
Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search

Maximilian Fickert*1, Tianyi Gu*2, Leonhard Staut*1, Wheeler Ruml2, Jörg Hoffmann1, Marek Petrik2
1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

2Department of Computer Science, University of New Hampshire, USA

Abstract

Suboptimal heuristic search algorithms can benefit from rea-
soning about heuristic error, especially in a real-time setting
where there is not enough time to search all the way to a
goal. However, current reasoning methods implicitly or ex-
plicitly incorporate assumptions about the cost-to-go func-
tion. We consider a recent real-time search algorithm, called
Nancy, that manipulates explicit beliefs about the cost-to-
go. The original presentation of Nancy assumed that these
beliefs are Gaussian, with parameters following a certain
form. In this paper, we explore how to replace these assump-
tions with actual data. We develop a data-driven variant of
Nancy, DDNancy, that bases its beliefs on heuristic perfor-
mance statistics from the same domain. We extend Nancy and
DDNancy with the notion of persistence and prove their com-
pleteness. Experimental results show that DDNancy can per-
form well in domains in which the original assumption-based
Nancy performs poorly.

Introduction
When an agent has to react to its environment in real time,
there often is not enough planning time to find a complete
plan. Instead, partial commitments must be made based on
partial exploration. Real-time heuristic search approaches
this problem by exploiting the information contained in a
heuristic function. Such a search can be viewed as starting
from an initial state and then trying to reach the goal via a
series of search episodes. Within each episode the agent per-
forms an amount of lookahead search limited by runtime or
by the number of expanded nodes, guided by the heuristic
function. The agent commits to the most promising action,
or subsequence of actions, given its lookahead, and iterates
until it reaches a goal state.

One key element in such an arrangement is learning: the
agent needs to revise its heuristic estimation of state values.
Otherwise it can easily get stuck in cycles; in particular, it
will never escape a local minimum unless its lookahead is
large enough to see beyond the minimum’s exits. A natural
form of learning is the backpropagation step proposed by

*These authors contributed equally to this work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Korf (1990), updating state value estimates backwards from
the lookahead frontier at the end of each iteration. The re-
sulting three-phase paradigm – lookahead, update, execute
– has become standard, with perhaps LSS-LRTA* (Koenig
and Sun 2008) being its most popular exemplar.

In this paper, we emphasize additional ways in which a
search can reason about heuristic error. Such concerns are
central to real-time planning, for the agent must commit
to action decisions while the leaf nodes of the search are
still open and it has no immediate information about them
other than their heuristic values. Various methods for rea-
soning about heuristic error have been proposed for pur-
poses different from real-time search (Stern et al. 2014;
Rose, Burns, and Ruml 2011; Burns and Ruml 2013), that
we outline in some detail further below. For real-time search,
proposals in this direction have a long history in AI re-
search (e.g. (Mutchler 1986; Pemberton and Korf 1994)).
Here we follow up on a recent proposal: the Nancy algorithm
(Mitchell et al. 2019). Adapting earlier ideas by Pemberton
and Korf (1994), Nancy manipulates cost-to-go beliefs, i.e.,
distributions of cost-to-go. Nancy backs up such belief dis-
tributions instead of just heuristic values, thereby explicitly
maintaining state-value uncertainty. The belief distributions
are used to guide expansions towards the most informative
states, replacing the conventional A* expansion policy with
one that attempts to minimize risk, i.e., the regret if the ac-
tion committed to is in fact not the optimal choice.

The key question then becomes where these cost-to-go be-
liefs actually come from. Instead of a heuristic value, Nancy
requires such distributions at each leaf node. Mitchell et
al. (2019) address this by adopting assumptions. They obtain
the desired beliefs as a function of heuristic value, assum-
ing that (1) the beliefs are Gaussian and (2) their variance
decreases as search gets closer to the goal. While these as-
sumptions seem plausible, and while Nancy has been shown
to outperform LSS-LRTA* in certain situations, the question
arises if it is possible to replace the assumption-based beliefs
with actual data. This is what we explore in this paper.

We develop a data-driven variant of Nancy, DDNancy,
that gathers its beliefs from statistics. Prior to the real-time
search on instances of some domain, we solve example in-
stances of that domain and store pairs of heuristic value h



vs. the real cost-to-go h∗. The belief distribution for heuris-
tic value h is then the set of h∗ values associated with h in
the data. We furthermore develop an extension to Nancy, and
transitively to DDNancy, which makes the algorithm per-
sistent in its exploration of promising heuristic values and
thus renders it complete, i.e., yields the guarantee that even-
tually a goal state will be reached in a dead-end free state
space. The ideas used in our proof can be transferred to LSS-
LRTA*, for which we give a similar completeness proof
that, in contrast to prior work, does not require the heuristic
to be consistent or admissible. Finally, running experiments
in classical planning as well as single-agent search bench-
marks, we show that DDNancy is able to perform well in
domains where assumption-based Nancy performs poorly.

Previous Work
There are many suboptimal heuristic search algorithms that
make assumptions about how the heuristic behaves. Most
of these search algorithms work very well on the domain
problems that follow the assumptions. For example, poten-
tial search (Stern et al. 2014) is a cost-bounded suboptimal
search that expands the open node with the highest poten-
tial value. The potential value is given by C−g(n)

h(n) , which
is based on a linear relative heuristic error model, that as-
sumes the error of the heuristic can be modeled as a ran-
dom variable multiplied by the heuristic value. Stern et al.
prove that, under this assumption, potential search expands
the node most likely to lead to a solution within the cost
bound. IDA*IM (Burns and Ruml 2013) learns an incre-
mental model of heuristic error and uses it to choose bounds
for an IDA* search. Skeptical search (Thayer, Dionne, and
Ruml 2011) learns a simple model of heuristic error online
and uses it to guide a bounded-suboptimal search. However,
all these works consider only the heuristic value itself, with-
out the uncertainty estimates that we will exploit here.

Real-time Heuristic Search
In real-time search, there are three phases: lookahead, deci-
sion making, and learning.

In the lookahead phase, the algorithm performs a certain
amount of lookahead search, e.g., select the best node in the
open list, expand it, push all the child nodes into open list,
then close the node. There are different ways to sort the open
list. LSS-LRTA* follows the A* convention to order nodes
by f value, which is cost-to-come g plus the lower bound
estimate on cost-to-go h. However, as pointed out by Mutch-
ler (1986), expanding the frontier node with lowest f is not
necessary the optimal way to make use of a limited number
of node expansions because f does not take any heuristic er-
ror into account. A better alternative is to sort the open list
by f̂ , which denotes an estimate of the expected value of f∗,
rather than a lower bound (Kiesel, Burns, and Ruml 2015).
This better matches the principle of rationality, which stipu-
lates minimizing expected cost.

In the decision making phase, the algorithm has to commit
to the best action given the current lookahead search infor-
mation. LSS-LRTA* follows the A* convention to move to-
ward the frontier node with the lowest f . However, this is not

necessarily the optimal decision for on-line real-time plan-
ning (Pemberton and Korf 1994). Taking into account the
uncertainty that an agent with limited lookahead has about
the values that will be revealed by future search, it can some-
times be a better choice to commit to a action that would lead
us toward multiple good-looking options rather than one that
offers a single great-looking course of action.

In the learning phase, the algorithm backs up the infor-
mation in the search frontier towards the LSS, supporting
the decision making and the expansion strategy for follow-
ing iterations. LSS-LRTA* backs up only the lower bound
estimate h, since that is all the information it needs from the
frontier.

Nancy with Gaussian Beliefs
Recently, real-time search has been interpreted as decision-
making under uncertainty. Mitchell et al. introduced a new
algorithm called Nancy, which bases its expansion decisions
on belief distributions that characterize the agent’s uncer-
tainty about the possible true values of the action instead of
scalar heuristic values. In the lookahead phase, Nancy ex-
plores nodes in order to minimize the regret that the agent
would experience if the top-level action that is currently
deemed best were in fact not the best action to follow. The
regret is calculated by considering the post-expansion belief
for each top-level action, i.e., by considering how the be-
lief is expected to change if an expansion were made under
each action. Since the heuristic error is expected to decrease
when moving closer to the goal, the post-expansion belief is
computed by moving the mass of the (pre-expansion) belief
towards the mean, reducing its variance. As we will explain
in detail in the next section, Nancy’s decision making and
learning phases are similar to LSS-LRTA*’s, with modifica-
tions for using belief distributions instead of scalar heuristic
values.

As presented by Mitchell et al., Nancy makes use of at
least four assumptions. First, she assumes beliefs about the
true h∗ values of frontier nodes that are Gaussian, centered
around an ĥ estimate derived from h and an error model
estimated on-line during search. The error model assumes a
constant underestimate by h for every edge in the state space
graph and requires an estimate of the number of edges-to-go.
The edges-to-go are estimated by h in unit-cost domains or
a similar function d in domains with non-uniform costs (see
the original paper for details). The variance was assumed to
be proportional to the edges-to-go as well.

Second, Nancy back-propagates only the belief of the suc-
cessor with the lowest expected value. As Mitchell et al. ex-
plain, this assumes that no more information will become
available to distinguish between sibling nodes. And if multi-
ple successors look promising, they should each be allowed
to influence our belief about their parent.

Third, the regret calculation requires estimating the
change in belief that would be caused by expanding nodes
under a top-level action. While this is likely complex, Nancy
assumes it to be a simple reduction in variance of the current
belief, proportional to the estimated reduction in the number
of edges-to-go. In fact, done properly, the post-expansion
belief should be a distribution over possible beliefs, and just



Algorithm 1: Nancy
1 s := sstart
2 πcurr := 〈〉
3 while s is not a goal state do
4 sf := riskLookahead(s)
5 if sf is a goal state then
6 return path to sf

7 if f̂(sf ) < f̂(sJπcurrK) then
8 πcurr := shortest known plan to sf
9 let a0, . . . , an be the action sequence of πcurr

10 s := sJa0K
11 πcurr := 〈a1, . . . , an〉
12 update ĥ on the states expanded in the lookahead

as with the backups, multiple successors should be allowed
to influence the estimate.

And fourth, in her regret calculation, Nancy does not con-
sider the combinatorial space of outcomes, but just considers
two top-level actions at a time and assumes independence of
subtrees.

While some of these assumptions may be necessary for
computational efficiency and model simplicity, in this paper
we begin the process of understanding how to weaken them
by showing how the first assumption, regarding the leaf be-
lief distributions, can be replaced by data.

Generalizing Nancy
We introduce a new variant of Nancy that uses data gen-
erated in an offline training phase for the leaf belief distri-
butions. Since most of our proofs and theoretical discussion
apply to both the original Nancy and our data-driven variant,
we refer to the general framework as Nancy, while referring
to the specific variants as “assumption-based Nancy” and
“data-driven Nancy” (DDNancy for short). We begin by ex-
plaining the general Nancy framework in detail and the dif-
ferences between the two variants. First, we introduce some
of the notation that is used in the pseudo-code and later in
the proofs. We denote the set of applicable actions in a state
s by A(s). The successor of the state s with action a is the
state sJaK. We overload this notation for action sequences π
as sJπK. The cost of an action a is denoted by c(a), which
we also overload for paths, where the cost is the sum of the
cost of its actions. In Nancy, each state s has an associated
belief B(s) representing a probability distribution over the
cost-to-go from s. Its expected value is denoted by ĥ(s).
The post-expansion belief Bpost(s) represents an estimated
updated belief if s were to be expanded.

Algorithm 1 shows the pseudo-code for Nancy. The
lookahead phase using risk-based exploration returns the
best frontier state according to f̂ (Alg. 1, line 4), breaking
ties by ĥ. In the original description of (assumption-based)
Nancy, the search would then commit to the first action on
the best plan towards sf found in the lookahead. However,
this difference in guidance (using risk for the expansion, but

Algorithm 2: Risk-Based Lookahead
Input: s
Output: frontier state with minimal f̂

1 let TLAs be the actions applicable in s
2 while lookahead limit is not reached do
3 do a Nancy backup on TLAs (update B and Bpost)
4 α := argmin

TLA∈TLAs
f̂(TLA.open.min())

5 currentTLA := argmin
TLA∈TLAs

risk(TLA, α, TLAs)

6 s′ := currentTLA.open.pop()
7 if s′ is a goal state then
8 return s′

9 for a ∈ A(s′) do
10 currentTLA.open.push(s′JaK)

11 selectedTLA := argmin
TLA∈TLAs

f̂(TLA.open.min())

12 return selectedTLA.open.min()

Algorithm 3: Risk Value of a Top-Level Action TLA
Input: TLA, TLAs, α
Output: Expected loss of α not being the action that

minimizes f̂ after expanding under TLA
1 risk := 0

2 Bα :=

{
Bpost(α) if TLA = α

B(α) if TLA 6= α

3 for β ∈ TLAs \ {α} do

4 Bβ :=

{
Bpost(β) if TLA = β

B(β) if TLA 6= β

5 for every pair of distribution samples
xα ∈ Bα, xβ ∈ Bβ do

6 if cost(xα) > cost(xβ) then
7 p := prob(xα) ∗ prob(xβ)
8 risk := risk + p ∗ (cost(xα)− cost(xβ))

9 return risk

f̂ for the decision making) can cause the search to be in-
complete: it may happen that after making a step towards
a promising frontier node with low f̂ value, the lookahead
in the following iteration does not generate that node any-
more, which would cause the search to move away and lose
progress. Hence, we introduce a slight change from the orig-
inal Nancy framework: we keep track of the best known state
so far and the plan towards it πcurr. If the lookahead does not
yield a strictly better state, Nancy will keep moving along
πcurr. This change makes Nancy persistent, and as we show
in the theoretical analysis section, this version of Nancy is
indeed complete.

For the lookahead, Nancy uses her first expansion to gen-
erate the top level actions (Alg. 1, line 1). From that point
forward, Nancy expands nodes such that an approximation
of risk is minimized, until the expansion or time limit of the



lookahead runs out. Algorithm 2 shows the pseudo-code for
the risk-based lookahead. Each top-level action has an asso-
ciated open list (denoted by TLA.open in the pseudo-code)
that is ordered by f̂ . For each expansion, a risk assessment
is used to decide under which TLA the next element of its
associated open list is expanded. Before each expansion, the
associated beliefs B and post-expansion beliefs Bpost of all
top-level actions (TLAs) are updated first, such that they are
pointing to the best frontier node following the last expan-
sion (Alg. 2, line 3), such that, e.g., for a top-level action
TLA, B(TLA) = B(TLA.open.min()). The TLA α is the one
with the lowest expected cost f̂ , i.e., the TLA that would
be executed according to the Nancy backup if the lookahead
were to end at this moment (Alg. 2, line 4). Nancy then per-
forms the risk calculation (see Algorithm 3) and chooses the
TLA under which the next expansion is performed accord-
ingly. Recall that the risk is the expected loss that would be
incurred if α were to turn out not to be the best action to
commit to, i.e. the probability that some other TLA leads
to a better plan, weighted by the expected cost difference of
that cheaper plan. The risk value is calculated by performing
a numerical integration over every sample (i.e., pairs of cost
and corresponding probability) in Bα and every sample in
Bβ , thereby increasing the risk whenever a sample in Bβ has
cost less than that of Bα (Alg. 3, line 8).

Once the expected risk that would result from expand-
ing each node has been estimated, the node with the lowest
post-expansion risk estimate is actually expanded (Alg. 2,
line 10). This process is then repeated until the expansion
or time limit is reached, or a goal state is selected for ex-
pansion. Once the lookahead phase ends, the search per-
forms Nancy backups and executes the TLA with the low-
est expected cost (Alg. 1, line 10). In the learning phase,
the beliefs B and post-expansion beliefs Bpost of all nodes
within the local search space are updated (Alg. 1, line 12).
This learning process performs a dynamic programming-
like learning step to update the ĥ-values of the expanded
states (like LSS-LRTA*).

Nancy using Experience
Given the general Nancy framework, a central question is
how to obtain the belief B(s) about the cost-to-go associated
for each state s. In DDNancy, we construct the distributions
out of data generated in an offline phase. The data takes the
form of h, h∗ pairs, yielding a distribution of h∗ values for
each h value that DDNancy looks up during search.

Gathering these h, h∗ pairs is done in the offline train-
ing phase. First, we run an initial search on a set of repre-
sentative training instances. Each state expanded during this
search is then solved optimally, and its h and h∗ value are
recorded. The set of all h∗ values seen for a particular h
makes up the distribution used later in the online phase. As
the algorithm for the initial search, we used weighted A*
with a weight of 2 and the same heuristic function that will
be used online. The motivation for weighted A* as the data-
gathering tool is that both weighted A* and real-time heuris-
tic search are sub-optimal heuristic search algorithms. In that
sense, the visited states during the weighted A* search could

be typical, and thus make the data more informative for on-
line real-time search. The data generation process is done
for each domain individually such that the set of states seen
during this process serves as a more accurate approximation
of the states that DDNancy will see in this domain. This re-
quires new data to be generated for each domain DDNancy
is supposed to run on. However, this way we account for
different kinds of heuristic error in different benchmark do-
mains and obtain more representative and informed data.

In assumption-based Nancy, updating the beliefs of the
expanded states is done by updating the ĥ-value by propa-
gating the heuristic value of their successor with lowest ex-
pected cost. DDNancy instead propagates the belief distri-
bution of the successor, shifting all samples by the cost of
the action.

Theoretical Analysis
In this section, we show that Nancy is complete. We assume
that: (A1) action costs are greater than 0, (A2) for every
state, there is a goal reachable from it, (A3) all initial be-
liefs have finite expected value, (A4) the state space is finite.
Our proof follows the style of Korf’s (1990) proof for RTA*
and Bulitko and Sampley’s (2016) proof for Weighted Lat-
eral LRTA* (wbLRTA*): we first prove that incompleteness
implies that there must exist a subset of states within which
Nancy circulates forever. Then we prove that there cannot
exist such a set due to the updates made by the learning rule
of Nancy.
Definition 1 A subset of states S◦ is called a circulating set
if there exists a time t◦ after which the agent will visit only
states s ∈ S◦ and visit each one an infinite number of times.
Lemma 1 Under assumptions (A2) and (A4), if a real-time
search algorithm is incomplete, it must have a circulating set
S◦.
Proof. Since a goal is reachable from all states (A2)1, a real-
time search only terminates when it reaches a goal state, so
incompleteness means that the search never terminates. Be-
cause the state space is finite (A4), there must exist a subset
of non-goal states S◦ such that the agent will re-visit each of
the states in S◦ an infinite number of times after some initial
time t. Let S be the set of non-goal states. If there exist states
s ∈ S that are not visited an infinite number of times, let the
last time such a state s is visited be ts. Then t◦ := max(t, ts)
satisfies the claim.
Definition 2 A real-time search is called goal aware if,
upon generating a goal state in its lookahead, it commits to
the path towards it.

Nancy is goal aware (Algorithm 1, line 6) and so is LSS-
LRTA* (Koenig and Sun 2008, Figure 5, line 32).
Lemma 2 Under assumptions (A2) and (A4), if a goal-
aware real-time search algorithm has a circulating set S◦,
then a) there exists a finite set of non-goal states S∞ ⊇ S◦
that are expanded infinitely often, b) every successor state

1Each state having at least one successor would be sufficient for
this argument. This is implied by assumption (A2), which we use
instead for simplicity.



s′ ∈ SF := {sJaK | s ∈ S∞, a ∈ A(s)} \ S∞ appears in-
finitely often in the frontier of lookaheads from states in S◦,
c) there is a time t1 after which no s′ ∈ SF is expanded, and
d) SF is non-empty.

Proof. The lookaheads from all states s ∈ S◦ are performed
infinitely often with a fixed number of expansions, so for
each s ∈ S◦ there must be a set of states Ss∞ ⊇ {s} that
are expanded infinitely often, and so is their union S∞. S∞
cannot contain a goal, as a goal-aware search would head
towards it, breaking the circulation. The neighbor states SF
are obviously generated infinitely often from S∞; as they are
not in S∞, they are expanded only a finite number of times
so the claimed time t1 exists. SF is non-empty because S∞
does not contain a goal state, but the goal is reachable from
all states (A2), so SF must contain at least one state on a
path to the goal. All of these sets must be finite since the
state space is finite (A4).

Definition 3 A learning algorithm is called dynamic
programming-like if it updates the heuristic values of the
states S expanded in the local search space such that after-
wards the heuristic values of all s ∈ S satisfy

ĥ(s) = min
a∈A(s)

(c(a) + ĥ(sJaK))

A standard result is that, if updates of the form ĥ(s) :=

mina∈A(s)(c(a) + ĥ(sJaK)) are performed infinitely often
on a finite state-space graph with positive action costs, start-
ing from arbitrary finite initial values the state values will
eventually converge, i.e., all satisfy that equation (Bertsekas
and Tsitsiklis 1996, Proposition 2.3).

Lemma 3 Under assumptions (A1)-(A4) with S∞ as in
Lemma 2, if a real-time search algorithm that performs dy-
namic programming-like learning has a circulating set S◦,
then there exists a time t2 after which, for every s ∈ S∞, we
have ĥ(s) = mina∈A(s)(c(a) + ĥ(sJaK)).

Proof. Consider the state space sub-graph S′ induced by
S∞∪SF . The ĥ values of states sf ∈ SF are never updated,
since they are never expanded. All update operations per-
formed on S′ are well defined, i.e., consider successors con-
tained in S′. By construction, the update procedure is called
infinitely often on every state s ∈ S∞. Due to the conver-
gence of the dynamic programming-like learning procedure
with positive action costs (A1) and bounded initial ĥ values
(A3), the ĥ- values of these states will eventually converge
to a solution of the state-update equation as claimed.

In the following, we will use fs and gs to denote the f
value and g value, respectively, of a state in a lookahead
search space with respect to the current root state s of the
lookahead.

Definition 4 A real-time search algorithm is called persis-
tent if, whenever it generates a state sf on the lookahead
frontier from the current state s with f̂s(sf ) < f̂s(s) or
f̂s(sf ) = f̂s(s) and ĥ(sf ) < ĥ(s), it will eventually select
sf itself for expansion, or a state s′ where f̂s(s′) < f̂s(sf )

or f̂s(s′) = f̂s(sf ) and ĥ(s′) < ĥ(sf ).

Lemma 4 Under assumptions (A1)-(A4), a persistent and
goal-aware real-time search algorithm that does dynamic
programming-like learning cannot have a circulating set.

Proof. By contradiction. Assume that the search algorithm
does have a circulating set S◦. Then there must be sets S∞
and SF as per Lemma 2. Due to Lemma 3, we know that
ĥ will eventually be consistent on all states s ∈ S∞ at
some point in time t2. Let sf = argmins∈SF

ĥ(s) be a
never-expanded frontier node with minimal ĥ value among
such frontier nodes. Since sf is generated infinitely often,
it will be generated in some lookahead at time t3 > t2.
Since heuristic values are converged on S∞, all states in that
lookahead have the same f̂s value, and sf has the minimal
ĥ value among those states. Since the search is persistent,
it will eventually select sf for expansion, or a state s′ with
f̂s(s

′) < f̂s(sf ) or f̂s(s′) = f̂s(sf ) and ĥ(s′) < ĥ(sf ). Ob-
serve that, for every s ∈ S∞, we have ĥ(s) > ĥ(sf ) due to
convergence and positive action costs (A1). Therefore, the
state s′ cannot be contained in S∞.

Thus the search must eventually select a state not in S∞
for expansion, implying that it must eventually select a state
in SF for expansion, in contradiction to its definition.

Theorem 1 Under assumptions (A1)-(A4), a persistent and
goal-aware real-time search with dynamic programming-
like learning will eventually reach a goal.

Proof. If the search never reaches a goal, it has a circulating
set by Lemma 1, which by Lemma 4 is not possible.

Lemma 5 Under assumption (A4), Nancy is a persistent
real-time search algorithm.

Proof. If the lookahead from a state s provides a state s′

with f̂s(s′) < f̂s(s) or f̂s(s′) = f̂s(s) and ĥ(s′) < ĥ(s),
Nancy will start moving towards that state, unless the search
is already moving towards a state s′′ with f̂s(s′′) < f̂s(s

′)

or f̂s(s′′) = f̂s(s
′) and ĥ(s′′) < ĥ(s′) (see Algorithm 1,

line 7). Let sbest be the state that Nancy is currently moving
towards. There are two cases. In the first case, sbest is even-
tually selected for expansion and therefore Nancy is persis-
tent. For the second, assume that sbest is never selected for
expansion. Then ĥ(sbest) can never change, since the learn-
ing phase only updates ĥ values of expanded states. By line 7
of the Nancy algorithm, the only way sbest would not be se-
lected for expansion is if a different and strictly better state
s′best were to be discovered. Because the state space is fi-
nite (A4), Nancy can discover and switch to such a better
state only a finite number of times, so eventually Nancy will
reach and select the state she is heading toward for expan-
sion, thereby satisfying persistence.

Corollary 1 Under assumptions (A1)-(A4), Nancy will
eventually reach a goal.

Proof. Nancy is a persistent and goal-aware real-time
search algorithm (Lemma 5) with dynamic programming-
like learning, and is thereby complete under assumptions
(A1)-(A4) via Theorem 1.



We can also adapt these ideas to show that LSS-LRTA*
is complete even for heuristics that are not consistent or ad-
missible (a consistent heuristic is the only case proven in
the original paper). One avenue is to modify the notion of
persistence to only hold over the circulating set, and show
LSS-LRTA* has that behavior. However, it seems simpler to
proceed without the notion of persistence.
Theorem 2 Under assumptions (A1)-(A4), if LSS-LRTA*
breaks ties deterministically, it is complete.
Proof. For the purpose of contradiction, assume LSS-
LRTA* has a circulating set S◦. Then there must be sets
S∞ and SF as per Lemma 2 at a time t1 ≥ t◦. Let sf =
argmins◦∈S◦,s∈SF

fs◦(s), breaking ties by h and then de-
terministically following our assumption. Since sf is gen-
erated infinitely often, it will be generated in some looka-
head from a state s ∈ S◦ at time t′ > t1. Let s, s0, . . . , sn
be the states expanded in that lookahead in order of ex-
pansion. Since the heuristic is consistent on the expanded
states (Lemma 3), there are no duplicates in s, s0, . . . , sn,
as each state is only expanded once during the lookahead.
Let π = 〈a0, . . . , an〉 be the shortest path to sf . Since sf
has minimal fs (states in S∞ must have greater or equal
fs due to consistency) and ties are broken in its favor, after
the lookahead, the agent will move to sJa0K. In the learning
phase, nothing changes as ĥ is already converged. In the next
lookahead, the f -value of all states along π will be reduced
by c(a0). Observe that the f -value of all states s, s0, . . . , sn
can not decrease by more than c(a0), because otherwise that
cheaper path would have been found in the lookahead from
s. Let sp be the predecessor of sf in the lookahead from s
(i.e. the second-to-last state on the state sequence induced by
π). Since fsJa0K(sp) = fs(sp) − c(a) and there is no other
state whose f -value decreased by more than c(a), by the as-
sumption of deterministic tie-breaking, sp can only move to
an earlier position in the expansion order. Furthermore, there
cannot be a state s′ that was not expanded in the lookahead
from s but would now be expanded before sp, because then it
must have fs(s′)+c(a) ≤ fsJa0K(s) ≤ fsJa0K(sp), and since
that implies fs(s′) ≤ fs(sp), it would have been expanded
before sp in the previous lookahead as well with the assump-
tion of deterministic tie breaking. Thus, sp is expanded again
in the lookahead from sJa0K, generating sf . Since sf has
minimal f and ties are deterministically broken in its favor,
LSS-LRTA* will move towards sf . This reasoning applies
repeatedly. The only way sf would not eventually be ex-
panded is that a state with even lower f -value (or equal f
but lower h) would be generated. However, such a state must
be outside S∞ ∪ SF , because the states on the path toward
sf have equal and minimal f -value, and sf has minimal h
among those due to consistency. Therefore, a state in SF will
eventually be expanded, a contradiction to its construction.
Thus, by Lemma 1, LSS-LRTA* must be complete.

Experimental Results
We evaluated our new variants of Nancy and compared them
against LSS-LRTA* as a baseline. We present results in both
classical planning domains and sliding-tile puzzles. In all
tested scenarios, we vary the size of the lookahead for each

algorithm. This constrains how much information each al-
gorithm can possibly obtain in a single lookahead phase and
tests their effectiveness for different limits thereof. Our per-
formance metric is the total solution cost to reach the goal.

We test three variants of Nancy against LSS-LRTA*:
(1) Nancy: the original assumption-based Nancy algorithm
(Mitchell et al. 2019), (2) Nancy (pers.): the persistent vari-
ant of the original algorithm, and (3) Nancy (DD): our
persistent data-driven variant that replaces the assumption-
based belief distributions with data.

Classical Planning

To evaluate our new algorithms on classical planning bench-
mark domains, we extended Fast Downward (Helmert 2006)
to facilitate real-time search algorithms bounded by a num-
ber of expansions and implemented LSS-LRTA* and our
new Nancy variants in this framework. Since we need to
gather data for each specific domain that we want to eval-
uate, we chose to focus our experiments on a few selected
domains, Blocksworld, Transport, Elevators, where prelimi-
nary experiments showed assumption-based Nancy to be rel-
atively ineffective compared to LSS-LRTA*. For Transport
and Elevators, we include their unit-cost versions, and we
omit the original-cost version of Elevators as it has zero-
cost actions, making the considered algorithms incomplete.
We ran the experiments on a cluster of Intel Xeon E5-2660
machines using the lab framework (Seipp et al. 2017). We
choose hLM-cut (Helmert and Domshlak 2009) due to it be-
ing a popular admissible heuristic that achieves competitive
performance without requiring the tuning of many parame-
ters, and used the standard limits of 30 minutes and 4 GB
memory in all experiments.

The data for the data-driven variant was generated on the
same number of instances (185) using the same size param-
eters as the IPC instances. On these instances we computed
h∗ for all states that were expanded by weighted A*. The
set of h∗-values forms a distribution for each h-value which
is looked up by DDNancy during search. Distributions for
h-values that were not seen during training and can there-
fore not be looked up are extrapolated from the next lower
h-value.

Table 1 shows the results of these experiments. We test
lookaheads of size 100, 300, and 1,000 nodes. As a general
trend, solution cost tends to decrease with larger lookahead
for each algorithm, since a larger lookahead usually leads
to more informed decisions. Comparing the individual algo-
rithms with each other, we take LSS-LRTA* as the baseline.
The original Nancy variant performs comparatively worse in
almost all tested scenarios. The persistent assumption-based
Nancy variant improves on the original Nancy algorithm
across all domains, sometimes dramatically. Compared to
LSS-LRTA*, however, it still performs poorly in Transport.
The data-driven Nancy variant manages to perform well in
all test cases. It stays competitive with all other algorithms
and frequently has the lowest solution cost overall, even in
transport where the assumption-based variant faltered.



Domain L
LSS-

LRTA* Nancy
Nancy
(pers.)

Nancy
(DD)

Blocksw. (35)
100 46 67 33 38
300 36 46 30 34

1000 30 44 32 27

Transport (60)
100 631 1116 615 496
300 519 705 559 485

1000 499 607 567 422
Transport (60)
(unit-cost)

100 48 79 40 31
300 47 43 30 34

1000 35 36 29 27
Elevators (30)
(unit-cost)

100 50 55 35 39
300 32 40 29 30

1000 34 31 27 26

Table 1: Geometric means of the solution cost on instances
solved by all algorithms. The limit on the number of ex-
panded nodes in the lookahead is denoted by L.

Sliding Tiles
We also evaluate our algorithms on the classic 100 15-puzzle
instances published by Korf (1985). We used two variations:
uniform-cost, in which every actions costs one, and heavy, in
which the action cost is equal to the label of the moved tile.
We use the Manhattan distance heuristic with weighted A*
during data-gathering and the final online real-time search.
Weighted A* was run on 500 random tile instances to record
all visited states. For each observed h-value, we found the
200 most frequently visited states, solved them optimally,
and used the resulting h∗ values to form the h∗ belief distri-
butions for that h-value. A* with Manhattan distance cannot
solve arbitrary heavy-tile puzzle instances within reasonable
time and memory limits, so we implemented two 6-tile pat-
tern databases (0,4,5,6,7,8,9 and 0,10,11,12,13,14,15) and
used them with IDA*CR (Sarkar et al. 1991) to solve these
instances and gather the h∗ values.

30 100 300 1000
Node Expan ion Limit

−150

−100

−50

0

50

Al
go

rit
hm

 C
o 

t -
 L
SS

-L
RT

A*
 C
os

t

Algorithm
Nancy (DD)
LSS-LRTA*
Nancy (pers.)
Nancy

Figure 1: Solution cost compared to LSS-LRTA* on the
uniform-cost variant of the 15-puzzle.

Figure 1 shows mean solution cost relative to LSS-LRTA*
on uniform-cost 15-puzzle, with error bars indicating 95%
confidence intervals. We used lookahead limits of 30, 100,
300, and 1,000 expanded nodes. The persistent variant of the
original assumption-based Nancy performs very similarly to
the original version, while DDNancy does not perform as
well as assumption-based Nancy. We conjecture that this is
because, due to the popularity of the 15-puzzle as a heuris-
tic search benchmark, the assumptions embodied in Nancy
were likely heavily informed by search behavior in this do-
main, the Gaussian assumption on the heuristic error is not
seriously violated in this domain, and the smoothness of its
model may in fact aid the algorithm’s performance.

Figure 2 shows corresponding results from the heavy-cost
15-puzzle. All three variants of Nancy are clearly better than
LSS-LRTA* for lookaheads 30, 100, and 300. DDNancy
performs better than assumption-based Nancy at lookaheads
of 300 and higher, and still beats LSS-LRTA* at a lookahead
bound of 1000 expansions.

Discussion
Our experimental results show that search algorithm perfor-
mance can be heavily influenced by its assumptions and that
performance can sometimes be greatly enhanced by using
data instead. This enables the algorithm to use more accu-
rate information to support its reasoning and decision mak-
ing. In this way, the algorithm can be adapted to perform
well in scenarios where the assumptions turn out to be in-
accurate. However, this places the burden on the data to be
more informative, and inaccurate data can lead to undesir-
able behavior just like wrong assumptions can. Furthermore,
it is not obvious how to replace certain assumptions. For ex-
ample, our variant of DDNancy continues to use the assump-
tion of reduced variance to estimate its post-expansion belief
Bpost. Developing methods to gather more informative data
to replace additional assumptions is an area that requires fur-
ther attention. The current greedy one-step lookahead belief

30 100 300 1000
Node Expansion Limit

−20000

−15000

−10000

−5000

0

5000

Al
go

 it
hm

 C
os

t -
 L

SS
-L

RT
A*

 C
os

t

Algorithm
Nancy (DD)
LSS-LRTA*
Nancy (pers.)
Nancy

Figure 2: Solution cost compared to LSS-LRTA* on the
heavy-cost variant of the 15-puzzle.



Bpost could also be generalized to an n-steps post-search ap-
proach, which might yield more accurate risk values.

A limiting factor when using data is the number of fea-
tures used to learn it. DDNancy maps a single heuristic value
to a distribution of h∗ values. It is possible that the heuris-
tic may over-generalize certain states which can make the
data misleading. How to use additional features like a sec-
ond heuristic or state variables effectively to make the data
more informative is also subject to further research. Previous
work on learning heuristic functions, such as that of Arfaee,
Zilles, and Holte (2011) for example, may prove helpful in
this context.

Conclusion
We advanced the use of explicit beliefs about heuristic er-
ror in heuristic search by extending the real-time Nancy
algorithm to handle arbitrary belief distributions gathered
from data. We proved that our generalized version of Nancy
is complete, given only minimal assumptions (e.g., the be-
liefs have finite expected value). Our experiments suggest
that DDNancy can perform well, even in domains where
assumption-based Nancy falls short, demonstrating the po-
tential benefit of replacing assumptions with actual data.
While we anticipate that assumptions will continue to be
useful in situations where it is hard to gather representative
data, we also expect that replacing additional assumptions
will result in further insights and even higher performance.

Acknowledgments. Maximilian Fickert was funded by
DFG grant 389792660 as part of TRR 248 (see https://
perspicuous-computing.science).

References
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. Artificial Intelli-
gence 2075–2098.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming, volume 3 of Optimization and neural compu-
tation series. Athena Scientific.
Bulitko, V., and Sampley, A. 2016. Weighted lateral learning
in real-time heuristic search. In Ninth Annual Symposium on
Combinatorial Search.
Burns, E., and Ruml, W. 2013. Iterative-deepening search
with on-line tree size prediction. Annals of Mathematics and
Artificial Intelligence 69(2):183–205.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009. AAAI.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: experimental results in video
games. Journal of Artificial Intelligence Research 54:123–
158.

Koenig, S., and Sun, X. 2008. Comparing real-time and
incremental heuristic search for real-time situated agents.
Journal of Autonomous Agents and Multi-Agent Systems
18(3):313––341.
Korf, R. E. 1985. Iterative-deepening-A*: An optimal ad-
missible tree search. In Proceedings of IJCAI-85, 1034–
1036.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42:189–211.
Mitchell, A.; Ruml, W.; Spaniol, F.; Hoffmann, J.; and
Petrik, M. 2019. Real-time planning as decision-making
under uncertainty. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence (AAAI-19).
Mutchler, D. 1986. Optimal allocation of very limited search
resources. In Proceedings of the Fifth AAAI Conference on
Artificial Intelligence (AAAI-86).
Pemberton, J. C., and Korf, R. E. 1994. Incremental search
algorithms for real-time decision making. In Proceedings
of the Second International Conference on Artificial Intelli-
gence Planning Systems (AIPS-94).
Rose, K.; Burns, E.; and Ruml, W. 2011. Best-first search
for bounded-depth trees. In Fourth Annual Symposium on
Combinatorial Search.
Sarkar, U. K.; Chakrabarti, P. P.; Ghose, S.; and De Sarkar,
S. 1991. Reducing reexpansions in iterative-deepening
search by controlling cutoff bounds. Artificial Intelligence
50(2):207–221.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Stern, R.; Felner, A.; van den Berg, J.; Puzis, R.; Shah,
R.; and Goldberg, K. 2014. Potential-based bounded-cost
search and anytime non-parametric a*. Artificial Intelli-
gence 214:1–25.
Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In Proceedings of the
Twenty-first International Conference on Automated Plan-
ning and Scheduling (ICAPS-11).


