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Bounded Suboptimal Heuristic Search
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We want speed like this. We want cost like this.
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Bounded Suboptimal Heuristic Search

Motivation

m Guarantee the solution is within a factor w of optimal.
EES

Solution is w-admissible
Results

m Find solutions as quickly as you can within the bound.
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Bounded Suboptimal Heuristic Search

Motivation H

EES

Results

Guarantee the solution is within a factor w of optimal.

Solution is w-admissible

Find solutions as quickly as you can within the bound.

Weighted A* m AlphA*

Pohl, 1970 Reese, 1999

Dynamically Weighted A* m Clamped Adaptive

Pohl, 1973 Thayer, Ruml, & Bitton
A 2008

Pearl, 1982 m Optimistic Search

A Thayer & Ruml, 2008
Ghallad & Allard, 1983 m Revised Dynamically wA*

Thayer & Ruml, 2009
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Outline

Motivation m Introduce Two Oportunities to Improve Bounded

EES Suboptimal Search

Results

Using Inadmissible Heuristics

Paying attention to differences in cost and distance

m Present EES, Which Exploits Them

m Show Selected Results
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Inadmissible Estimates Outperform Admissible Estimates

Motivation

m d

® Summary

EES

Results

Vacuum World: Greedy Search Guidance
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Cost And Distance Are Different

Motivation Greedy Search on Cost vs Distance
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We’'re Ignoring Useful Information

Motivation m Inadmissible estimates of cost provide better guidance.
m h

md

EES

m Search on distance is faster than search on cost.

Results
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We’'re Ignoring Useful Information

Motivation m Inadmissible estimates of cost provide better guidance.
m h
- We can't use these without sacrificing bounds.

EES

m Search on distance is faster than search on cost.

Results

Previous algorithms haven't effectively harnessed d.
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We’'re Ignoring Useful Information

Motivation m Inadmissible estimates of cost provide better guidance.
m h
- We can't use these without sacrificing bounds.

EE m Search on distance is faster than search on cost.

Results

Previous algorithms haven't effectively harnessed d.

m EES

uses inadmissible estimates for guidance,
admissible estimates for bounding

takes advantage of cost and distance estimates
without brittle behavior of previous approaches
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Explicit Estimation Search

Motivation G iven .

EES h - An admissible estimate of cost to go

_ sion Orcor E— A potentially inadmissible estimate of cost to go

m Summary d - A potentially inadmissible estimate of distance to go
Results f(n) — g(n) + h(n)
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Explicit Estimation Search

Motivation G iven :
EES h - An admissible estimate of cost to go
h - A potentially inadmissible estimate of cost to go
m Expansion Order ~ . . L . ]
m Summary d - A potentially inadmissible estimate of distance to go
Results f(n) p— g(n) —+ h(n)
fmin = node with least f
bestf = node with best estimated cost
bestz = w-admissible node nearest to goal
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Explicit Estimation Search

Motivation G iven :
EES h - An admissible estimate of cost to go
h - A potentially inadmissible estimate of cost to go
m Expansion Order ~ . . L . ]
m Summary d - A potentially inadmissible estimate of distance to go
Results f(n) p— g(n) —+ h(n)
fmin = node with least f
= argmin f(n) = g(n) + h(n)
neopen
bestf = node with best estimated cost
best> = w-admissible node nearest to goal
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Explicit Estimation Search
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Explicit Estimation Search

Motivation G iven :
EES h - An admissible estimate of cost to go
h - A potentially inadmissible estimate of cost to go
m Summary d - A potentially inadmissible estimate of distance to go
Results f(n) — g(n) —+ h(n)
fmin = node with least f
= argmin f(n) = g(n) + h(n)
neopen
bestf = node with best estimated cost
= argmin f(n) = g(n) + h(n)
neopen
best> = w-admissible node nearest to goal
= argmin c/l\(n)

~ ~

neopen/f(n) Sw-f(bestf)
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Why This Expansion Order?

Motivation G iven :
EES h - An admissible estimate of cost to go
s - h - A potentially inadmissible estimate of cost to go
~ . . . . .
= Summary d - A potentially inadmissible estimate of distance to go
Results
fmin = node with least f
bestf = node with best estimated cost
best> = w-admissible node nearest to goal

( bestg if it is within the bound

select Node = <« bestf If it is within the bound, but bestj Isn't

\ fmin Otherwise
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Why This Expansion Order?

Motivation G iven :
EES h - An admissible estimate of cost to go
s - h - A potentially inadmissible estimate of cost to go
~ . . . . .
= Summary d - A potentially inadmissible estimate of distance to go
Results
fmin = node with least f
bestf = node with best estimated cost
best> = w-admissible node nearest to goal

( bestg if it is within the bound

select Node = <« bestf If it is within the bound, but bestj Isn't

\ fmin Otherwise

Of all the nodes within the bound,
expand the one closest to a goal.
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Why This Expansion Order?

Motivation G iven :
EES h - An admissible estimate of cost to go
s - h - A potentially inadmissible estimate of cost to go
~ . . . . .
= Summary d - A potentially inadmissible estimate of distance to go
Results
fmin = node with least f
bestf = node with best estimated cost
best> = w-admissible node nearest to goal

( bestg if it is within the bound

select Node = <« bestf If it i1s within the bound, but bestg Isn't

| fmin Otherwise

Ensures best~is a high quality node.
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Why This Expansion Order?

Motivation G iven :
EES h - An admissible estimate of cost to go
s - h - A potentially inadmissible estimate of cost to go
~ . . . . .
= Summary d - A potentially inadmissible estimate of distance to go
Results
fmin = node with least f
bestf = node with best estimated cost
best> = w-admissible node nearest to goal

( bestg if it is within the bound

select Node = <« bestf If it is within the bound, but bestj Isn't

\ fmin Otherwise

Provides the suboptimality bounds.
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Explicit Estimation Search

Motivation G iven :
EES h - An admissible estimate of cost to go
s - h - A potentially inadmissible estimate of cost to go
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Explicit Estimation Search

Motivation G iven :
EES h - An admissible estimate of cost to go
s - h - A potentially inadmissible estimate of cost to go
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= Summary d - A potentially inadmissible estimate of distance to go
Results f(n) p— g(n) —+ h(n)
fmin = node with least f
bestf = node with best estimated cost
best> = w-admissible node nearest to goal

AN

( bestz if f(bests) <w - f(fmin)

best~ if it is within the bound, but bestg Isn't
select Node = < / N
it f(beStf) < w - f(fmin)

| Smin Otherwise
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Explicit Estimation Search

Motivation G iven :
EES h - An admissible estimate of cost to go
- °des - h - A potentially inadmissible estimate of cost to go
~ . . . . .
= Summary d - A potentially inadmissible estimate of distance to go
Results f(’n,) = g(’n,) -+ h(n)
fmin = node with least f
bestf = node with best estimated cost
best> = w-admissible node nearest to goal
( bests if it is within the bound
bestf if it is within the bound, but best isn't

selectNode = {  [min

otherwise

AN

if f(best]?) > w - f(fmin)

AN

/\f(bestg) > w - f(fmin)
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Summary

Motivation m |[nadmissible estimates of cost provide better guidance.
EES : e

m Nodes We can’t use these without sacrificing bounds.

m Expansion Order

m We can estimate the cost and the distance of a solution.

Results

Algorithms that use this information perform poorly.
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Summary

Motivation m |[nadmissible estimates of cost provide better guidance.

EES . cpe s .

m Nodes EES can use these without sacrificing quality bounds.
m Expansion Order

m We can estimate the cost and the distance of a solution.

Results

EES avoids the pitfalls of previous approaches.
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Vacuums: Inadmissible Heuristics

Motivation Vacuum WOI‘ld

EES i WA —
Results . . .

800000 — optimistic

m Grids EES F—

B Aggregate
m Conclusions

' | ' | ' | ' |
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Suboptimality

total nodes generated
S
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Grids

Motivation < Unit Four-way Grid World
EES 8 ] EES
Results g WA*
® Vacuums 4'3 0.8 — . ) .
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Performance In Aggregate: CPU Relative to EES

Motivation Bound 1.5 175 2. 3. 4. 5.

EES optimistic | 1.6 15 16 21 24 21
fe:/:'zums wA* 41 34 28 37 34 24
m Grids skeptical 26 47 49 5H1 114 13
A¥ 50 44 28 18 1.1 0.6

m Conclusions

Clamped | 8.3 10 11 67 85 85
AlphA* 120 140 180 280 300 310
rdwA* 370 310 240 100 84 120
A, 910 850 680 620 590 610

Numbers are average slowdown per domain,

averaged across eight domains:

TSP (two variants), Grid Navigation (two variants), Dynamic
Robot Path Planning, Vacuum Planning, Sliding Tiles Problem
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General Performance: Nodes Generated Relative to EES

Motivation Bound 1.5 1.75 2. 3. 4. 5.
EES optimistic | 3.1 2.4 25 33 34 32
fe:/:'zums wA* 6.6 55 45 55 50 4.0
= Crids skeptical 3.2 3.0 28 38 11 15
A? 58 44 17 1.8 11 0.8
Clamped 6.8 5.6 1 76 95 97
AlphA* 1.2 1.5 22 44 56 b7
rdwA* 180 170 150 86 78 160
A, 1500 1400 1100 990 910 970

Numbers are average increase in nodes generated per domain,
averaged across eight domains:
TSP (two variants), Grid Navigation (two variants), Dynamic

Robot Path Planning, Vacuum Planning, Sliding Tiles Problem
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General Performance: Algorithm Rankings !CPU!

Motivation

EES

Results

® Vacuums
m Grids

B Aggregate

m Conclusions

1st 2nd 37“d 4th > 4th
EES 2 3 3 0 0
Optimistic | 3 1 2 1 1
Skeptical 1 3 1 0 3
A? 2 0 1 1 4
WA* 0 1 1 4 2
A, 0 0 0 0 8
AlphA* 0 0 0 0 8
Clamped 0 0 0 0 8
rdwA* 0 0 0 0 8

Rankings by CPU time consumed
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Average Performance: Algorithm Rankings (Nodes

Motivation

EES

Results

® Vacuums
m Grids

B Aggregate

m Conclusions

1st 2nd 37“d 4th > 4th
EES 5 3 0 0 0
Optimistic | 1 0 4 1 2
Skeptical 0 2 3 1 2
A? 2 1 0 1 4
WA* 2 0 0 3 3
A, 0 0 0 0 8
AlphA* 0 0 0 0 8
Clamped 0 0 0 0 8
rdwA* 0 0 0 0 8

Rankings by nodes generated
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Conclusions

Motivation

EES

Results

® Vacuums
m Grids
m Aggregate

m Conclusions

m We can finally use inadmissible heuristics.
m We can benefit from using cost and distance information.

m EES provides
robust behavior on a wide range of benchmarks.

state of the art performance in several domains.
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Additional Slides

Additional Slides

Jordan Thayer (UNH) Bounded Suboptimal Search — 19 / 18



Proof of Bounded Suboptimality

Motivation ASSU me. ~

ces f(n) > f(n) and h(goal) = 0

Results f( ) — f(n) ( )

Additional Slides p ~

besty i f(bestz) < w - f(fmin)

= Bounding selectNode = { bestz if f(bests) < w - f(fmin)
| fmin  Otherwise
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Proof of Bounded Suboptimality

Motivation A\SSU me. —
cre f(n) = f(n) and h(goal) =0
Results f(n) = f(n)=g(n)
Additional Slides
[ besty if f(besty) < w - f(fonin)
" Bounding selectNode = ¢ bestz if f(bests) < w - f(fmin)
| fmin  Otherwise
w- f(opt) > w- f(fmin) R
w - f(fmin) = ci(bestg)
f(best=) > f(bests)
f(best=) > g(best )
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Proof of Bounded Suboptimality

Motivation A\SSU me. o~

cee f(n) = f(n) and h(goal) =0

Results f(n) — f(n) — g(n)

Additional Slides p ~

best> if Jf\(bestg) <w- f(fmin)

= Bounding selectNode = { bestr if f(bests) < w - f(fmin)
| fmin  Otherwise

w - flopt) > w- f(fmin) ~
w - f(fmin) = f(besty)

Jordan Thayer (UNH) Bounded Suboptimal Search — 20 / 18



Proof of Bounded Suboptimality
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Robot Navigation: Inadmissible Heuristics

Motivation

EES

Results

Additional Slides
m Bounds

® Bounding

total nodes generated
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Strict vs. Loose Approaches to Quality Bounds

Loose: Optimistic Search

Motivation

EES

Reculte m Run weighted A* with weight (bound — 1) -2+ 1

Additional Slides . . .

= Bounds m Expand node with lowest f value after a solution is found.
® Robots

Continue until w « fiin > f(sol)

This 'clean up’ guarantees solution quality.

Strict: EES
( best if f:(bestg) < w - f(fmin)
select Node = ¢ besty if f(best]?) < w - f(fmin)
| fmin  oOtherwise
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