
Concurrent Planning and Execution Using Dispatch-Dependent Values

Andrew Coles1 , Erez Karpas2 , Solomon Eyal Shimony3 , Shahaf Shperberg3 , Wheeler Ruml4
1King’s College London, UK, 2Technion, Israel

3Ben-Gurion University, Israel 4University of New Hampshire, USA
andrew.coles@kcl.ac.uk, karpase@technion.ac.il

shimony@cs.bgu.ac.il, shperbsh@bgu.ac.il, ruml@cs.unh.edu

Abstract
Agents operating in the real world must cope with
the fact that time passes while they plan. In some
cases, such as under tight deadlines, the only way
for such an agent to achieve its goal is to execute an
action before a complete plan has been found. This
problem is called Concurrent Planning and Execu-
tion (CoPE). Previous work on CoPE relied on a
value function that assumes search will finish be-
fore actions are executed, causing the agent to be
overly pessimistic in many situations. In this pa-
per, we define a new value function that takes into
account the agent’s ability to dispatch actions in-
crementally. This allows us to devise a much sim-
pler algorithm for concurrent planning and execu-
tion. An experimental evaluation on problems with
time pressure shows that the new method signifi-
cantly outperforms the previous state-of-the-art.

1 Introduction
Concurrent planning and execution (CoPE) is crucial in sce-
narios where meeting strict time constraints is essential, even
when the environment operates on a predictable schedule. For
example, consider an automated system tasked with navigat-
ing a train network to deliver a package by 3 PM. The train
schedules are fixed and known in advance. Missing a train
means waiting for the next one, which could result in missing
the deadline. The challenge is that generating a valid plan—
one that guarantees the package will arrive on time—can be
computationally demanding. If the system waits to gener-
ate the entire plan before starting execution, it risks running
out of time to make the necessary connections. By planning
and executing concurrently, the system can begin dispatching
actions based on a partial plan, continuously refining its strat-
egy to ensure the delivery is completed by the deadline. This
approach is particularly effective in time-sensitive scenarios,
enabling the system to respond flexibly and efficiently within
the given constraints.

Previous work on CoPE [Coles et al., 2024] built upon
earlier research in situated temporal planning (sometimes
abbreviated as situated planning) [Shperberg et al., 2021;
Cashmore et al., 2018], in which time passes during plan-
ning, but we can only start executing after we have a complete

plan. Specifically, the method used to estimate the value of a
search node for situated planning was also used to guide the
search in CoPE. However, this estimator is based on the as-
sumption that search needs to find a complete plan before the
first action can be executed — a valid assumption in situated
planning, but not in CoPE. To compensate for this, the pre-
vious CoPE method relied on a rather ad-hoc scheme, where
an action is dispatched only if a certain number of nodes have
been explored in the subtree under that action.

We present a new approach for CoPE that is based on the
insight that there is a big difference between the meta-level
search space in situated planning and in CoPE. In situated
planning, it is the same as the search space for the offline
planning problem: the only decision is which node to expand
next. While the decision problem in situated planning is more
difficult than in offline planning (as it has to consider not just
expected search effort but also deadlines), the number of pos-
sible decisions is still the same. In CoPE, for each possible
node in the search tree, we have two possible decisions: ex-
pand it or execute it. Ideally, we would like to estimate the
values that would be obtained by the agent if each of these
decisions were taken.

At first blush, this appears hopeless: for a given possible
future world state, there might be many different search and
execution interleavings that will achieve it. However, in this
paper, we show how this principled approach to concurrent
planning and execution can be made practical. We first de-
velop the theory of dispatch-and-time-dependent value func-
tions for CoPE, which allows us to estimate the value of all
possible paths in the meta-level decision problem that end in
the same world state. This allows us to search the same space
as the original offline planning problem while still making
decisions about which actions to dispatch or not. We then
describe how to realize this idea in a planner. An empirical
study shows that this new approach achieves state-of-the-art
performance in concurrent planning and execution.

2 Background
We begin by reviewing the CoPE problem and previous work
that takes into account the passage of time during planning.

2.1 Concurrent Planning and Execution
We adopt the definition of concurrent planning and execution
(CoPE) as propositional temporal planning with Timed Initial

Literals (TILs), formalized in PDDL 2.2 [Cresswell and Cod-
dington, 2003; Edelkamp and Hoffmann, 2004], as presented
by Coles et al. [2024]. A CoPE problem Π is represented by
the tuple Π = ⟨F,A, I, T,G⟩, where:

• F is a set of Boolean fluents describing the world’s state.

• A is a set of durative actions. Each action a ∈ A has a
duration dur(a) ∈ R0+ and a start condition cond⊢(a),
invariant condition cond↔(a), and end condition cond⊣(a)
that are subsets of F . Effects are the start effect eff ⊢(a) and
the end effect eff ⊣(a), each specifying which propositions
in F become true (add effects) or false (delete effects).

• I ⊆ F is the initial state, indicating which propositions are
true at time 0.

• T is a set of timed initial literals (TILs). Each TIL l =
⟨time(l), lit(l)⟩ ∈ T consists of a time time(l) and a literal
lit(l), defining which propositions in F are already known
to become true (or false) at time time(l).

• G ⊆ F defines the goal, propositions that must be among
those that are true at the end of plan execution.

Concurrent planning and execution allows for action dis-
patch before a complete plan is available. Specifically, a so-
lution to Π is a sequence σ of pairs ⟨a, ta⟩, where a ∈ A
is an action and ta ∈ R0+ is its start time. This sequence
must form a valid solution for Π, adhering to all conditions at
respective time points and achieving the goal, as in standard
temporal planning. A valid schedule is a set of instantaneous
happenings [Fox and Long, 2003], occurring at action start,
action end, and TIL triggers. For a pair ⟨a, ta⟩, action a starts
at ta, requiring cond⊢(a) to hold some fixed ϵ before ta, ap-
plying eff ⊢(a) at ta. Action a ends at ta + dur(a), requiring
cond⊣(a) to hold ϵ before ta + dur(a), applying eff ⊣(a) at
ta + dur(a). The invariant condition cond↔(a) must hold
during (ta, ta + dur(a)). Furthermore, each TIL l triggers
lit(l) at time(l) and G must hold after all happenings.

Situated temporal planning [Cashmore et al., 2018] ac-
counts for the time that passes during planning in that, at
any point during search, all actions must be scheduled af-
ter the current time tnow . Usually, a complete plan is emit-
ted at once, before execution begins. In CoPE, actions are
emitted incrementally but may not be scheduled in the past.
Each pair in the output sequence is annotated with the time
when it is emitted: (t1, ⟨a1, ta1

⟩), . . . , (tn, ⟨an, tan
⟩), where

t1 ≤ t2 ≤ · · · ≤ tn. Each pair ⟨ai, tai
⟩ must satisfy ti ≤ tai

,
meaning actions are dispatched at or later than when they are
emitted. Typically, ti = tai , unless practical considerations
dictate otherwise.

To demonstrate the importance of CoPE, consider again the
example in which an automated system is tasked with navi-
gating a train network to deliver a package by 3 PM. A TIL
l ensures that the delivery deadline is met, with time(l) =
3pm. Without concurrent dispatching, if the current time tn
approaches time(l), all actions must fit within the interval
[tn, time(l)], which may be infeasible for long routes. CoPE
allows early dispatching of necessary actions (e.g., starting
the journey), allowing the system to meet the deadline even if
the complete route cannot be fully planned in advance.

Metareasoning for Situated Temporal Planning
Rational metareasoning [Russell and Wefald, 1991] offers
a framework for selecting among various computational ac-
tions. In situated temporal planning, these computational ac-
tions involve choosing which search node to expand at each
iteration, with the goal of optimizing the selection of these
actions to maximize the likelihood of finding a valid plan
within a given time frame. Shperberg et al. [2019] for-
malized the metareasoning problem by abstracting away the
complexities of plan state representation and the search pro-
cess. They modeled the problem as n processes, denoted as
p1, . . . , pn, where each process represents a search for a plan
(analogous to a search node on the open list). Each process
is characterized by a probabilistic performance profile, rep-
resented by a random variable indicating the probability of
process pi successfully terminating after a given processing
time t. The cumulative distribution function (CDF) of this
random variable is denoted Mi. To succeed, a process must
terminate before its deadline, which may be uncertain dur-
ing planning and is therefore treated as a random variable,
with its CDF represented as Di. This deadline is in ‘wall
clock’ time (the total time allocated across all processes so
far), whereas Mi accounts only for ‘CPU time’ (the time al-
located so far specifically to process pi). Given the constraint
that information about the actual deadline and the processing
time of pi is revealed only upon its termination, the objec-
tive is to find an optimal policy for allocating processing time
(ie, search effort) across all processes, maximizing the prob-
ability that at least one process will complete and deliver a
plan before its respective deadline. A simplified version of
this problem, where time is discretized, is called Simplified
Allocating Planning Effort when Actions Expire (S(AE)2).

Due to the computational expense of solving even S(AE)2,
Shperberg et al. [2021] introduced a more practical meta-
reasoning scheme known as Delay Damage Aware (DDA).
The DDA approach is based on the log-probability of fail-
ure (LPF) when allocating t consecutive units of computation
time to process i starting at time tb, denoted LPFi(t, tb). To
compute the LPF, one first calculates the probability that pro-
cess i finds a timely plan when allocated t consecutive time
units beginning at time tb:

si(t, tb) =

t∑
t′=0

mi(t
′) · (1−Di(t

′ + tb)) (1)

where mi(t) = Mi(t)−Mi(t− 1), i.e., the probability mass
function of Mi. Then, LPFi(t, tb) = log(1 − si(t, tb)). By
taking the log of the probability of failure, it can be treated as
an additive utility function.

DDA allocates chunks of tu computational time units,
where tu is a hyperparameter. The utility of a process i is
defined by the log-probability of failure of allocating com-
putation time to process i in the next chunk (starting at time
tu with a discount factor of γ) minus the log-probability of
failure of allocating time to process i now, thus accounting
for the urgency of the process. The amount of computation
time used in the utility calculation is chosen by the most effec-
tive computation time for process i starting at time tb, defined
as ei(tb) = argmint

LPFi(t,tb)
t , that is, the time allocation

is chosen by its marginal gain. Putting this all together, the
DDA scheme allocates the next unit of computation time to
the process i with maximal:

Q(i) =
γ · LPFi(ei(tu), tu)

ei(tu)
− LPFi(ei(0), 0)

ei(0)
(2)

Shperberg et al. [2021] implement the DDA strategy in the
situated temporal planner of Cashmore et al. [2018]. The
base planner adapts a conventional temporal plan search to
handle TILs and prunes nodes that become infeasible due to
time constraints. To apply DDA, the planner estimates the
values of Mi and Di that are needed to compute LPF. An
admissible deadline for node i is derived by solving a Sim-
ple Temporal Problem (STP) for the action sequence Hi that
leads to the search node i, yielding the latest feasible times-
tamp tmax for each step. The minimum value across all steps
is the deadline for dispatching i:

latest start(Hi) = min
aj∈Hi

tmax (aj)

A more informative, though inadmissible, estimate is ob-
tained using the Temporal Relaxed Planning Graph (TRPG)
heuristic [Coles et al., 2010] by also considering the dead-
lines on steps in the relaxed plan πi from node i. The TRPG
heuristic provides a relaxed plan πi composed of snap-action–
timestamp pairs [⟨a0, t0⟩..⟨an, tn⟩], with all timestamps ≥
tnow . If a step ⟨aj , tj⟩ ∈ πi makes use of an action aj with
known deadline d(aj) (due to the timed initial literals), then
this relaxed plan step – were it to be used within a plan exten-
sion forwards from i – can be executed no later than d(aj),
but also no earlier than tj , due to the time taken to satisfy its
preconditions (which are admissibly estimated by the TRPG).
Hence, the maximum amount of time aj can be delayed be-
yond its earliest time tj is d(aj)− tj ; which, relative to tnow
gives an absolute time by which the execution of πi must have
started in order to reach the preconditions of aj and begin its
execution on time. The tightest such time can be taken as a
deadline for the relaxed plan:

latest start(πi) = min
⟨aj ,tj⟩∈πi

tnow + (d(aj)− tj)

Thus, an (inadmissible) latest start time estimate for node i
is:

latest start(Hi, πi) = min{ latest start(Hi),
latest start(πi)}

This can be used to define Di as having probability 1 for all
t ≤ latest start(Hi, πi) and 0 for all later t.

To estimate Mi, the planner uses the expansion delay
[Dionne et al., 2011] — the average number of expansions
between a node’s generation and its expansion. A distribu-
tion around this estimate is built from search statistics and
the length of the relaxed plan πi [Shperberg et al., 2021].

With estimates of Mi and Di, the planner computes Qi

for each node and sorts them based on Q. Following the
DDA scheme, the planner allocates tu units of computation
time to the chosen node, performing tu expansions in its sub-
tree. Afterward, any remaining frontier nodes are added back
to the open list, and the next state is selected based on up-
dated Q values. Since the Mi estimates evolve during the

search, Q values are recomputed after every tu expansions.
This ‘allocate-tu’ mechanism is needed to ensure the actual
search behaves similarly to how the abstract metareasoning
process expects. As we discuss later, this is not needed with
the approach we present in this paper.

Metareasoning for CoPE
The S(AE)2 metareasoning formalization of situated planning
was extended to CoPE by Elboher et al. [2023]. In addition
to the Mi and Di distributions, each process pi has an initial
action sequence Hi, where every action in Hi is associated
with a specific execution time window.

In addition to the meta-level actions of deciding which pro-
cess to allocate computation time to, the model allows one
to actually execute the next domain action in one of the se-
quences Hi. All domain actions are non-preemptible and mu-
tually exclusive, except that allocating computation time to a
process can be run concurrently with at most one executing
action. As before, allocating computation time to process i
can result in the process terminating (with a probability deter-
mined by Mi), at which point the process delivers a solution,
and its true deadline is revealed.

Integrating Metareasoning into a Planner
Coles et al. [2024] showed how the formal model of Elboher
et al. [2023] could be adapted for use in a planner to guide
search and make dispatch decisions incrementally. In their
planner, an action is dispatched at time tnow if, among all the
actions that could be dispatched, its dispatch is estimated to
maximally reduce the estimated probability of failing to reach
the goals on time and this reduced probability is at least some
threshold amount less than the estimated probability of failure
of just carrying on searching and only considering dispatch-
ing an action at a later time than tnow .

To estimate the probability of failing to reach the goals af-
ter dispatching some action a, a projection of the open list
is taken, keeping only frontier states in the subtree beneath
a. Then, the probability of failing to reach the goals is com-
puted by approximating what search would then do. Key to
this is the successive calculation of the probability of failure
to reach the goals from the frontier states in this projection:
if dispatching a relieves time pressure, the aggregation of the
probabilities of failure of the frontier states in the projection
for a will improve on that of the full open list (that is, without
the assumed dispatch of a).

This dispatch reasoning approach has two limitations, as
identified by Coles et al. [2024]. First, it is too computa-
tionally expensive to perform at every expansion in search,
so dispatch reasoning was performed only once per tu expan-
sions (for their experiments, tu = 100). Second, as expansion
decisions are driven exclusively by an aim to reach the goals
on time (assuming no further dispatch), the dispatch reason-
ing may be misled by the estimated probability of failure for
dispatch candidates whose subtrees have been scarcely ex-
plored (due to appearing to be further from the goal than other
options), because the deadlines for states in the subtrees for
such dispatch candidates rely heavily on the deadline of their
relaxed plans, which in practice are a great deal more opti-
mistic. This can lead to dispatch options that are ‘poisoned
chalices’ – attractive to the dispatch reasoning due to having

the lowest estimated probability of failure, but detrimental to
actually reaching the goal, with their dispatch making it diffi-
cult or impossible to then reach the goals on time.

In an ad hoc attempt to work around this limitation, Coles
et al. [2024] only allow the dispatch of an action a if its
subtree has been explored to at least some minimum extent;
hence the aggregation of the probabilities of failure in the pro-
jection for a are based on nodes that are at least somewhat
deep in a subtree. Then, if a is identified as an ostensibly
promising dispatch candidate but does not meet this explo-
ration requirement, a ‘subtree focus’ is triggered, in which
search is constrained to only expand nodes beneath a until
the next time dispatch is considered. In other words, even
if the nodes in the subtree beneath a would not otherwise
be expanded – because they are not the most promising for
reaching the goals – their expansion is forced, as a way of
improving the quality of the estimate of dispatching a, as go-
ing deeper in its subtree will reduce the extent to which the
probability of failure for dispatching a is optimistic.

2.2 Other Related Work
Also relevant, but less directly related to our setting, are
works that have investigated taking time into account in the
search strategy of a planning agent. For example, Gu et al.
[2022] reason about when to dispatch an action by modeling
the tighter search focus that re-rooting the search at a deeper
node would cause and estimating the resulting larger reduc-
tion of uncertainty in that single subtree. While very princi-
pled, their method does not take other temporal constraints,
such as deadlines, into account.

Cserna et al. [2017] show how to take into account the
fact that expansions will occur concurrently during the future
execution of an action, allowing a planner to decide to execute
long-duration actions in order to perform more search before
making a crucial dispatch decision. However, their method
does not handle temporal constraints, and it depends on ad
hoc estimates of uncertainty.

Thomas et al. [2024] address real-time planning in a dy-
namic environment, where the agent must issue its next action
within a strict time constraint. They take time into account
by representing the value of a node as a so-called functional,
i.e. a function of time. However, the real-time requirement
means that they do not need to reason about when to dispatch
actions; rather, the problem setting dictates when that must
happen.

3 Dispatch-Dependent Value Functionals
To set the stage for our new approach, we first describe
dispatch-dependent value functionals1 for CoPE. Unlike the
time-dependent value functionals of Thomas et al. [2024], in
which the search space and the temporal constraints are fully
known, here we must account for the partial knowledge our
search has about the deadlines.

To define these functionals, let Hi be some action sequence
reaching some node i in our search space. We can partition
Hi into two consecutive segments Hi = Hd

i ·Hc
i where:

1A functional is a function which returns a function

• Hd
i is the sequence of actions that have already been dis-

patched. Hd
i is fixed for all nodes in the search space.

• Hc
i are the remaining actions to reach node i, that could

be dispatched, but have not yet been.
Given such a partition, we define the value functional to

be the probability that search will find a timely plan, assum-
ing we start searching beneath i at time t, having previously
committed to the dispatch of Hd

i :

V (Hd
i , H

c
i)(t) = Pr

m∼Mi

(t+m ≤ d(i)) (3)

where Mi is the distribution on remaining search time from
node i, πi is a relaxed plan from node i, and d(i) =
latest start(Hc

i , πi) is the deadline for node i based on Hc
i

and the relaxed plan πi.
Note that the functional for Hi yields a function that de-

pends on t, representing how the value reachable through ex-
panding nodes in the subtree of i will change over time. If the
problem has a global deadline, V is monotonically decreas-
ing in t: the more time passes, the more nodes in the subtree
expire, until it is empty and hence flat-lines at the value 0.

Returning to the idea of dispatch, were the next action in
Hc

i to be dispatched, it would be moved from the head of
Hc

i to the tail of Hd
i ; hence latest start would be taken over

a smaller Hc
i . More generally, if the first n actions in Hc

i

were dispatched, they would be moved to the tail of Hd
i , and

latest start would be computed over an even smaller Hc
i ;

until, at the limit, with all steps in Hc
i dispatched, the lat-

est start time of an empty Hc
i would be infinite, and only

latest start(πi) would matter for computing the latest start
time of node i.

We can now define our dispatch-dependent value function-
als: for each prefix Hp

i of Hc
i , we can compute the func-

tional assuming we have already committed to dispatching
Hp

i . Thus, we get |Hc
i | + 1 different functionals – one for

each possible prefix.
So far, we have considered a single node i. We now take

a broader perspective, looking at the search process over the
entire search space. As our decision making is embedded in
a forward search, we argue that it is not necessary to consider
all |Hc

i |+1 possible prefixes – it is sufficient to consider only
the prefixes corresponding to none, or all, of Hc

i . Suppose
we have a node j reached by plan Hj and with relaxed plan
πj = [a0..ak]. For the functional in which all |Hc

j | actions
are assumed dispatched (Hp

j = Hc
j), then any deadlines are

due only to πj . If πj is a reasonable approximation of the
plan from j to the goals, then in forward search, j will have
a successor i where Hi = (Hj · a0) and πi = [a1..ak], i.e.
the remainder of πj’s relaxed plan after a0. Then suppose
we wanted to evaluate an assumed dispatch functional for i
where only |Hc

i | − 1 of the actions in Hc
i are assumed to be

dispatched. As the plan to i is Hi = (Hj · a0), this would
mean assuming Hj was dispatched but a0 and πi = [a1..ak]
were not. This is exactly the assumed dispatch considered
for its parent j in the ‘assume all dispatched’ case: assume
Hj dispatched and assume [a0..ak] not dispatched. Hence, if
relaxed plans are reasonable, it is a reasonable position when
calculating dispatch-dependent value functionals to only con-
sider dispatching none of the actions to a node, or all of them;

as at least for nodes that are consistent with the relaxed plan,
other intermediate dispatch prefixes have already been con-
sidered at their ancestor nodes.

4 A Simpler Approach to CoPE
When considering concurrent planning and execution, at any
point during search there is a decision to be made: to choose
a node for expansion or to dispatch one or more actions to
be executed. Dispatch decisions are made according to what
is known about the search space, taking this to be a proxy
for the underlying state space. From this perspective, ex-
pansion and dispatch are fundamentally intertwined decision-
making problems. Expanding a node develops the search
space, which as a proxy for the state space, informs execu-
tion decisions; and vice versa, dispatching an action restricts
search to then only having access to the subtree beneath what
has been dispatched, affecting what can then be chosen to
be expanded. Critically, as dispatching actions may be irre-
versible, a bad dispatch decision may then make the resulting
search problem unsolvable, i.e. there is no way to reach the
goals, and/or to do so in a timely manner.

Hence, for concurrent planning and execution to work well,
node expansion decisions are motivated by two concerns:

1. As in conventional planning, nodes should be chosen for
expansion in order to make progress towards finding a
solution plan.

2. Additionally, nodes should be chosen for expansion in
order to reveal the information needed to make good dis-
patch decisions.

For the former, we can rely on heuristic search that eval-
uates nodes with a value function that rewards progress to-
wards finding a solution plan. For the latter, some sort of
search modification is needed to ensure the necessary infor-
mation is gathered. The subtree focus approach of Coles et al.
[2024] (described in Background) can be seen as a means of
enforcing expansions that will reveal the information needed
to make good dispatch decisions. The main limitations of that
approach are, first, that a restriction to a subtree will only be
considered periodically, once every tu expansions, when per-
forming dispatch reasoning, so if there are n poisoned chal-
ices that will be recognized as in fact being poor candidates
for dispatch once their subtrees have been explored, it will
take tu × n expansions to eliminate them all. Second, when-
ever a subtree is chosen for expansion, the expansions are
still driven by the value function of search, which primar-
ily chooses for expansion nodes that are closer to the goal
– which are not necessarily the expansions that will, within
that subtree, most efficiently reveal the information needed to
assess its suitability for dispatch.

4.1 Dispatch-Dependent Value Functions
In contrast with the subtree focus approach, we propose to de-
termine which nodes to expand by using two value functions:
one that aims to quickly guide search towards the goals and
another that gathers information needed to inform dispatch
decisions, i.e. that lead to the expansion of nodes whose plan
prefixes appear to be good candidates for dispatch, consider-
ing the time pressure that is apparent at time tnow . In fact,

these functions can be viewed as values of the functional de-
fined in Section 3, at different points.

First, as a value function to promote the expansion of
states progressing towards the goals, the obvious candidate
is the classic weighted f value used by weighted A*: f(i) =
g(i)+w×h(i), where h(i) = |πi| is the relaxed plan distance-
to-go (relaxed plan length) from node i to a goal state. f(i)
pays no regard to any time pressure – it does not depend at
all on the (assumed) latest start time of i. Instead, it is widely
used to reduce the number of expansions required to reach
a goal node when planning under time pressure [Ebendt and
Drechsler, 2009], and is used by many temporal planners, in-
cluding OPTIC [Benton et al., 2012] upon which we build.

Second, we note that the dispatch decisions of Coles et al.
[2024] are based on an aggregation of the probability of fail-
ure to reach the goals on time from the nodes in a subtree
beneath a candidate action to dispatch. This motivates us-
ing a value function that expands nodes that one can expect
to be part of a subtree for a favorable dispatch option. We
cannot use this dispatch reasoning itself as a value function,
in part because it is answering the wrong question (candidate
actions to dispatch are at the root of the tree; nodes to expand
are at the frontier), but also because it is too computation-
ally expensive to do for every state. Instead, we turn to our
dispatch-dependent value functionals for CoPE (equation 3),
which give the probability of failure to reach the goal from
a node as a candidate value function; i.e. for node i, what
proportion of the distribution Mi falls after the node’s dead-
line. We compute the value functional assuming all remain-
ing non-dispatched actions along the path to i (Hc

i) have been
dispatched, following our earlier argument in support of this.
For brevity, we denote this assumed-dispatch value function
that gives the probability of failure as pf (i). Between two
nodes with the same pf (i) value, the one that appears to be
closer to the goal is better, thus we break ties between equal-
pf (i) value states according to f(i).

Both of these two value functions are useful, hence we pro-
pose to use them with dual open-list search [Helmert, 2006],
where the choice of which state to expand alternates between
f(i) and pf (i), with removal of a state from one open list re-
moving it from both and the successor states resulting from
an expansion being added to both. As with the Q(i) values
of Shperberg et al. [2019], given that time is passing and
the distribution Mi is continually updated during search, it is
necessary to periodically recompute the values of pf (i). So
pf (i) is first computed when i is inserted into the open lists,
with t = tnow at that time using the then-current Mi, and then
every tu = 100 expansions, the pf (i) values are re-computed
for all nodes on the open lists with updated t = tnow and Mi.

Using a dual open list with these value functions will result
in search that is somewhat self-balancing with respect to time
pressure. If all deadlines are far in the future, the pf (i) value
for nodes with good f(i) values will be 0, as there is esti-
mated to be sufficient time to complete the search from i to
the goals. Hence, as pf (i) is tie-broken by f(i), the best state
on the f(i) and pf (i) open lists is the same, so search will
attempt to reach the goals quickly, which is sensible in the
absence of apparent time pressure. Then, as time passes, the
pf (i) values for nodes with more time pressure will increase

10 100 1,000

20

40

60

80

100

EPS (log-scale)

co
ve

ra
ge

RCLL-1

10 100 1,000
0

20

40

EPS (log-scale)

RCLL-2

10 100 1,000
0

10

20

EPS (log-scale)

RCLL-3

nodisp disp dual(0.025) dual(0.1) dual(0.25)

Figure 1: Number of Solved Instances (Coverage, y-axis) at Different Expansion Rates (EPS, x-axis)

(their deadlines are closer, so the proportion of Mi after the
deadline is greater), so the best state on each open list can
differ, leading to a balance of expansions according to f(i)
that aim to reach the goals quickly and those according to
pf (i), which gather the information needed to make sensible
dispatch decisions.

Finally, while we propose alternating between expansions
according to f(i) and pf (i) as being a principled basis for
search, there are additional possibilities for either or both of
these value functions. For the first open list, which nomi-
nally assumes no dispatch and uses f(i), one could instead
use Q(i) [Shperberg et al., 2019] (with no assumed dispatch),
or the probability of failure to reach the goals from i (with no
assumed dispatch). For the second open list, which assumes
dispatch and nominally computes pf (i), one could instead
compute f(i), or Q(i) (with assumed dispatch). We evaluate
these possibilities below.

5 Empirical Evaluation
We have presented a technique for concurrent planning and
execution that relies on a simple dual-open-list mechanism.
To evaluate this, we have implemented it within the planner
OPTIC [Coles et al., 2012].2 For our evaluation, for the f(i)
open list (WA*), we set the ’W’ value to 5 – the default used
in OPTIC. Action dispatch reasoning is performed according
to Coles et al. [2024], but without the dispatch reasoning con-
straining search to expanding a promising subtree, as the di-
vergence between the best states according to f(i) and pf (i)
is an alternative to this. The only remaining parameter for the
dispatch reasoning is the dispatch threshold, which we will
explore within this evaluation. For brevity, we refer to our
new dual-open list search planner as dual.

Similarly to previous work on concurrent planning and ex-
ecution [Coles et al., 2024], we evaluate our techniques on the
PDDL encoding of the Robocup Logistics League (RCLL)
[Niemueller et al., 2015]. RCLL simulates robots moving
between different production machines in a factory, using the
machines to process raw materials into a final product. Each
order has a deadline, making this domain challenging for con-
current planning and execution. We use the same 100 RCLL

2Source code freely available from the authors upon request.

scenarios as the previous work and create 3 versions for each
one, with 1, 2, and 3 robots. Increasing the number of robots
increases the branching factor, as the robots can act concur-
rently, making the search problem harder. On the other hand,
increasing the number of robots also decreases the time pres-
sure, as more actions can be executed in parallel.

Also following previous work on concurrent planning and
execution, we evaluate each problem instance using different
simulated CPU speeds, implemented here as a fixed simu-
lated expansion rate (measured in expansions per second –
EPS). We used values for EPS ranging from 10 expansions
per second (a very slow CPU) to 1000 expansions per second
(a very fast CPU). Increasing the expansion rate allows con-
current planning and execution to perform more search before
an action must be dispatched, thus allowing us to control the
time pressure.

We compare the performance of dual to two baselines:
nodisp a situated temporal planner [Shperberg et al., 2021]
that does not dispatch actions until a complete plan is found.
disp the previous CoPE planner [Coles et al., 2024]. This
planner needs a dispatch threshold. Additionally, it relies on
the subtree focus mechanism, with a subtree focus threshold
set to half the dispatch threshold.

For dispatch threshold, we considered three possible val-
ues (0.025, 0.1, 0.25) for both disp and dual. Additionally,
for both baselines we considered whether or not to enable
the allocate-tu mechanism (from [Shperberg et al., 2019] –
when node i is expanded, tu = 100 expansions are allocated
to its subtree). Thus, for nodisp we have two versions, and
for disp we have 6 versions. For each of the baselines we
also compare to the Virtual Best Solver (VBS) – a clairvoy-
ant planner that chooses the best configuration for the specific
domain (RCLL-1, RCLL-2, or RCLL-3) and for the specific
EPS. Thus, the VBS is a hard baseline to beat.

In addition to these baselines, we also compare to a mod-
ification of dual that uses different priority functions to sort
the two open lists. As discussed earlier, the possible value
functions are f , probability of failure (pf), and Q. We use
the notation p1/p2 to indicate that the first open list is sorted
by p1 and the second by p2. As in dual, p1 is computed as-
suming no dispatch of any of the steps along the path to a
node; whereas p2 is computed assuming dispatch of all the

Method EPS
alg a d 10 20 50 100 200 300 500 1000 SUM

RCLL-1
nodisp 6 14 43 57 80 90 99 99 488
nodisp ✓ 8 30 85 74 95 99 100 100 591
nodisp VBS 8 30 85 74 95 99 100 100 591
disp 0.025 26 27 27 83 85 91 99 100 538
disp ✓ 0.025 39 36 33 90 90 94 99 100 581
disp 0.1 26 30 27 88 89 92 99 100 551
disp ✓ 0.1 40 36 33 86 93 95 100 100 583
disp 0.25 27 33 27 88 89 93 99 100 556
disp ✓ 0.25 40 36 33 88 94 95 100 100 586
disp VBS 40 36 33 90 94 95 100 100 588
pf /f VBS 25 35 30 92 91 97 100 100 570
pf /pf VBS 28 37 26 77 86 80 95 95 524
Q/pf VBS 32 41 32 89 87 93 100 99 573
Q/Q VBS 28 30 30 79 88 95 99 100 549
dual 0.025 27 39 30 87 91 96 99 100 569
dual 0.1 29 44 30 97 94 99 100 100 593
dual 0.25 28 47 31 99 97 100 100 100 602

RCLL-2
nodisp 0 0 0 0 5 13 23 34 75
nodisp ✓ 0 0 2 11 12 19 30 34 108
nodisp VBS 0 0 2 11 12 19 30 34 108
disp 0.025 9 14 0 26 30 34 34 33 180
disp ✓ 0.025 6 13 4 34 36 53 46 51 243
disp 0.1 10 15 5 27 27 31 34 36 185
disp ✓ 0.1 7 13 4 36 38 53 48 52 251
disp 0.25 7 11 2 30 28 30 34 34 176
disp ✓ 0.25 7 13 5 35 34 54 49 52 249
disp VBS 10 15 5 36 38 54 49 52 259
pf /f VBS 10 16 4 46 48 48 44 41 257
pf /pf VBS 9 12 1 10 12 16 12 18 90
Q/pf VBS 5 17 3 19 18 25 28 35 150
Q/Q VBS 5 11 2 31 27 29 32 30 167
dual 0.025 7 12 2 45 45 53 50 45 259
dual 0.1 5 13 5 41 47 52 56 48 267
dual 0.25 4 11 2 40 50 53 51 47 258

RCLL-3
nodisp 0 0 0 0 2 1 3 10 16
nodisp ✓ 0 0 1 3 5 3 3 9 24
nodisp VBS 0 0 1 3 5 3 3 10 25
disp 0.025 8 6 0 15 12 13 15 17 86
disp ✓ 0.025 2 2 0 14 10 10 4 14 56
disp 0.1 8 5 0 11 11 16 17 18 86
disp ✓ 0.1 2 3 0 14 10 8 7 15 59
disp 0.25 5 7 1 13 14 18 17 19 94
disp ✓ 0.25 2 2 1 12 12 11 6 14 60
disp VBS 8 7 1 15 14 18 17 19 99
pf /f VBS 1 2 1 16 21 21 26 21 109
pf /pf VBS 3 3 3 7 12 4 4 15 51
Q/pf VBS 1 6 2 13 15 19 15 19 90
Q/Q VBS 7 6 2 9 13 11 12 14 74
dual 0.025 0 1 5 17 16 19 18 22 98
dual 0.1 0 3 4 18 25 17 20 25 112
dual 0.25 0 3 2 15 25 20 24 28 117

Table 1: Coverage — the number of solved problems by each
technique for different expansion rates (EPS). a indicates whether
allocate-tu is used, d is the dispatch threshold.

steps along the path to a node. We compare to pf /f , pf /pf ,
Q/pf , and Q/Q. For each of these, we try the three possible
dispatch thresholds and report the VBS.

Table 1 shows the coverage (number of problems solved)
for each technique (including the VBS) for each domain and
expansion rate. For each technique we also summarize the
number of problems solved across all expansion rates, to get
a single number to compare. The best non-VBS methods for
each domain/EPS combination are in bold. The results show
that the dual technique beats the VBS of each baseline and
of the other dual open list configurations overall, as well as
in most settings. Specifically, dual with a dispatch thresh-
old of 0.1 always beats the VBS of both baselines and other
dual configurations on the total number of problems solved in
all 3 domains. Furthermore, dual with a dispatch threshold of
0.25 does even better for both RCLL-1 and RCLL-3. Looking
more closely at the best method for each domain/EPS combi-

EPS 10 20 50 100 200 300 500 1000
RCLL-1

dual(0.025) 77.8 79.6 72.6 39.8 30.8 32.4 22.6 16.7
dual(0.1) 77.8 79.3 72.1 37.5 30.1 31.7 22.8 17.9
dual(0.25) 77.2 78.9 72.4 34.7 29.5 34.5 22.7 20.0

RCLL-2
dual(0.025) 68.2 61.6 54.3 38.0 32.9 30.7 32.0 30.6
dual(0.1) 65.7 61.8 52.3 39.2 34.8 30.7 31.7 28.8
dual(0.25) 64.6 61.7 53.3 35.6 35.2 30.2 31.9 28.9

RCLL-3
dual(0.025) 62.9 59.6 51.6 38.5 33.1 28.2 27.2 22.9
dual(0.1) 61.0 57.8 50.8 35.0 31.7 28.9 25.4 21.7
dual(0.25) 61.3 56.1 48.8 37.8 27.6 32.1 22.6 22.9

Table 2: Average Agreement Rate Between Open Lists (Percent)

nation, dual is the best in 16 cases, while one of the baseline
methods is the best in 9 cases (ties are counted twice).

To illustrate this graphically, Figure 1 plots the coverage
for each EPS of the two baseline VBS and for dual with the
different dispatch thresholds. In these plots, it is easy to see
that the lines for dual are typically above that of disp, which
is typically above nodisp – especially when the expansion
rate is 100 EPS or more.

Looking more closely into the results in different domains,
in RCLL-1 the search space is small enough that even nodisp
is competitive with concurrent planning and execution. How-
ever, for RCLL-2 and RCLL-3, where the search space is
larger, using concurrent planning and execution pays off
significantly – solving at least twice as many problems as
nodisp. The difference between dual and disp is larger in
RCLL-3 than in RCLL-2, indicating that disp gets lost in the
large search space of RCLL-3 more than dual.

To better understand dual, Table 2 shows the fraction of
times both open lists agreed on the next node to expand (in
percent). This ratio is averaged across all instances for the
given domain/EPS combination. As these results show, as the
expansion rate increases, the agreement rate decreases, with a
sharp transition of around 100 expansions per second. This is
likely because, for a slow expansion rate, the second open list
detects the time pressure and prefers actions with an urgent
deadline. As the expansion rate increases, time pressure de-
creases. Furthermore, in this slow CPU regime, we can also
see that, as the number of robots increases, the agreement
rate decreases. Again, this is because increasing the num-
ber of robots increases the size of the search space and thus
increases time pressure. However, when the expansion rate
passes the critical region of 100 expansions per second, this
is less pronounced.

6 Conclusion
We have presented a new approach for CoPE. This approach
relies on building blocks developed in previous work on sit-
uated temporal planning and CoPE, such as methods for
estimating the distributions of remaining search time and
deadlines. However, the new notions of time-and-dispatch-
dependent value functions for concurrent planning and exe-
cution enable a dual-queue approach that is both simpler than
the previous state-of-the-art and outperforms it. This work
enables agents to gracefully manage planning and acting in
challenging problems involving time pressure.

Acknowledgments
This research was supported by Grant No. 2019730 from
the United States-Israel Binational Science Foundation (BSF)
and by Grant No. 2008594 from the United States National
Science Foundation (NSF). The project was also funded by
the EPSRC-funded project COHERENT (EP/V062506/1),
the Israeli CHE Data Science Grant, by the Israel Sci-
ence Foundation (ISF) grant #909/23, and by Israel’s Min-
istry of Innovation, Science and Technology (MOST) grant
#1001706842, in collaboration with Israel National Road
Safety Authority and Netivei Israel.

References
[Benton et al., 2012] J. Benton, Amanda Coles, and Andrew

Coles. Temporal planning with preferences and time-
dependent continuous costs. In Proceedings of ICAPS,
2012.

[Cashmore et al., 2018] Michael Cashmore, Andrew Coles,
Bence Cserna, Erez Karpas, Daniele Magazzeni, and
Wheeler Ruml. Temporal planning while the clock ticks.
In Proceedings of ICAPS, pages 39–46, 2018.

[Coles et al., 2010] Amanda Coles, Andrew Coles, Maria
Fox, and Derek Long. Forward-chaining partial-order
planning. In Proceedings of ICAPS, pages 42–49, 2010.

[Coles et al., 2012] Amanda Coles, Andrew Coles, Maria
Fox, and Derek Long. COLIN: Planning with continuous
linear numeric change. Journal of Artificial Intelligence
Research (JAIR), 44:1–96, 2012.

[Coles et al., 2024] Andrew Coles, Erez Karpas, Andrey
Lavrinenko, Wheeler Ruml, Solomon Eyal Shimony, and
Shahaf S. Shperberg. Planning and acting while the clock
ticks. In Proceedings of ICAPS, pages 95–103, 2024.

[Cresswell and Coddington, 2003] Stephen Cresswell and
Alexandra Coddington. Planning with timed literals and
deadlines. In Proceedings of 22nd Workshop of the UK
Planning and Scheduling Special Interest Group, pages
23–35, 2003.

[Cserna et al., 2017] Bence Cserna, Wheeler Ruml, and
Jeremy Frank. Planning time to think: Metareasoning for
on-line planning with durative actions. In Proceedings of
ICAPS, 2017.

[Dionne et al., 2011] Austin J. Dionne, Jordan Tyler Thayer,
and Wheeler Ruml. Deadline-aware search using on-line
measures of behavior. In Proceedings of the Symposium
on Combinatorial Search (SoCS), 2011.

[Ebendt and Drechsler, 2009] Rüdiger Ebendt and Rolf
Drechsler. Weighted A∗ search – unifying view and
application. Artificial Intelligence, 173(14):1310–1342,
2009.

[Edelkamp and Hoffmann, 2004] Stefan Edelkamp and Jörg
Hoffmann. PDDL2.2: The language for the classical part
of the 4th international planning competition. Technical
Report 195, University of Freiburg, 2004.

[Elboher et al., 2023] Amihay Elboher, Ava Bensoussan,
Erez Karpas, Wheeler Ruml, Shahaf S. Shperberg, and
Solomon Eyal Shimony. A formal metareasoning model
of concurrent planning and execution. In Proceedings of
AAAI, 2023.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: an extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence
Research (JAIR), 20:61–124, 2003.

[Gu et al., 2022] Tianyi Gu, Wheeler Ruml, Shahaf S. Sh-
perberg, Solomon Eyal Shimony, and Erez Karpas. When
to commit to an action in online planning and search. In
Proceedings of the International Symposium on Combina-
torial Search (SoCS), pages 83–90, 2022.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. Journal of Artificial Intelligence Research
(JAIR), 26:191–246, 2006.

[Niemueller et al., 2015] Tim Niemueller, Gerhard Lake-
meyer, and Alexander Ferrein. The RoboCup Logistics
League as a Benchmark for Planning in Robotics. In
ICAPS Workshop on Planning and Robotics (PlanRob),
2015.

[Russell and Wefald, 1991] Stuart J. Russell and Eric We-
fald. Principles of metareasoning. Artificial Intelligence,
49(1-3):361–395, 1991.

[Shperberg et al., 2019] Shahaf S. Shperberg, Andrew
Coles, Bence Cserna, Erez Karpas, Wheeler Ruml, and
Solomon Eyal Shimony. Allocating planning effort when
actions expire. In Proceedings of AAAI, pages 2371–2378,
2019.

[Shperberg et al., 2021] Shahaf S. Shperberg, Andrew
Coles, Erez Karpas, Wheeler Ruml, and Solomon Eyal
Shimony. Situated temporal planning using deadline-
aware metareasoning. In Proceedings of ICAPS, pages
340–348, 2021.

[Thomas et al., 2024] Devin Wild Thomas, Wheeler Ruml,
and Solomon Eyal Shimony. Real-time safe interval path
planning. In Proceedings of the Symposium on Combina-
torial Search (SoCS), pages 161–169, 2024.

	Introduction
	Background
	Concurrent Planning and Execution
	Metareasoning for Situated Temporal Planning
	Metareasoning for CoPE
	Integrating Metareasoning into a Planner

	Other Related Work

	Dispatch-Dependent Value Functionals
	A Simpler Approach to CoPE
	Dispatch-Dependent Value Functions

	Empirical Evaluation
	Conclusion

