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Abstract

This paper presents an approach to integrating planning and
execution in time-sensitive environments. We present a sim-
ple setting in which to consider the issue, that we call con-
tinual on-line planning. New goals arrive stochastically dur-
ing execution, the agent issues actions for execution one ata
time, and the environment is otherwise deterministic. We take
the objective to be a form of time-dependent partial satisfac-
tion planning reminiscent of discounted MDPs: goals offer
reward that decays over time, actions incur fixed costs, and
the agent attempts to maximize net utility. We argue that this
setting highlights the central challenge of time-aware plan-
ning while excluding the complexity of non-deterministic ac-
tions. Our approach to this problem is based on real-time
heuristic search. We view the two central issues as the deci-
sion of which partial plans to elaborate during search and the
decision of when to issue an action for execution. We pro-
pose an extension of Russell and Wefald’s decision-theoretic
A* algorithm that can cope with our inadmissible heuristic.
Our algorithm, DTOCS, handles the complexities of the on-
line setting by balancing deliberative planning and real-time
response.

Introduction
The goal of planning is to synthesize a set of actions that,
when executed, will achieve the user’s goals. Most academic
research on general-purpose planning has concentrated on
off-line planning, in which plan synthesis is considered sep-
arately from plan execution. This separation was originally
motivated by the fact that even simplified off-line settings,
such as sequential non-temporal planning, are intractablein
the general case and it has helped focus research in the field
on core algorithmic issues. In the last ten years, tremendous
advances have been made in domain-independent plan syn-
thesis and in many domains we now can find parallel tem-
poral plans with hundreds of actions in a few seconds.

However, currently deployed planners for real-world ap-
plications are frequently run in an on-line setting in which
plan synthesis and execution run concurrently. Such do-
mains include manufacturing process control, supply chain
management, power distribution network configuration,
transportation logistics, mobile robotics, and spacecraft con-
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trol. To take two prominent examples, in the CASPER sys-
tem developed at JPL for the EO-1 satellite, observations
of the Earth are analyzed on-board and can trigger recogni-
tion of important activity that immediately spawns requests
for additional images (Gratch and Chien 1996). And in the
Man-U-Plan system developed at PARC for parallel printing
systems, new requests for printed sheets arrive in the system
at a rate of several per second interleaving with the printing
of other sheets (Ruml, Do, and Fromherz 2005).

Despite the importance of on-line planning domains, the
issues they raise related to wall-clock time and plan ex-
ecution have not been thoroughly explored. Indeed, dur-
ing ICAPS community meetings and Festivus events, many
prominent planning researchers have pointed out the weak
connection of academic work to industrial applications as
the most pressing issue facing the community today. One
reason for this disconnection is that real-world applications
tend to be complex. Another is that evaluating an on-line
planner is more complex than running a planner off-line. In
this paper, we first address these obstacles by proposing a
simple formulation, calledcontinual on-line planning, that
extends current standard off-line planning into the online
setting that takes into account wall-clock time. We proposea
simple and crisp setting to study and evaluate alternative ap-
proaches to the problem of time-aware planning in on-line
applications such as those outlined above. To solve prob-
lems in this setting, we present a real-time heuristic search
approach that extends the decision-theoreticA∗ algorithm
(DTA*) (Russell and Wefald 1988). The new search al-
gorithm is guided by a variation of the temporal planning
heuristic and is used in a temporal forward decision-epoch
based planner. This extends our previous work on building
an online continual planning testbed and adapting popular
offline planning algorithms to the online scenario (Benton,
Do, and Ruml 2007). Our approach also utilizes our recent
work on anticipatory planning algorithms for probabilistic
planning (Hubbe et al. 2008) to anticipate uncertain online
goals.

The paper is organized as follows: we start by formal-
izing the continual online planning problem. Next, we de-
scribe our search-based approach, Decision Theoretic On-
line Continual Search (or DTOCS1) that extends DTA* to

1Pronounced “detox.”



online planning, concentrating on key issues such as how
to manage search time and when to issue an action to exe-
cute. We continue with discussion on a new temporal plan-
ning graph based heuristic adapting to the online problem
constraints and objective function. We finish the paper with
discussion on potential future work.

Continual On-line Planning
We propose a simple setting we callcontinual on-line plan-
ning. We assume that goals arrive over time according to
some probability distribution that can be usefully modeled.
Each goal has an associated reward and rate at which that re-
ward decreases as time passes, starting at the moment when
the goal is revealed. Each action the agent can issue has a
known fixed cost. A continual on-line planning problem is
defined by the tuple〈F, S, A, G, C, R〉 where S is a set of
possible states, each state consists of a set of facts which are
a subset of F, and A is the set of actions that can be taken in
the problem. G is a function for generating goals over time,
and C is a cost function mapping actions to real values. For
eachg ∈ G, a(g) is the arrival time ofg, v(g) is the initial
reward value, andd(g)is a linear degradation factor for the
reward given by achievingg. Each goal is defined by the
usual partial state definition to be achieved.R(g, t) is a re-
ward function, giving a real value for goalg at timet. For a
set of goalsG and timet, we compute the reward obtained
by achievingg as

R(g, t) = v(g) − (t − a(g)) ∗ d(g)

The agent collects a goal’s current reward at the first time
that the goal’s partial state specification holds between the
arrival time of the goal and the time that the goal’s re-
ward reaches zero. The world state can be immediately
changed—there is no requirement in our current formula-
tion that the goal condition persist for a particular interval.
The objective of the agent is to maximize its totalnet utility
over its entire execution time, the sum of the goal rewards
collected minus the sum of the costs of the actions executed.
In other words, we want to maximize

O(T,G) =

∞
∑

t=1

∑

g∈Gt

R(g, t) − C(αt)

whereT is a set of time points defined by action beginnings,
ends, and goal generations.G is the set of all generated
goals,Gt is the subset which have been achieved at timet
but not achieved beforet, andαt is the set of actions be-
gun at timet. C(αt) returns the summed cost of any actions
started at timet or 0 if none were started at that time.

While the new goal set changes the objective function
over the agent’s possible action sequences, we assume that
the arrival of a goal does not affect the current state in any
way. For example, it cannot affect the applicability of ac-
tions. Actions in our setting are deterministic, as opposedto
settings in which executed actions may fail to achieve some
or all of their post-conditions or cause additional effectsbe-
yond what was expected. To keep the problem simple, we
assume that, apart from the stochastic arrival of goals and

the actions issued by the agent, the world is deterministic.
This means that there is a single agent and that the state is
fully known at all points in time.

While one could simply synthesize a complete plan for
the current set of goals, replanning whenever new goals ar-
rive (Benton, Do, and Ruml 2007; Gratch and Chien 1996;
Ruml, Do, and Fromherz 2005), the complexity of complete
plan synthesis can delay the start of action execution. Be-
cause goal rewards decay as time passes, this strategy can
result in lower net utility than a time-aware search strat-
egy that interleaves further planning with the issuing of ac-
tions for execution. Interleaving planning with execution
provides the possibility of achieving progress toward goals
while planning for the future. It is important to note that
time-aware search is different than anytime search which
maintains an improving stream of complete incumbent so-
lutions. While algorithms for this setting might find solu-
tions and improve them, the focus of time-aware search is
to be able to adapt to the arrival of new goals, rather than
maintaining solutions for a static set of goals.

Furthermore, because we assume that the goal arrival dis-
tribution is known (or estimated on-line), we want to be
able to plan for the future, acting in a way that anticipates
any likely future goal arrivals. Because goal arrival does
not change action applicability, there is no danger that we
will issue an action whose execution depends on a goal that
we expect to arrive in the future. If the goal fails to arrive,
we simply receive less reward than expected, decreasing net
utility.

As time passes, degradation in goal reward may lead to
its reward no longer being greater than the cost of achiev-
ing it. Given that the objective in this setting is to maximize
net utility, it may be detrimental to try to achieve all pos-
sible goals. Because of this, the setting can be seen as an
extension of a partial satisfaction net utility problem (PSP
net utility.)

Previous work in online planning has attempted to opti-
mize average goal completion time and action costs up to
some testing horizon, sometimes paying attention only to
execution time for plans generated (Benton, Do, and Ruml
2007; Hubbe et al. 2008). While one might assume that
planning time is negligible, if it must be done repeatedly (ei-
ther at every execution step or whenever a new goal arrives)
or is done in a large enough state space, the time spent plan-
ning may be just as important as the time spent executing the
plan. A truly balanced algorithm would minimize cost and
planning time, while maximizing reward for goals achieved.

A further complication relates to our dynamically chang-
ing reward structure. Approaches for handling dynamic
cost changes (e.g., changing environments) have been pro-
posed. For example, the D* Lite algorithm is made to re-use
past search effort and recalculate heuristic values when an
agent discovers a change in the environment (Koenig and
Likhachev 2002). However, we have no such changes on
rewards. Instead, we have a constant, measurable change
dependent on time. For this reason we can give the exact
reward (given by the current goals) at any time point and
plan from there. Other environments have dealt with limited
time for issuing actions (Korf 1990), but have used a static



1. while the utility of search> 0
2. action← select action to search
3. repeatk times
4. if a new goal has arrived, then
5. clear the search tree and go to line 1
6. if real time has reached the time stamp of the root, then
7. prune everything except the subtree under the

advance timetop-level action
8. go to line 1
9. expand the best node underaction

Figure 1: Pseudocode for DTOCS

time limit to decide when to issue each action, rather than
adapting planning time to maximize reward. The Decision-
Theoretic A* algorithm (DTA*) (Russell and Wefald 1988)
makes some effort to balance search time with plan qual-
ity in a real-time setting, but did not handle decreasing goal
reward, newly arriving goals, or partial satisfaction.

Our Approach
In this setting, we face a number of challenges that are not
present in traditional planning. Because planning time influ-
ences the received reward, it may be advantageous to begin
issuing actions before settling on a complete plan. In our
setting, we are not strictly required to reach any particular
goals, thus any action sequence is a legal plan and we do
not risk incompleteness from issuing actions incrementally.
Given the fact that the same plan executed at a different time
gives different reward and our knowledge of the future is
uncertain, it is also difficult to characterize optimal plans.

Given that goals arrive as we plan and execute, our algo-
rithm, called Decision Theoretic On-line Continual Search
(DTOCS), must use some method to predict and plan ahead
for likely future goals. We have to decide somehow when
to issue actions that we think are the best. As mentioned
above, our objective is to maximize reward, minimize cost,
and minimize actual time spent for both planning and ex-
ecuting to avoid goal degradation. Given our novel objec-
tive function, we must establish an appropriate expansion
order for our search. Finally, we must handle the passage of
real time as we search, handling additional goals, changes
in which actions are executing, and degradation of goal re-
ward. We will discuss each of these issues in detail below,
and pseudocode is given in Figure 1.

Incremental Heuristic Search
We take inspiration from real-time search algorithms (Korf
1990) and simulation-based MDP solvers (Yoon et al. 2008).
Unlike real-time search, we do not need a hard pre-specified
limit on the amount of search performed before an action
is issued. We use the termincremental heuristic searchto
differentiate this setting. Unlike hindsight optimization ap-
proaches, we need to carefully conserve computational ef-
fort when evaluating possible actions. We follow the ap-
proach taken by Russell and Wefald with DTA*, in which
the planning agent periodically deliberates about whether
further search is likely to cause a better action to be selected.

In fact, we must be able to anticipate that the action selected
after search will be sufficiently superior to the action that
currently appears best that the delay caused by the search
will be outweighed. Unfortunately, DTA* cannot be used
directly because it assumes an admissible heuristic and as-
sumes that action execution is instantaneous.

Planning is done continuously, updating and pruning the
open list as time passes and actions are executed. The open
list is cleared, however, when new goals arrive to allow more
flexibility. The algorithm issues single actions (or “top-
level” actions) intermittently, pruning nodes under all oth-
ers but reusing nodes under the issued action by advancing
the plans past that action. Confidence bounds are maintained
on the top-level actions, representing the range within which
the actual value the best plan underneath a top-level actionis
likely to take. We know that our heuristic has some amount
of error and cannot be certain of any values for paths we
have not fully explored. The DTA* framework does not di-
rectly apply, though, because it assumes a strict decrease in
optimism along a path and the heuristic for the PSP net util-
ity setting upon which our proposed heuristic is based is not
optimistic. Because a top-level action’s value can either in-
crease or decrease, DTA*’s assumption that we need only
search under the currently-best top-level action no longer
applies.

Choosing when to issue actions is handled in DTOCS by
determining whether the possible benefit of further search
outweighs the loss in goal reward due to delaying action.
Assume we have an actionα which we currently believe is
the best action, and an actionβ which we are not completely
certain is worse. More search may reveal thatβ is, in fact,
the best andα is not. However, the time spent searching will
lead to decay in goal reward. We must issue actions when
more search would likely cost more in lost goal reward than
it would offer in plan improvement.

We attempt to expand nodes according to the degree to
which they are likely to reduce our uncertainty about which
top-level action is best. If goal reward did not decay, we
could always search until we were confident that no ac-
tion was better thanα. However, we must instead priori-
tize nodes based on the probability that they will increase
our certainty about the value ofα or any other action with
confidence bounds which overlapα’s.

Handling the passage of time can be handled by the search
using one of two methods: calculating heuristic values for
some future point and re-calculating only when that point
is reached, or generating heuristic profiles which are time
aware. The first solution requires choosing the appropriate
set of future points (or “happening points”) for which to cal-
culate heuristic values, and could lead to large amounts of
overhead in calculating new values at these intervals. The
heuristic profile solution gives a heuristic which is actually
a set of values, each pertaining to particular times. It is more
computationally expensive to compute up front but saves re-
calculation costs.

Anticipating Goal Arrival
To predict goal arrival in a computationally tractable fash-
ion, we generate sample futures with anticipated goal ar-



rivals in each. As in previous work on anticipatory planning
and hindsight optimization, our algorithm samples possible
futures using a goal arrival distribution and evaluates states
according to the samples taken. This distribution could be
provided as a part of the domain or learned from experience.
These sampled futures look ahead into the future by a fixed
horizon. Goals are added to a sample by using the goal gen-
eration function. These samples allow us to deal with con-
crete futures, rather than simply a goal arrival probability.

Yoon et al. (2008) evaluated single actions by calculating
Q values for each action available from the current state ac-
cording to each sampled future. DTOCS uses information
from all sampled states to evaluate plans extending further
into the state space than a single action. We generate plans
that attempt not only to meet the goals of the current state
but also goals from the sampled futures. When evaluating a
state, we can easily calculate the heuristic for each sampled
future by simulating execution of that plan in the sampled
future. When we average these values, greater attention will
automatically be paid to currently known goals that have al-
ready arrived because they will be present in all samples.

We will, however, have to modify or replace samples as
time passes. First, our samples become invalid when their
horizon becomes too close at hand to be useful for predic-
tion and planning. We can avoid this happening at every
time step by creating them with a longer horizon than we
require and only updating them when they reach the actual
desired horizon value. Likewise, samples will be less useful
in evaluating plans which extend further into the future than
the futures’ current horizon. The occurrence of some events
will also invalidate our samples, such as goals arriving which
were not anticipated or anticipated goals not arriving. While
replacing invalid samples is an obvious solution to this prob-
lem, it could cause drastic changes in heuristic values and
lead to our open list needing to be completely re-ordered.
There may be some benefit to extending, rather than replac-
ing samples, because this may lead to less extreme change in
heuristic values. In many cases, though, extending samples
could lead to differences in heuristic values just as large as
replacing or may lead us to depend too heavily on a limited
sample set which may not be representative of the real goal
arrival distribution and should, in fact, be replaced.

Search Space Structure
The state space is modeled after the one used by the Sapa
planner (Benton, Do, and Kambhampati 2009). However,
we split the open nodes between the top-level actions with
which their plans begin. It is important to note that “ad-
vance time” is always an available top-level action, allowing
the agent to wait for the next happening point to add new ac-
tions to the plan/execution. When advancing time, we move
forward to the next happening point. These are traditionally
the beginnings and ends of currently executing actions, but
we face the complication that actions may not always be ex-
ecuting. Because of this, we include additional happening
points for each goal, based on the predicted arrival time mi-
nus the makespan of the relaxed plan required to achieve it.
We may, however, still not be acting at the right times, such
as when goals arrive. We can add more happening points at

regular intervals, but must take care not to make them too
far apart or too close together.

Figure 2 provides an illustration of a Sapa-style search
space where two actions, A and B, are applicable. There-
fore, the available top-level actions are to advance time (not
issue any action), issue action A (and immediately consider
issuing an additional action or advancing time), or issue ac-
tion B (thereby committing to not issuing action A, hence
we must also advance time). After issuing action A, the cur-
rent state would move tos2 and we would consider either
advancing time (and committing to not issuing B) or imme-
diately issuing B to be executed along with A (and advanc-
ing time, because no more applicable actions are available
to consider). In the figure, filled nodes are those at which
time has advanced and hollow nodes represent intermediate
decisions about additional actions to issue.

Confidence values for plans or top-level actions are based
on an estimate of error in our heuristic. Much like the goal
arrival distribution, this error measurement could be pro-
vided ahead of time or learned and could include features
such as number of goals. As a plan is calculated further,
more action costs are incurred and goals are achieved and
we are, therefore, certain about the cost and reward for those
goals, because goal sets in each sampled future are fixed.
Confidence should, then, increase as search along a path
progresses. The value of a top-level action and our confi-
dence in it is based on the current plans (open nodes) under
it. For an actionα and set of nodes under itx with associ-
ated probability functions for f-value assignments, its value
is calculated as

val(α, x) = E
~x∈Rn

[||~x||∞] =

∫

~x∈Rn

(P (~x|x) ∗ ||~x||∞)d~x

for P (~x) =
∏

P (xi) where eachP (xi) is our belief of the
likelihood of the node at indexi having the valuexi accord-
ing to our current belief about that node’s value and heuristic
error. For the vector~x, ||~x||∞ is the element-wise maximum,
giving the highest value in the vector (i.e. the best node un-
der a top-level action.)

We could simply use the value of the best plan under a
top-level action, but the best may change to shorter plans
(which we will likely be less confident in) as we discover
that plans are not as good as the heuristic led us to believe.
We would prefer to have a measure of uncertainty that con-
stantly decreases with continued search, using information
about some or all plans under the top-level action. Ideally,
we would define~x as the set of all nodes underα. How-
ever, we can reduce the size of computation by considering
only a smaller set of nodes, either some constant number or
selecting nodes within a certain range from the best node.
One promising option is to pick nodes with expected values
within the range of the confidence bound of the best node or
the range we think its value is likely to change given a set
amount of search.

Issuing Actions
The choice of when to issue an action is made by determin-
ing when the estimated benefit from further search would



current state

s1

AT

AT A

AT B+AT

B+AT

s2

A

AT B+AT

s3

B+AT

AT A

AT B+AT

B+AT

Figure 2: The structure of a Sapa-style incremental search space when two actions A and B are applicable.

Figure 3: Left: The choice of action is clear. Right: Search may be justified.

outweigh the cost of doing more search. If search proves
to be worthwhile, we continue expanding nodes. To reduce
overhead, we assume some fixed ’quantum’ of search (no-
tatedk on line 3 in Figure 1) between meta-level delibera-
tion. occurs between evaluations of cost and benefit. More
search along a path takes reward and cost that were previ-
ously estimates (due to the heuristic) and places them in the
realm of certainty (because they have actually been experi-
enced along the path.) Ultimately, we want to issue actions
when we have explored far enough along paths to be sure
that our estimate of the action’s value is a good representa-
tion of reality.

In Figure 3 there are two examples of sets of actions under
which some search has been performed, and further search
may or may not be merited. On the left, action A has an
expected net utility of 10 and the variance in the belief dis-
tribution is small, indicating that we are quite certain about
that value. Action B has little overlap with A, and we are
certain enough about the value of advancing time that it is
unlikely that further search would reveal it to be better than
A. Delaying execution for search would only cause goal re-
ward degradation, so we choose to issue A. On the right in
Figure 3, A still has the best expected value but we are less
certain. We are also less certain about B’s value, and ad-
vance time has substantial overlap with A. Depending on the
rate of goal reward decay, further search may be beneficial
to refine our beliefs about A and B. It is important to note
that uncertainty about A would not be enough on its own to
merit more search. Had we been uncertain about A but very
certain that the values of all other actions were lower than

A’s, we would still be unlikely to change our preference for
A after more search.

To compute the value of search, we need to estimate the
effect of search and time spent searching on our beliefs about
the values of top-level actions. We would like an estimate of
how much we stand to gain if we discover a mistake in our
belief about which action is best (benefit) and how much we
stand to lose by possible wasted search effort (cost). Letα
be the action currently judged best andβ an action that may
be better. We will usevt(α) to represent the value of exe-
cutingα at timet, taking into account how the goal rewards
will decay. We can obtain the utility of search for line 1 of
Figure 1 as

utility of search at timet =

∑

β∈actions,β 6=α

∫ ∞

y=0

p(α = y)

∫ y

z=0

p(β = z)(vt+δ(α) − vt(α))dz+

∫ ∞

z>y

p(β = z)(vt+δ(β) − vt(α))dzdy

The inner integral on the first line (overz from 0 to y) rep-
resents the loss of net utility that we experience if we search
for time δ and still choose to executeα. Becausev(α) is
usually decreasing in time, this integral will usually be neg-
ative. The second line (forz greater thany) represents the
situation where we discover thatβ is better thanα and we
execute it instead. This part of the equation could be either



positive or negative, depending on how the delayed value of
β compares to the original value ofα. This formulation will
likely be infeasible to evaluate directly, but will guide our
development of an efficient approximation.

Focusing Search
Because our primary goal in the search is to become more
certain about the values top-level actions, we want to direct
our search to reduce uncertainty about them as quickly as
possible. We may not want to search under the top-level ac-
tion we currently think is best (α), because we may already
be quite certain of its value, but not certain whether another
action is better or worse because their confidence bounds
overlap. Our strategy, then, is to focus search under the
node with confidence bounds overlappingα (this includesα
itself) and which our model leads us to believe will produce
the greatest reduction in uncertainty if we were to search un-
der it. We can either use a learned model for change in cer-
tainty given a set amount of search or use the confidence dis-
tribution to determine it. To use the confidence distribution,
we can sample from that distribution and use the sampled
probability that an action has the best value times the vari-
ance in values sampled. Using a learned model of change
in uncertainty, the correct action under which to search could
be determined as follows. If we assume a random, unknown
variableI which represents the top-level action with the best
value, we want to search in a way that reduces entropy in our
knowledge aboutI. So, we select the action under which we
will search as in line 2 of Figure 1 by

argmin
j

H(I | beliefs underxj updated by search)

whereH(I) is defined as
∑

i

−(P (I = i) ∗ log2(P (I = i)))

The values forP (I = i) will be calculated using our model
to predict the change in node values under each actionxi

assuming we were to search under it.
We could even select individual nodes from the global

open list for expansion using similar criteria. This may
be quite computationally intensive, however, for large open
lists, so we choose to first focus search by top-level action
and then select individual nodes under that.

Passage of Time
One issue that arises in our setting due to goal reward degra-
dation is the need to re-evaluate the value of plans if too
much time passes. A solution to this problem is to calculate
values for the next happening point (traditionally when the
next action in a plan begins or ends). In that case, we would
plan as if that is when we would be issuing our next action.
This approach has the advantage that it prevents reordering
of nodes within the queues under each top level action. An
alternative is to have a heuristic search method that can eas-
ily re-order search nodes. Unfortunately, this already expen-
sive process would need to be over every top level action to
reevaluate the their values, compounding the problem.

A Heuristic Evaluation Function
Online continual planning, while vastly different in many
ways, maintains some similarities to temporal and partial
satisfaction planning. This enables us to build on success-
ful heuristic techniques from those areas. In particular, we
modified temporal heuristic first defined in the partial sat-
isfaction planner SapaPS (Benton, Do, and Kambhampati
2009) during our search.

SapaPS, like most modern satisficing temporal planners,
is built for optimizing cost metrics that have a only cursory
relationship to the makespan of the plan. Heuristics built
around this idea tend to give an extremely optimistic view
of the time point that a particular goal can be achieved. This
poses some problems for planning in our scenario, where
goal achievement reward declines as time increases. De-
spite this shortfall, we wish to leverage the practical gains
these planners have shown. The challenge is how to augment
state-of-the-art heuristic approaches such that they account
for a time-dependent goal reward model.

The usual method for solving the relaxed problem in
a temporal setting involves generating a temporal relaxed
planning graph (TRPG). With this framework action costs
can be propagated, allowing for local decisions on the least-
cost supporting action for a given (sub)goal during relaxed
plan extraction (Do and Kambhampati 2003). We follow this
same methodology, additionally building a separate simple
temporal problem (STP) to reason about goal achievement
time. Specifically, the relaxed plan extraction process gener-
ates an STP that accounts for: (1) action durations; (2) action
precedence and (3) static, binary mutual exclusions. While
the original process naturally handles the first two points,
addressing mutual exclusions is done only in the STP.

Finding Goal Achievement Time

A simple temporal problem can give estimates for goal
achievement time, thereby providing a guess as to the po-
tential reward that may be received at a particular state. We
create an STP while extracting a relaxed plan, adding con-
straints inherent with the relaxed plan structure, as well as
new constraints dealing with mutual exclusions between ac-
tions. Figure 4 shows the algorithm for relaxed plan extrac-
tion. The algorithm introduces additions to the relaxed plan
extraction process found in the planner Sapa (Do and Kamb-
hampati 2003), which first introduced the RTPG.

Our algorithm needs to distinguish between an action’s
start and end points to account for duration in the resulting
STP. We usea⊢ anda⊣ to respectively denote the start and
end points of a durative action..

The algorithm works as typical for relaxed plan extrac-
tion. For each goal, it finds a least-cost action supporter.
At that time, a constraint is added to the STP that indicates
the start and end points of the action must be separated by
at least its duration (line 5). The supporter’s conditions are
then added to the goal queue (i.e.,OpenConditions), and the
next goal is processed. When a condition is added to the
queue, it is associated with the action that achieved it. Then
the supporting action is included into the relaxed plan and a
constraint is added to the STP that includes the precedence



1. add all goals as initial set of open conditions
2. include dummy end action in relaxed plan (RP)
3. while there are no open conditions
4. add least-cost achievera for next open condition to RP
5. add constraint betweena⊢ (start) anda⊣ (end) (duration length)
6. add constraint betweena and RP action in chain (0 length)
7. for all actionsb mutex witha

8. add 0 length constraint betweena andb

9. add all preconditions ofa to open conditions list
10. add dummy start action to RP
11. add constraint from[0,∞] between start and end
12. add 0 length constraints between start and actions at time 0

Figure 4: Relaxed plan extraction procedure with simultane-
ous construction of an STP

Figure 5: Problem set up for our example.

between supporting and supported action with respect to a
particular subgoal (line 6).

These constraints are implicit in the structure of the re-
laxed plan, and so add very little with regard to estimates
on goal reward. To perform meaningful action reschedul-
ing, we add binary mutual exclusion constraints in the STP.
Upon selecting an actiona, we scan the current relaxed plan
and add a constraint betweena and any actiona′ that deletes
the conditions ofa (line 8). This allows us to gain better
estimates on goal achievement time, thereby allowing our
reward model to be evaluated.
Solving the STP Using the STP, we can gain an estimate
on the reward for a particular goal. In other words, solving
the STP gives us the time at which particular actions will
begin and end (Dechter, Meiri, and Pearl 1991). The end
point of actions that achieve a top level goalg will give us
the earliest time point at which the heuristic believesg is
achievable given the constraints in the STP. This allows us
to find an estimate on the reward that we may achieve for the
goal. For each goalg, an estimated achievement time point
t, and an arrival timeρ(g) we apply the following heuristic
reward function:

Rh(g, t) =











v(g) if t ≤ ρ(g)

d(g) ∗ t + v(g) if ρ(g) < t ≤ −v(g)
d(g)

0 if t >
−v(g)
d(g)

This reward function differs from that of the original prob-
lem in that we explicitly assume that goals of a given future
have already arrived (even if their scheduled arrival time,

according to the future distribution, would be later). We do
this so the heuristic can provide better estimates on possi-
ble reward, even when it is over-optimistic as to the goal
achievement time.
Example: To see how the STP works (ignoring goal re-
ward for the moment), consider a logistics problem where
we must deliver two boxes (presently in the truck),box1and
box2, to locationsb andc, respectively (see Figure 5). Mov-
ing between locations takes 5 time units, while dropping
a box at a location takes 1 time unit. A temporal relaxed
plan for this problem would normally consider both goals
achieved after 6 time units. That is, it would find a relaxed
plan where the truck moves simultaneously from locationa
to locationb and from locationa to locationc. It would sim-
ilarly drop both boxes at the same time. Using the STP gen-
erated during relaxed plan extraction (as seen in Figure 6),
we can re-calculate an estimate as to the makespan of the
relaxed plan (and how long it takes to achieve each goal).
In this case, solving the STP from thestart action to the
goal-achiving actions (i.e.,drop box1anddrop box2) gives
us a time of 11 for both goals (and the entire plan). We can
subsequently calculate reward for each goal given a reward
function.

Selecting Goals
To select goals, we use a method similar to the one found in
the planner SapaPS (Benton, Do, and Kambhampati 2009).
The algorithm first calculates the new reward given by the
time point at which a goal could be achieved according to
the STN. Then, for each goal, it finds the difference between
this value and the cost of reaching the goal (according to the
cost propagation process). If this results in a value less than
or equal to zero, the goal and all actions supporting only that
goal are removed from the relaxed plan.

Possible Extensions and Conclusion
While our setting includes arrival of goals, this could be ex-
tended in two ways: goals whose arrival affects the problem
state, and non-determinism in action results. In some do-
mains it might make sense for arriving goals to affect the ap-
plicability of actions, but plans may not be applicable across
multiple sampled futures. Likewise, uncertainty about the
results of action execution could lead to plans not giving the
reward we expected or even being possible in reality. Be-
cause we issue only single actions, this may be easier to han-
dle in a naive manner, however, since we could assume ideal
conditions in our search but only issue actions which are still
applicable to the agent’s real state. Both of these could be
encompassed and further extended by asynchronous arrival
of facts or sets of facts, which would, therefore, raise many
of the same issues if it were used to extend our setting.

Given the conceptual work already done on DTOCS, one
obvious next step is an implementation and comparison with
previous work. An analysis of its performance would give
us further insight into its strengths and weaknesses, and pos-
sibly indications of further room for optimization. One is-
sue in implementation is which of the possible shortcuts and
approximations to use for top-level action evaluation, calcu-
lating the worth of further search, and focusing search. The



Figure 6: A graphical representation of the STP generated bythe heuristic for our example.

correct balance of accuracy with efficiency will be vital to
evaluation.

Additionally, future work should include exploration of
the theoretical aspects of DTOCS. It would be useful to im-
prove our understanding of the worst and best case perfor-
mance, as well as the space required for the various calcula-
tions. Additionally, we should examine the space and time
required to successfully learn the models required for our
calculations of heuristic error and value change.

One extension to the algorithm would be the calculation
of some heuristic value that represents more than a single
point in time. We would prefer some sort of heuristic pro-
file that gives us values for a state over some range of time.
However, the issue of how to sort nodes with different values
depending on the time is not trivial. Likewise, we would still
have to re-calculate these profiles when time passes beyond
the end of their current range.

Conclusion
Several practical planning problems involve on-line contin-
ual planning due to asynchronous goal arrival. However,
most academic planners focus on fundamental, off-line sce-
narios and ignore the challenges associated with interleav-
ing execution and planning. In particular, on-line continual
planners must consider whether to continue to plan or to be-
gin issuing actions while attempting to optimize wall-clock
time and action cost. In our scenario we generalize this prob-
lem further to handle cases where goals have a decreasing
reward relative to their arrival time and achievement time.
This compounds the problem of balancing planning and ex-
ecution time, because goals become irrelevant if their reward
reaches zero. In these cases, failing to issue an action in a
timely manner significantly impacts the quality of the result-
ing plan.

To handle these issues, we developed a search algorithm,
DTOCS, based on DTA* The idea is to search under top-
level actions for a given amount of time in order to reduce
the uncertainty we have about their values. Additionally, we
define a searchbenefitandcostunder each top-level action
such that we can decide which is the most promising in or-
der to narrow down the action choice. An action is issued
when the possible benefit of further search outweighs the
loss of goal reward due to delaying action execution. During
search, DTOCS applies a temporal heuristic that reschedules
relaxed plans for estimating goal achievement time.

This search methodology offers a way of handling on-line

continual planning problems where wall-clock goal achieve-
ment time is of paramount importance. Given that the struc-
ture of the framework is general enough to use any search
under the top-level actions, the DTOCS algorithm will likely
easily extend to handling scenarios that optimize over other
quality measures dependent on wall-clock time. As such,
we believe that the approach could potentially find applica-
tions in any area of robotics and artificial intelligence that
involves such metrics.
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