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Abstract

In many applications of heuristic search, insufficient time is
available to find provably optimal solutions. We consider the
contract search problem: finding the best solution possible
within a given time limit. The conventional approach to this
problem is to use an interruptible anytime algorithm. Such
algorithms return a sequence of improving solutions until in-
teruppted and do not consider the approaching deadline dur-
ing the course of the search. We propose a new approach,
Deadline Aware Search, that explicitly takes the deadline into
account and attempts to use all available time to find a single
high-quality solution. This algorithm is simple and fully gen-
eral: it modifies best-first search with on-line pruning. Em-
pirical results on variants of gridworld navigation, the slid-
ing tile puzzle, and dynamic robot navigation show that our
method can surpass the leading anytime algorithms across a
wide variety of deadlines.

Introduction
Heuristic search is an oft employed technique for automated
problem solving. Given an admissible and consistent heuris-
tic, A* search (Hart, Nilsson, and Raphael (1968)) finds an
optimal solution using the smallest possible number of ex-
pansions, up to tie-breaking, of any similarly informed algo-
rithm (Dechter and Pearl (1988)). Unfortunately for many
problems of practical interest finding an optimal solution
still requires an impractical amount of time. In this paper,
we address one attractive approach to this dilemma,contract
search, in which the objective is to find the cheapest solu-
tion possible within a given deadline. Note that this prob-
lem is distinct from real-time search (Korf 1990), in which
one merely wishes to find the single next action of an agent
within bounded time.

Despite the importance of contract search in real applica-
tions, we are aware of only two contract search algorithms in
the literature. Neither performs particularly well in the fol-
lowing evaluation. This may be why the prevailing approach
to solving such search problems is to use an interruptible
anytime algorithm. While anytime algorithms are applica-
ble to the problem of contract search, they are designed for
use in problems where the deadline is unknown. The dead-
line has no impact on the search order of these algorithms,
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save for what node will be the last to be expanded. We pro-
pose that knowledge of the time remaining in the search can
be used to alter the search order productively by allocating
all search effort towards optimizing a single solution, rather
than discarding all but the last one found.

In this paper we propose a new algorithm called Deadline
Aware Search (DAS) that is based directly on the objective
of contract search: finding the best single solution possible
within the deadline. At each iteration the search expands
the state that appears to lead to the best solution deemed
reachable within the time remaining. Our empirical analysis
shows that DAS can compete with and often surpasses previ-
ous contract approaches and the leading anytime algorithms
on variants of gridworld navigation, the sliding tiles puzzle,
and dynamic robot navigation without relying on off-line
learning or parameter optimization as previous proposals do.

Previous Work
We will first review the anytime approach to search under a
deadline. We then the two previous proposals for contract
algorithms before presenting Deadline Aware Search, a new
approach to the problem of contract search.

Anytime Algorithms

Interruptible anytime algorithms are a class of algorithms
that are designed to quickly return a highly suboptimal solu-
tion followed by a sequence of solutions of improving qual-
ity, eventually converging on optimal. These algorithms are
often applied to the problem of search under a deadline be-
cause they can be configured to find the first solution very
quickly, guaranteeing that some solution will be present at
the deadline, and as the deadline is extended the cost of the
solutions returned decreases, eventually to optimal.

Many anytime algorithms have been proposed. Depth-
first branch-and-bound is a well-known anytime algorithm,
but it applies only to problems in which duplicate states
are rare and a useful bound is known on the depth of so-
lutions, criteria which exclude many domains, including the
benchmarks considered here. Thayer and Ruml (2010) per-
formed an evaluation of several anytime methods across a
wide variety of domains. The repairing framework of Any-
time Repairing A* (Likhachev, Gordon, and Thrun (2003))
had the best general performance across all domains and



search strategies, making it the prime anytime competitor
for deadline search.

Anytime Repairing A* (ARA*) performs weighted
A* (Pohl 1973) search to find a starting incumbent solution
and then continues searching to find a sequence of improved
solutions, eventually converging to the optimal. After each
new solution is found the weight used in the search is re-
duced by some predefined amount, the open list is resorted,
and search continues. ARA* also uses a novel method of
postponing the expansion of duplicate states at each round
of the search, improving performance in domains with tight
cycles and a large numbers of duplicates.

Richter, Thayer, and Ruml (2009) proposed a modifica-
tion to the weighted anytime approach which, while possi-
bly appearing counter-intuitive at first, often results in better
anytime performance. Their algorithm, Restarting Weighted
A* (RWA*) performs a series of Weighted A* searches,
each essentially from scratch. Heuristics andg(s) values
are cached between iterations, while the open list is cleared.
While RWA* is generally slower than ARA* (Thayer and
Ruml 2010), in some search domains, particularly domain
independent planning, restarting the search at each iteration
has a surprisingly positive effect on the results. We include
results for this algorithm as well as ARA* in our evaluation.

While the interruptible anytime approaches are applica-
ble to the problem of contract search, they do not directly
address it, as they are deadline agnostic. Only the best solu-
tion found thus far is returned when the deadline is reached.
The previous incumbent solutions provide some benefit to
the search, as they are used for pruning the search space
while searching for the next solution. However, there is
some amount of effort wasted in finding a sequence of so-
lutions that, in the end, are not returned.

Another problem with the current anytime approaches is
that the best performing algorithms are based on bounded
suboptimal search, which requires that the bound be set prior
to execution. While in some domains there is a single initial
bound that performs well over the range of deadlines, there
are others in which one setting will perform better for shorter
deadlines and another for longer. There is currently no clear
way to select a bound based on anything other than training
on similar problems and deadlines, or intuition.

Time Constrained Search
Hiraishi, Ohwada, and Mizoguchi (1998) proposed Time
Constrained Search, a contract algorithm based on weighted
A*. It attempts to measure search behavior in order to adjust
the weight used in weighted A* in order meet the deadline
while optimizing solution quality. They perform a standard
weighted A* search onf ′(s) = g(s) +w · h(s), whereg(s)
represents the cost of the path explored thus far,h(s) is the
heuristic estimate of cost-to-go, andw is a weight factor that
they adjust dynamically. They take advantage of the fact that
increasing the weightw generally has the effect of biasing
search effort towards states that are closer to goals, reducing
solving time.

Search behavior is adjusted using search velocity, defined
as follows: They first define the distanceD as the estimate
of cost-to-go at the starting state:D = h(sstart). They then

use the time boundT assigned to the search to calculate a
desired “average velocity”V = D/T . During the search
they use the time elapsedt and the minimumh(s) value for
any state generated thus farhmin in order to calculate an
“effective velocity” v = (D − hmin)/t. If the effective ve-
locity falls outside a selected tolerance from the desired av-
erage velocity, the current weight applied toh(s) when cal-
culatingf ′(s) is adjusted accordingly by subtracting/adding
a predetermined value,∆w.

The upper and lower bounds on average search velocity
and the value of∆w have a significant impact on algorithm
performance. Unfortunately, these and other critical por-
tions of the algorithm, such as how often (if ever) to resort
the open list and whether or not there is a minimum delay
between weight adjustments, are not specified. Attempts
to contact the authors to resolve these issues were unsuc-
cessful. While their empirical analysis illustrates the quality
of solutions found over a range of real-time deadlines (with
the contract specified in seconds of computation time), no
comparisons were made to previously proposed algorithms.
Despite our best efforts to implement and optimize this algo-
rithm we were unable to create a real-time version that was
comparable to existing approaches.

Contract Search
Contract Search (Aine, Chakrabarti, and Kumar 2010) at-
tempts to meet the specified deadline by limiting the number
of state expansions that can be performed at each depth in
the search tree. The algorithm is based around the following
insight into search on trees: for an algorithm to expand the
optimal goal, it need only expand a single state along an op-
timal path at each depth. The idea behind Contract Search is
to expand only as many states as needed at each depth in or-
der to encounter the optimal solution. We can obviously not
know this information a priori. We can, however, assume
that the more states we expand at a given depth, the more
likely we are to have expanded the state on the optimal path.
Contract search attempts to maximize the likelihood that an
optimal solution is found within the deadline by maximiz-
ing the likelihood that this optimal state is expanded at each
depth, subject to an expansion budget.

The algorithm has two phases: determining off-line how
many states should be considered at a given depth,k(depth),
and then efficiently using this information on-line in an A*-
like search. Rather than a single open list sorted onf(n),
contract search maintains a separate open list for each depth.
Each of these per-depth open lists tracks the number of states
it has expanded and becomes disabled when this reaches its
k(depth) limit. At every iteration of the search, the state
with the smallestf(n) across all open lists that have not
yet exhausted their expansion budget is expanded. For very
large contracts, this will behave exactly like A*, and for
smaller contracts it approximates a beam search onf(n).

Approximatingk(depth), the number of states to expand
at each depth which maximizes the probability of success
can be done off-line, before search. To do so, we need
to know a probability distribution over the depths at which
goals are likely to appear, the average branching factor for
the domain, and the likelihood that the optimal state at a



Deadline Aware Search(starting state, deadline)
1. open← {starting state}
2. pruned← {}
3. incumbent← NULL
4. while (time)< (deadline)
5. if openis non-empty
6. dmax ← calculated bound()
7. s← remove state fromopenwith minimalf(s)
8. if s is a goal and is better thanincumbent
9. incumbent← s

10. else ifd̂(s) < dmax

11. for each childs′ of states
12. adds′ to open
13. else
14. adds to pruned
15. else (*openis empty *)
16. recoverprunedstates(open, pruned)
17. returnincumbent

Recover Pruned States(open, pruned)
18. exp← estimated expansions remaining
19. whileexp> 0 andprunedis non-empty loop
20. s← remove state fromprunedwith minimalf(s)
21. adds to open
23. exp= exp−d̂(s)

Figure 1: Pseudo-code sketch of Deadline Aware Search

given depth will be expanded within a fixed number of
states. These can be approximated by analyzing sample
problems from the domain. Given these values, the num-
ber of states to expand at each depth for a given contract can
be solved for using dynamic programming. These values are
then stored for future use.

The largest contract considered by (Aine, Chakrabarti,
and Kumar 2010) is 50,000 expansions. In our evaluation,
we will be considering search deadlines of up to a minute,
which for our benchmark domains could mean more than
five million states. This is problematic because the time and
space complexity of computing these values grows quadrat-
ically in the size of the contract. Aine (2011) suggested ap-
proximating the table by only considering states in chunks,
rather than a single state at a time. This cuts down on the
size of the table and the number of computations we need
to perform to compute it. In the results presented below, the
resolution was selected so that the tables needed could be
computed within 8 GB of memory. Computing the tables
typically took less than eight hours per domain, although a
new table must be computed for each considered deadline.

Deadline Aware Search
We now present a new approach for the contract search prob-
lem, the called Deadline Aware Search (DAS). Unlike any-
time search algorithms that do not alter their search strat-
egy in reaction to the approaching deadline, DAS reacts to
the approaching deadline during search. We begin by pre-
senting a general overview of the algorithm and its behav-

ior. We then discuss the estimation of two quantities needed
by the algorithm: the maximum achievable search depth
dmax and distance to the cheapest solution beneath a node
d̂cheapest(s). Finally, we discuss DAS’s technique for re-
covering from situations in which it estimates that no goal is
reachable given the current search behavior.

DAS is a simple approach, derived directly from the ob-
jective of contract search. It expands, among all the states
leading to solutions deemed reachable within the time re-
maining, the one with the minimumf(s) value. Pseudo-
code of the algorithm is presented in Figure 1. The open list
is first initialized with the starting state and then the search
proceeds to expand nodes from the open list until either the
search time expires or the open list is empty (indicating that
there is no solution deemed reachable). At each iteration
of the algorithm, the state with minimalf(s) is selected
for expansion and the current maximum reachable distance,
dmax, is calculated. If the distance to this state’s best goal
dcheapest(s) is less thandmax, it is expanded and its chil-
dren are added to the open list. Otherwise, it is added to
the pruned list and the search will select the next best node
for expansion. What drives the search to find a solution be-
fore the deadline is that at each iterationdmax is calculated,
and any states such thatd̂cheapest(s) > dmax is deemed
“unreachable”, added to a separate pruned list, and not ex-
panded. Thus the best reachable state is expanded at each
iteration.

In the case that all nodes have been deemed “unreach-
able” and there is search time remaining, the Recover Pruned
States method is invoked, retrieving a subset of the states
from the pruned list and resetting the on-line estimates of
search behavior. This subset of states will contain at least
one state, and therefore the search will never terminate be-
fore the deadline unless all possible solutions have been con-
sidered. Note that the methods of measuring the search be-
havior on-line are not present in the pseudocode. These de-
tails will be discussed further in later sections.

Reachability, as estimated by DAS, is a function of a
state’s distance from its best possible solution,dcheapest(s).
When there is not enough time to explore all interesting
paths in the search space, it makes sense to favor those paths
that are closer to solutions. One result of using an admissible
heuristich(s) is that often the bestf value of the states un-
der a particular states will be higher than the value off(s).
Assuming this heuristic error is distributed across a search
space, the states that are farther from solutions have the po-
tential of experiencing this increase inf value more often
before reaching their respective solutions than states that are
closer. For this reason, when selecting states for expansion
ties onf(s) are broken in favor of smallerh(s). Also, be-
cause search spaces generally increase exponentially, states
that are farther from solutions also generally have larger sub-
trees lying beneath them, generally requiring more search
effort to find their respective best solutions.

Calculating dmax

One could argue that all remaining search effort should be
put towards finding the best possible solution under the sin-



gle state in the search space estimated to be best and there-
fore thedmax value used to prune states should be equal
to the estimated number of expansions possible in the time
remaining. In practice, however, this approach renders the
value ofdmax meaningless for most of the search in which
the number of expansions will often be far larger than the
estimated length of the path to any particular solution. If the
number of expansions allowed were close to the length of the
path to a solution then one could hardly consider perform-
ing any type of search other than depth-first! Pilot empirical
studies have confirmed that such an interpretation ofdmax

produces unreasonable behavior.
To understand the true number of expansions it will take

to find a solution under a particular state, one must consider
the behavior of the search itself. In a best-first search, it is
not typical that a single path will be followed from the start-
ing state to the optimal solution. Often, due to error in the
heuristic, when a state is expanded thef value of its best
child statesbc is greater thanf(s). When this occurs it is
possible that there exists some other state in the open list
s′ such thatf(s′) < f(sbc). If the search continues unhin-
dered, it will stop exploring the path leading tosbc and start
examining the path currently leading tos′. This behavior is a
phenomenon that we callsearch vacillation, where multiple
partial solutions are being explored during the search.

One way to measure this vacillation, is a concept we call
expansion delay. During the search, the number of expan-
sions performed is tracked,ecurr. At each expansion, each
child states generated is marked with the current expansion
numbere(s). When a state comes up for expansion during
the search, the current expansion numberecurr can be used
to calculate the expansion delay using∆e:

∆e = ecurr − e(s) (1)

In the case that there is no heuristic error, that ish(s) =
h∗(s), the expansion delay will always be1 and the search
will expand directly along the optimal path given that ties
in f(s) are broken in favor of higherg(s) value as is done
in DAS. On the other end of the spectrum, in the case of
uniform cost search, the expansion delay can be expected to
grow exponentially over the course of the search along with
the size of the search frontier.

We can use this measure of search behavior in order to
calculate a value fordmax that more accurately reflects the
average distance along any particular path that will be ex-
plored given the current behavior of the search and the time
remaining. During the course of the search, the average ex-
pansion delay∆e is tracked. In order to react to the chang-
ing behavior of the search, a sliding window average rather
than a global average is used. The current expansion rater
is estimated by taking a sliding window average of the delta
times between expansions. Using the time remainingt the
number of expansions remaining in the searchexp can be
estimated using Equation 2.

exp= t · r (2)

Using this estimate, the average distance that could be ex-
plored along any particular path in the searchdmax can be

calculated using Equation 3.

dmax =
exp

∆e
(3)

While we seed the value ofexp based on some reasonable
default expansion raterdefault until the online estimate is
initialized, this has no significant impact on the performance
of DAS, as no pruning typically occurs during the small win-
dow of time before the on-line estimate is formed.

The very act of pruning states from the search space will
have an effect on the average expansion delay experienced.
It represents a direct measure of search behavior including
the effects that the measure itself has introduced, and learn-
ing the value on-line during the search is most appropriate.

It should be noted that a window of time at the beginning
of the search must be allotted for the average expansion de-
lay estimate to settle. Until enough samples are taken, the
average could produce unrealistic estimates ofdmax. In the
experiments reported below we used a settling time of 200
expansions. In pilot experiments the effects of modifying
this parameter were insignificant.

Pruning On d̂(s)

DAS makes use of a heuristiĉdcheapest(s) that estimates the
length of the path to the cheapest goal state under a partic-
ular states. For unit-cost domains this heuristic is the same
as the standard cost-to-goh(s). For non-unit cost domains it
can often be constructed similarly toh(s) by estimating the
same cheapest path while replacing all actions costs with1.
We do not require thatdcheapest(s) be admissible or even
consistent, in fact, it is preferable fordcheapest(s) to act as a
differentiator between different paths by more accuratelyac-
counting for heuristic error. We employ the path-based cor-
rection model of Thayer, Dionne, and Ruml (2011) to calcu-
late a corrected heuristiĉdcheapest(s). Briefly, this correc-
tion model uses error experienced at each expansion:ǫd =
dcheapest(s) − dcheapest(p(s)) + 1, wherep(s) represents
the parent of states. The mean single step error encoun-
tered so farǭd(s) is tracked for each partial solution and is
used as an estimator of the average single step error remain-
ing from the end of that partial solution to the corresponding
goal state. The true distance-to-god∗cheapest(s) can be esti-

mated byd̂cheapest(s) =
dcheapest(s)
(1−ǫd(s))

, whenǫd(s) < 1. In

the case thatǫd(s) ≥ 1, the value ofd̂cheapest(s) is set to
infinity.

Search Recovery
It can be the case that the effects of pruning are not enough
to keep thêd(s) of at least one state in the open list below the
value ofdmax. In these cases, DAS will prune all states from
the open list as “unreachable”. This is an indication that de-
spite the best efforts of the algorithm, the amount of vacilla-
tion remaining in the search due to competing states on the
open list will result in no further solutions being reached.

To recover from this, we first estimate the number of ex-
pansions possible in the time remainingexp. States are then
selected from the pruned list in order of minimalf(s) value



such that the sum of̂d(s) for all states inserted is approx-
imately equal toexp. In order to guarantee that at least
one state is placed back into open at each recovery we insert
states into open until the sum of̂d(s) first exceedsexp (see
Figure 1). The intention is that only the best set of states
that would be reachable regardless of the search behavior
are kept. Because the open list has changed so drastically,
the previous estimation of average expansion delay∆e is no
longer relevant and the running average is reset. This allows
the search to continue and measure the new local behavior
after the recovery. The same settling time used at the start of
the search must be applied, during whichdmax is not calcu-
lated or used.

Optimality for Large Deadlines

One of the desired features for a contract search algorithm
is that, given a long enough deadline, the algorithm will de-
volve to A* and return a guaranteed optimal solution (given
an admissible heuristic). DAS has this property.

Theorem 1 Given a sufficiently long deadlineD and as-
suming that the one-step error model does not result in any
states withd̂(s) = ∞, DAS will perform an equivalent
search to A* and return a guaranteed optimal solution.

Proof: Given that DAS performs a best-first search on an
admissiblef(s) and returns a solution only when the state is
selected for expansion, it behaves exactly like A* with the
exception of pruning states due to reachability. However,
given a long enough deadline and the use of any of the pro-
posed methods for calculatingdmax there will never be a
state selected for expansion such thatd̂(s) > dmax. There-
fore, the algorithm will behave exactly as A* as it will never
prune. The proof that A* returns an optimal solution can
then be directly applied. �

The minimum value of the deadlineD necessary for this
fact to hold depends on the method of calculatingdmax used
as well as the characteristics of the search space. This means
that, unfortunately,D can not be easily determined a priori.

Empirical Analysis
We performed an empirical analysis over several bench-
mark domains in order to evaluate the performance of Dead-
line Aware Search in comparison to Anytime Repairing A*,
Restarting Weighted A*, and Contract Search. In each do-
main we tested over a range of deadlines covering around
four orders of magnitude. All algorithms were implemented
in Objective Caml using similar data structures and all tests
were performed on the same type of machine.

In an attempt to judge algorithms fairly in the case that
no solution is found within the deadline, all algorithms are
required to run an initial search algorithm we call “Speed-
ier”. Speedier search is a greedy search ondcheapest(s) in
which duplicate states are detected and, if already expanded,
are ignored. This search completes very quickly, returning
what is typically a highly suboptimal solution that all algo-
rithms use as an incumbent. Therefore any algorithm that
fails to find an improved solution within the deadline will

return this sub-optimal Speedier solution. This both simpli-
fies our analysis by assigning a meaningful cost to the null
solution and is a realistic implementation in the case of a
any setting in which returning no solution is absolutely un-
acceptable.

For ARA* and RWA* we evaluated the following range
of initial weight settings: 1.2, 1.5, 3.0, 6.0, 10.0 and a weight
decrement of 0.2. The optimal initial weight setting found
for the 15-Puzzle, Weighted 15-Puzzle, Unit-Cost Grid-
World, Life-Cost Grid-World, and Dynamic Robot Naviga-
tion were 3.0, 3.0, 3.0, 6.0, and 1.5, respectively. In each
plot the results for the top two weight settings are illustrated,
as there were settings which did not produce the best results
overall but performed better for a specific range of deadlines.

Contract Search uses the number of expanded states for
its deadline, as originally proposed, rather than a time cutoff
like DAS. Similar to all other methods evaluated, Speedier
is run initially and the time elapsed is subtracted from the
deadline. At this point the time remaining is multiplied by
the average state expansion rate, measured off-line for each
domain, in order to estimate the state contract to apply. The
deadline is still measured in seconds and when it arrives the
algorithm returns the best solution found thus far.

15-Puzzle
Experiments were performed on the 100 instances of the 15-
Puzzle presented by Korf (1985) using the Manhattan dis-
tance heuristic. We evaluted both a uniform cost model as
well as a model in which the cost of moving each tile was
the inverse of the numeric value of the tile (1-15). Results
are shown in Figure 2. The X-axis of the plots represents
the deadline in seconds and is displayed on a logarithmic
scale. The Y-axis of the plot represents solution quality, be-
ing defined as cost of the best solution found by any algo-
rithm for the particular instance over the achieved solution
cost. Solution quality is used rather than raw solution costto
reduce because we have many domains in which individual
instances may have very different optimal solution costs. It
is a standard metric used in the satisficing track of the Inter-
national Planning Competition.

In both cost models of the 15-Puzzle domain Deadline
Aware Search is a clear improvement over both ARA* and
Contract Search for the full range of deadlines. Although
RWA* outperforms DAS for the very shortest deadlines, its
performance does not scale well to the larger deadlines.

Contract Search exhibited the anticipated behavior of re-
sorting to the Speedier solution for short deadlines up the
point where optimal or near optimal solutions are found
for some of the instances. Because of the way that Con-
tract Search defines the goal probability distribution it isless
likely to come across highly suboptimal solutions, as the
goal probabilities at those depths will be zero, or close to
it. Another interesting behavior of Contract Search is that
after a certain point the results for larger deadlines startto
decrease in quality. This is at least in part due to the impre-
cise conversion from search time remaining to state expan-
sions remaining, and may also partially be the result of using
a relaxation to computek(depth). For larger deadlines, the
total error will be larger and Contract Search could end up



Figure 2: Solution quality (best known cost / achieved cost)for a given solving time deadline.

initializing the levels of the tree closest to the root with too
many possible expansions, not leaving enough for the lower
levels to be fully explored before the deadline arrives.

Some important insight can be drawn by looking horizon-
tally through the plots. For example, Figure 2 shows that
with the short deadline of only around 0.5 seconds, DAS
was able to find, on average, the same quality of solutions
that took ARA* with an optimal weight setting would find
with more than twice that much time. For the standard tiles
domain, contract search is competitive with deadline aware
search for large deadlines, where both algorithms solve the
problem optimally, and for small deadlines, where both al-
gorithms return the Speedier solution.

Dynamic Robot Navigation
Experiments were performed in the domain of dynamic
robot navigation, similar to that used by Likhachev, Gor-
don, and Thrun (2003) to evaluate ARA*. The objective in
these problems is to find the fastest path from the starting
location of the robot to some goal location and heading, tak-
ing motion dynamics such as momentum into account. The
instances used in our experiments were 500 by 500 cells in
size. We scatter 75 lines, up to 70 cells in length, with ran-
dom orientations across the domain and present results av-
eraged over 100 instances. Results are shown in Figure 2.

Results in this domain show Deadline Aware Search as a
clear improvement over ARA*, RWA*, and Contract Search
for the full range of deadlines. Contract Search performed
particularly weakly in this domain. We believe this is in part
attributed to the fact that the domain has a fairly accurate,al-
beit inadmissible,dcheapest(s) heuristic. Taking advantage
of this heuristic allows Deadline Aware Search to more ac-
curately decide the reachability of states and may have con-
tributed to its success. Outside of tie breaking, it is not ob-
vious how the other algorithms could make use of distance
estimates.

Grid-World Navigation

Experiments were performed on two sets of four-way move-
ment grid-world navigation problems; unit-cost and life-
cost. In both domains the starting state is in the lower-left
corner of a 2000x1200 map with the goal state in the lower-
right corner. Obstacles are distributed randomly and uni-
formly with a probability of 0.35. The life-cost grid-world,
first proposed by Ruml and Do (2007), varies the cost of
movement in different layers within the grid creating a clear
distinction between shortest path and cheapest path. The
cost of traversing each square in the map is equal to the Y
coordinate of that location, with (0,0) being the bottom left
corner. This implies that the cheapest path through the map
would be to traverse to the top of the map, across, then back
down to the solution.

Results are shown in Figure 2. In the case of life-cost
grid-world Deadline Aware Search was competitive with the
best of the anytime methods at the optimal parameter set-
tings for shorter deadlines and provided improved results for
larger deadlines. In the case of unit-cost grid-world Dead-
line Aware Search is surpassed by ARA* for the shorter
deadlines but is competitive for larger deadlines. RWA*
did not perform competitively in this domain and Contract
Search did not manage to return results for almost any of the
deadlines used. In the grid-world domain the solutions lie
very deep in the search space, there is a lot of variation be-
tween solution depths, and there are a lot of duplicate states.
In order to generate thek(depth) tables for Contract Search
in a reasonable amount of time an approximation method
was used. We believe that all of these could be contributing
factors to the failure of Contract Search in these domains.

DAS Behavior

The purpose ofdmax in DAS is to act as a decreasing up-
per bound on the distance between any state expanded and



its respective best solution. This bound is intended to force
the search to progress forwards to meet a particular dead-
line when it would normally have spent more time exploring
different partial solutions sorting out the increasingf(s) val-
ues. While it is difficult to justify what the “correct” value of
dmax should be over the course of the search, we can impose
a few reasonable limitations. The value should represent a
smooth function, as a large variability would cause unsta-
ble behavior in DAS. Depending on the given deadline, the
value should typically fall somewhere within the range of
currentd̂(s) values such that some pruning will occur when
necessary and not all states will be pruned unnecessarily.

In order to evaluate the behavior ofdmax relative to the
d̂(s) of states expanded during a Deadline Aware Search, we
implemented a version which uses a limit on the number of
state expansions as a deadline and records relevant informa-
tion during the search. This way the overhead of recording
could be factored out of the analysis. Figure 3 contains the
results of the analysis on a single instance of unit-cost four-
way gridworld navigation for a range of deadlines.

The plots illustrate the current value ofdmax and thed̂(s)
value of the expanded states over the course of the search.
The plots are shown for deadlines of 400, 200, 100, and 50
thousand expansions. DAS returned solutions of cost 2967,
3043, 3159, and 3525, respectively. As a reference point, A*
completes for this instance after 402,220 expansions return-
ing a solution cost of 2967. Speedier solves in 15,327 ex-
pansions returning a solution cost of 4041. The expansions
taken by the initial Speedier search are subtracted from the
remaining deadline. In examining these plots, one should
note that the red line representingdmax appears to spike
at various locations. With the exception of the start of the
search, these points represent when the reachability model
is reset due to all states being pruned as “unreachable”. One
can identify the points when solutions were returned: wher-
everd̂(s) = 0.

From the plots, one can see that for longer deadlines, the
values ofdmax effectively push the search towards finding
a solution with a somewhat significant amount of time (or
in this case, state expansions) remaining. After the first
solution is found the search will have much more strict
bounds for pruning and one can see that the vacillation in-
creases such that the search repeatedly stagnates resulting
in all states being pruned and the estimates ofdmax reset-
ting. Despite the effort wasted in pruning and reinserting
states, this does not need to be interpreted as negative be-
havior. For example, looking at the plot for 50 thousand ex-
pansions one can see that during the search there are several
points at which the model estimates that no solution will be
reachable given the current search behavior and the recover
pruned states method is invoked. It is thanks to this recovery
method’s trimming of the search space that the search can
complete at all in such a short deadline with a solution sig-
nificantly better than the original Speedier incumbent solu-
tion provided. This illustrates the versatility of the approach
between large (A* sized) and short (Speedier search sized)
deadlines.

Discussion
The choice to include a Speedier search first in our empirical
analysis for all algorithms could lead to biasing results such
that algorithms which do not return any solution before the
deadline are rated closer to those which return sub-optimal
solutions which are only marginally better than the Speed-
ier solution. This is not a significant issue in our results, as
most solutions found after the Speedier solution are substan-
tially improved. We recorded the number of times each algo-
rithm succeeded in improving on the Speedier solution and
show results in Figure 4. One can see that in some domains
such as the sliding tiles puzzle, DAS fails to improve on the
speedy solution more often than RWA* for short deadlines
on the unweighted model and both ARA* and RWA* for
short deadlines on the weighted model. Despite this fact,
the average solution quality for DAS on these domains was
generally higher than the anytime approaches. One can also
see that part of the success of DAS on Dynamic Robots and
the Life-Cost Gridworld Navigation problems comes from
the fact that it returns significantly more improved solutions
for shorter deadlines than the other approaches.

Overall, the experimental results indicate that Deadline
Aware Search can lead to a significant improvement over
ARA* and RWA* in some domains while remaining com-
petitive in others. In no domain did the time-based version
of Contract Search perform particularly well.

It should be noted that in the results for ARA* there were
several cases (Figure 2, dynamic robots and life grids) in
which different parameter settings resulted in the best per-
formance for certain ranges of deadlines. In both Sliding
Tiles domains RWA* had the best performance for a range
of very short deadlines but did not scale well up to the longer
deadlines. It may not be possible to determine the appropri-
ate algorithm or parameter setting in advance for a given
problem and deadline and selecting an incorrect configura-
tion may result in poor results. In contrast, the same con-
figuration of Deadline Aware Search was used in all do-
mains and remained competitive or outperformed the opti-
mized parameter settings for ARA* and RWA*. DAS is a
parameterless and general approach.

Conclusion
We have proposed a new method of measuring search behav-
ior, expansion delay, that can be used as an indicator of the
level of vacillation present in the search due to heuristic error
leading to competition between different paths on the open
list. Using this measure we have constructed a very simple
and general approach to the problem of heuristic search un-
der deadlines: Deadline Aware Search. DAS appears to be
the first effective contract heuristic search algorithm, show-
ing improvements over ARA* and RWA* in several domains
using real time as deadlines. Our approach also has the ben-
efit of being parameterless, learning necessary information
on-line, while previous approaches required either parame-
ter optimization or off-line training and pre-computation.

The problem of heuristic search under real-time deadlines
is of great importance in practice and yet few algorithms
have been proposed for that setting. While anytime meth-
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Figure 4: Number of instances in which initial Speedier solution was improved

ods are certainly applicable, they are really designed to ad-
dress the problem of search when the deadline unknown.
While simple, our approach illustrates that knowledge of the
termination deadline can improve performance for contract
search.
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