex in the abstract graph is aalessconfiguration that
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Fig. 1 An example map showing abstraction (&)yalues (b), anf-biased RRT (c) and regular
RRT (d).

represents all configurations in the continuous space #ilawithin its Voronoi
hyper-rectangle. Adjacent vertices in the abstract grapltannected via an edge
if neither vertex is obstructed by an obstacle. In our imm@atation, a vertex is ob-
structed if its discrete configuration is contained withinabstacle. The weight of
each edge reflects an estimate of the cost of the navigatimgbe the two discrete
configurations that it connects.

Figure[1(a) shows a polygonal map of the second floor of oudimgj along
with a possible abstraction, represented as a coarse ggitha/on the continuous
domain. Each cell of the coarse grid is a vertex in the abisgnaph and the graph
has eight-connectivity. This is an extreme simplificatiout, as our experiments will
show, it suffices to guide motion planning.

For each motion planning query, we map the initial and goafigarations to
their abstract nodes in the abstract representation oftéite space. We then com-
pute the cost of the path from the initial node through eadlrabt node to the goal
node. Because we use a discrete abstraction, this can berdimear time in the
size of the abstract space by using two calls to Dijkstraigls-source shortest path
algorithm: one that computes the shortest path from th&limbde to each node,
g(n) in A* terminology, and another that computes the shortett fram each node
to the goal node(n). The sum of these values gives the cheapest cost of a solution
path passing through the given nodén) = g(n) + h(n).

Figured(b) shows thé values for a motion planning problem using the abstrac-
tion from Fig.[d(a). The initial configuration is shown as ghli blue square in the
lower-left corner and the goal is shown as a green squaresingper-right corner.
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Each abstract node is shaded, with black representing fhighst. As we can see,
even this simple abstraction suffices to uncover that it @idnd more desirable to
focus RRT growth into the lighter areas of the map while speméess time con-
sidering the dark portions.

3.2 Growing an f-biased Tree

To create arf-biased RRT, we proceed as in the standard RRT or RRT* algorit
however, more samples are taken from configurations tha¢spond to low cost
abstract nodes. To accomplish this, each node is assignedra so that nodes
with low f values have high scores and nodes with higlalues have low scores.
These scores are then normalized to sum to 1 and the norchalinges give the
probability with which an abstract node is selected for damgpOnce an abstract
node is selected, a sample from the concrete configuratamesp drawn uniformly
from its preimage—the set of concrete configurations that todhe selected node
in the abstract space.

The score for each abstract node is giversby f% /{“, wheref,,, is the min-
imum f value of all abstract nodes andglis a configurable parameter representing
the strength of thé-bias. Increasingv increases the influence of the abstract nodes
that are closer td,,,, narrowing the corridor from which most of the samples are
drawn. Decreasing decreases the influence of the abstract nodes that are toser
f.n and increases the amount of exploration. In our experimam@sisedo = 4 as
it was found to give good performance in a small set of prelamy experiments.

In some cases, an abstract node habaalue of infinity, for example, if it resides
within an obstacle. We would still like to generate samptesithese areas, so when
f is infinite, we define the score to Isg,/2 wheres,,, is the minimum score of all
nodes with finitef. Thenth abstract node is selected for sampling with probability
Ph=%/ zi'\';ols. Finally, a sample is generated uniformly from among allgilus
configurations in the preimage of the selected node. Flgimeshows a completed
f-biased RRT, along with its solution path. For comparisag.,[Ed) shows the first
solution found by an unbiased RRT. Notice that, in fhbiased RRT, most of the
exploration is focused in the lighter cells that reside gltire diagonal between the
initial configuration and the goal. The unbiased RRT reqlirany more samples
and explored the entire map.

4 Theoretical Analysis

Previous results on RRT and RRT* are robust enough to sutié/bias introduced
by our technique.

Lemma 1. Under f-biasing, there exists a positive constant that latsfrom below
the probability of selecting each configuration.
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Proof: Under f-biasing, every abstract node has a positive probabilityedfig se-
lected to sample within. Every configuration in the preimafan abstract node has
positive probability of being sampled.

Theorem 1. Using f-biased sampling does not disrupt the probabilistmplete-
ness of the RRT or RRT* algorithms.

Proof: Lemma[l is exactly the condition required by the completemqesof for
RRT given by LaValle and Kuffnem4], thus completeness &@ntained. The com-
pleteness proof of Karaman and Frazzoli for RRIF [7] is intest directly from
RRT, thus RRT*'s completeness is also preserved.

Theorem 2. Using f-biased sampling does not disrupt the asymptotimraity of
the RRT* algorithm.

Proof: The proof of RRT*'s asymptotic optimalitﬂ[?] relies on thewiring step to
monotonically decrease path costs, which requires pegitiwbability of adding any
configuration to the vertex set. This property is ensured éyina 1. Said another
way, RRT* merely rewires the same vertex set as construgtelRI. Using f-
biasing preserves non-zero probability of generatingyepessible RRT vertex set,
hence it preserves asymptotic optimality.

5 Experimental Results

Next, we evaluate the performance fobiased RRTs experimentally on three dif-
ferent path planning domains.

5.1 Implementation Details

We attempted to obtain a copy of the RRT* implementation byalkeaan and Fraz-
zoli [Iﬂ] for comparison, however, the source code was noilahe at the time of
our request. Instead, we wrote our own implementation of RRT RRT* in C++
using the same K-D tree implementation that was used by Kamaand Frazzoli
(available fronht t p: /7 code. googl e. conl p/ kdt ree/). Our RRT* imple-
mentation also used their technique for reducing the sizéaetall from which
nodes are considered for re-wiring as more samples areaedeAll techniques in
our comparison used the same implementation and datawstescthe only differ-
ence between the techniques was the decision of where irotifegaration space
the samples were generated. All experiments were perfoomed3.16 GHz Core2
duo PC with 8GB RAM running Linux.

For f-biasing, the abstract node from which to sample was selécteonstant
time by inserting a reference to each abstract node mutiipkes into a large array
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Fig. 2 The example of Karaman and Frazzoli after 235 iteration witbiased RRT* (a) and
f-biased RRT* (b) and after 2000 iterations (c) and (d).

to approximate its probability relative to the least prdeainde. An index into this
array was then chosen uniformly at random. An alternati#ss iImemory hungry,
approach is to use binary search to select the node. To rédadéme spent by
binary search, clustering can be used to group the abswdeisrinto a small fixed
number of equiprobable bins that can be searched very quickl
In timing results withf -biasing, we do not include the time required to build the

abstraction since it can be computed once for a given maptarets Typically, the
time required to build the abstraction was only a few secpmsst of which was
spent testing if abstract nodes are blocked by obstacldgigdnfiguration space.
These tests can easily be performed in parallel, allowirgathstraction creation
time to be greatly decreased with modern multicore hardv@wetiming results do
include the time required to perform the Dijkstra shorfeath pre-computation step
for each instance, because this must be performed for edistidnal motion query.
Our implementation runs both Dijkstra searches in parabethey are completely
independent of one another. Regardless, this time was touelquite insignificant.

5.2 Straight-line Vehicle

Our first set of experiments uses a very simple vehicle matiodel from Karaman
and Frazzoli|I|7] that we call the ‘straight-line vehicle h& straight-line vehicle
moves straight and can instantly turn to any angle. The tib@m minimize is the
path length.

We begin by comparing unbiased RRT* withbiased RRT* on a reproduction
of the map used in Karaman and Frazzoli's Fing [7]. They ubexdsimple map
to show the benefits of RRT* over basic RRTs. Likewise, Elgs2authis map to
show the benefit of -biasing. FigureEl2(a) ad 2(b) show unbiased RRT* &nd
biased RRT* respectively after 235 samples, wiidrnasing finds its first solution.
Figures[2(c) an@l2(d) show the state of both algorithms &0 samples. We
can see that combining the sampling of RRTs with guidanaa fieuristic search



10 Scott Kiesel and Ethan Burns and Wheeler Ruml

First Solution RRT and RRT* Anytime Profiles RRT and RRT*
600 —
%
3
500 . g .
unbiased RRT O 1/ f-biased RRT —— —
unbiased RRT* X f-biased RRT*
f-biased RRT A 10 unbiased RRT ------
f-biased RRT* O 0.3 H unbiased RRT* -
T T I T T I T : I T I T I 1
3 6 0 20 40
time (seconds) time (seconds)

Fig. 3 Straight-line vehiclef-biasing and RRT* improvement over unbiased RRT.

caused -biasing to find its first solution more quickly and enableitiecrease the
solution cost more quickly too.

The map in Fig[R is very simple, so our next results are on @fs200 path
planning problems given by uniformly selected initial anolblocations on the
more realistic map of Fifl 1. The abstraction usedffddiasing was a uniform eight-
connected grid of resolution 12x10.

First, we look at the improvement dtbiasing over standard RRT compared to
the improvement of RRT* over RRT. The left plot in Fig. 3 shaths first solution
time and cost for RRT and RRT* with and witho@itbiasing. The x axis shows
the first solution time in seconds and the y axis shows thedisttion cost. Each
glyph represents the mean over the 99 instances that weseddoy all techniques
with RRT and the 100 instances solved by all techniques wiRiRwithin a 90
second time limit. Error bars show the 95% confidence interea the mean. We
can see from this plot thdtbiased RRT actually found its first solution significantly
more quickly than all alternatives and in addition, its festution costs tended to be
slightly cheaper than that of unbiased RRT*biased RRT* gave the best solution
cost and took only slightly longer than unbiased RRT.

RRT and RRT* are naturally anytime algorithms; they provadgtream of solu-
tions of decreasing cost as they are given more time. One comvay to compare
anytime algorithms is by comparing theinytime profilei.e., solution cost over
time. We ran each biasing technique twice with the same rarsked for 90 sec-
onds with RRT and RRT* on each of our 100 instances. The firstamputed the
solution cost achieved at each sample. Because there aseit@@iions, this cost
computation required a non-negligible amount of CPU tiroghg second run mea-
sured the time at which each sample was taken without thecoogputation. This
data was used to build anytime profiles.

The right plot in Fig[B shows the anytime profiles for RRT arRRTR with and
without f-biasing. The data points were computed in a paired mannindiyng the
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Fig. 4 Straight-line vehicle: first solution times and anytimefijpes for RRT (left) and RRT*
(right).

best solution found on each instance by the algorithms igitren plot and dividing
this by the incumbent cost at each time value on the samenrest®y initializing
incumbent scores to infinity, this technique allows for camigon at times before
all instances are solved. The lines show the mean over ttenices set and the error
bars show the 95% confidence interval on the mean. The pletstiat f-biased
RRT and RRT* both find cheaper solutions faster than theifaggal counterparts.
Next, we compard -biasing to both goal-biased and unbiased RRT and RRT*.
The top row of Fig[h shows the time and cost of the first sofufir f-biasing,
goal-biasing with 1%, 10% and 25% of the samples being thé¢ guo#iguration
and unbiased RRT and RRTf:biasing found its first solutions significantly more
quickly than the other techniques and the cost of its firstitsmls tended to be
lower. The bottom row of Fid.]4 shows anytime profiles. From lgft plot, we can
see that when used in the RRT algorithfirhiasing dominated the other techniques.
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Fig. 5 Dubins car first solution times and anytime profiles for RREftfland RRT* (right).

In the right plot, we can see the same behavior for RRT* exttegitmore time was
required to approach the best cost solution. This is likelgduse of RRT*'s con-
vergence to optimality: the best solution found by RRT* wascimcheaper than the
best found by RRT and more time was used to find it. Also, eachtibn requires
re-wiring.

5.3 Dubins Car

In this section, we evaluate the performancd dfiasing with the Dubins caE|[5],
which has arx andy location and headin§ that is constrained by a fixed turning
radius. The abstraction used Bybiasing on this domain used a uniform grid of dis-
cretex, y and@ combinations with dimensions 75x65x4. In this set of experits,
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Fig. 6 Hovercratft first solution times and anytime profile for RRT.

we used the same instances that were used for the straightdhicle with a time
limit of 90 seconds for RRT and 180 seconds for RRT*.

The top two plots in Fid.l5 show the time and cost of first solusi. For RRTf -
biasing found its first solutions significantly more quickian the other techniques.
For RRT*, however, none of the techniques found their firdaitsan significantly
faster than the other$:biasing did not find its first solution faster in this settioegr
cause its biased samples created a very dense tree and sp&farmed a lot more
expensive re-wiring. The bottom two plots show anytime pesfif -biasing had a
better profile than all other techniques on both algorithwenehough it performed
fewer samples within the time limit for RRT*. This is becausbiasing both solved
more instances and was able to find cheaper solutions witarfsamples than the
other methods.

5.4 Hovercraft

The final domain that we present is path planning for a simpleefcraft. Each
configuration consists @k, y, 8, dx, dy, d0). X, y and6 represent the craft’s position
and orientationdx anddy represent the current translational rate in each resgectiv
direction andd 0 represents the rotational velocity. This models a simpleehmraft
with two fans: one propels the craftin the direct®and the other applies rotational
force in either direction. This domain has the largest dismamality and presents the
most difficult motion model of all domains considered in théper.

For the experiments in this domain, we used 100 random stdig@al configura-
tions on the map from LaValle and Kufan[14]. The abstmactised forf-biasing
was the same as used for the Dubins car with dimensions 2@8x2&xased RRT
solved 90% of all instances within a 180 second time limit velas goal-biased RRT
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with its best setting (1%) only solved 74% of the instancesambiased RRT only
solved 75%. The left plot in Figll6 shows the first solutiontsand times for the
43 instances solved by all algorithms within the time linfihe first solution costs
from f-biasing were not significantly different from that of thenet techniques,
however, it found these solutions significantly faster. Tigat plot shows the any-
time profile, where we can see thiabiasing gave the best performance. Achieving
good performance with such a basic abstraction for this ¢exmgiomain suggests
that f-biasing is robust to the choice of abstraction.

6 Discussion

As we point out in Sectiof 5l 3f-biased RRT* is not able to generate samples
as quickly as unbiased and goal-biased RRT* because itsaildenser tree and
therefore requires more re-wiring at every sample. The sasgeed off -biasing
can be increased in a couple of ways. First, Karaman and tﬂ'r’az[ﬂ] k-nearest
technique can be used to fix the number of nodes tested foiriegvat k, instead
of checking all nodes within the ball. A second possibilgyté chose the ball size
used to test for re-wiring dynamically based on the sampiesithe of the selected
abstract node and its neighbors. Even without these ogiioizs, our results show
that f-biasing performs favorably as it is able to find cheap sohgiwith fewer
samples than alternative methods.

While the results presented in FId. 6 show tlidiiasing can give good perfor-
mance even with a simplistic abstraction, it is worth notingt the choice of ab-
straction can be important. If the abstraction is too cqdtsm it may not account
for important obstacles in the planning problem. If this urs; then the sampling
can be biased toward regions of space that contain onlysiffieeplans due to the
unaccounted obstacles. Given this, one might assume thag¢radiiscretization of
the abstract space will always perform better, as it is moferinative, however,
we have found that coarser discretizations actually tenadgerform better in our
experiments.

We have shown that-biasing works well for constructing RRTs. We are also in-
terested in trying to combine these ideas with other typesaifon planning tech-
nigues. Probabilistic roadmaps (PRME) [8] are a popularrditive to RRTs that
work by constructing a roadmap of feasible paths betweentpthat are sampled
randomly from the configuration space. Once the roadmap &eas bonstructed,
motion planning queries can be performed by connectingrtitialiand goal con-
figurations to any points on the roadmap and performing alfastete graph search.

As with RRTS, it is possible to bias the selection of locasiased to create a
PRM. One possibility for using the ideas presented in thpepa conjunction with
PRM construction would be to compute thetweenness centrali@] of nodes in
an abstract graph. Betweenness centrality is a measure ofutmber of shortest
paths upon which a node in a graph resides. Sampling frontidorsain the abstract
graph with higher betweenness centrality may lead to mdeztfe RPMs as the



Abstraction-guided Sampling for Motion Planning 15

nodes in the roadmap may reside in areas of the space thaet@umany shortest
paths.

7 Conclusion

We have presentefl-biasing for RRTs, a new technique that combines guidance
from heuristic search with sparse sampling techniques fatmtics. f-biasing ef-
fectively focuses the growth of an RRT on areas of configanagpace that are tra-
versed by low-cost paths in an abstract representationegbithblem. This allows
f-biased RRTSs to find cheaper motion plans more quickly thherstampling tech-
nigues. Our experimental results demonstrate that thisteelnique outperforms
unbiased and goal-biased RRT and RRT* on three differenickeemotion mod-
els: a straight-line vehicle, a Dubins car, and a hoverciidfis work strengthens
the connections between motion planning in the roboticsmanity and heuristic
search in artificial intelligence. We feel that there are ynaaiditional analogies that
can be drawn between these two areas and we plan to explaondriffature work.
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