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Use Distance Estimates

when actions have varying costs,
plan cost and plan length can differ
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Use Distance Estimates
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About the Tutorial

Introduction m Jordan and | will alternate

m Motivation

.
. uine m bibliography at the end

d(n)

m the pseudo code

Suboptimal Search

Bounded Suboptimal not presented during talk
Anytime Search

included for later review

Summary

Backup Slides

m not discussed
optimal search strategies
bounded-depth tree search

local search strategies
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Outline

Introduction
m Motivation
m Qutline

d(n)

Suboptimal Search

Bounded Suboptimal

Anytime Search

Summary

Backup Slides

distance estimates

differentiating, computing dpearest / dcheapest

d(n) in suboptimal search

best-first search on d, alternating, beam search on d

d(n) in bounded suboptimal search

skeptical, A%, explicit estimation search

d(n) in anytime search

d-fenestration, size-cost search, anytime frameworks

summary and conclusions
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Near and Cheap
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Near and Cheap

Introduction

d(n) h*(n) = 11
* —
Suboptimal Search cheapest (n) —
B imal * —
ounded Suboptima nearest (n) —

Anytime Search

Summary

Backup Slides

dnearest 1S potentially independent of A,

h* and dzheapest are related

h* and dzheapest can be estimated
simultaneously, saving effort
compute dpeqrest DY 1gnoring cost information

d estimates don't have to be admissible

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search — 6 / 40



Suboptimal Search

Using d(n) for Suboptimal Search
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Outline: Distance Estimates In Suboptimal Search
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d(n)

Suboptimal Search

Speedy Search
m alternation

m d Beams
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Summary

Bounded Suboptimal
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Summary

Backup Slides

m best-first search on d: speedy search

sorts on dcheapest to preserve some cost information

m interleaving search on d and h: alternation

alternates between nodes sorted on h and dcpeapest

m beam search on d

breadth-first beam search on dcpeqpest

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search — 8 / 40



Speedy Search Thayer et al SoCS-09

Introduction 1. best-first search on distance-to-go estimate, d(n).
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compare to greedy search, Doran and Michie 1966
h o« d, however d = d
d drops consistently, resulting in low vacillation
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Speedy Search Thayer et al SoCS-09

Introduction 1.  while open has nodes
o) 2. remove n from open with minimum d(n)
Suboptimal Search . .
3. If nis a goal then return n
® alternation 4, otherwise expand n, inserting its children into open
m d Beams
b.

return failure

® Summary
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Summary

Backup Slides

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search — 9 / 40



Speedy Search Thayer et al SoCS-09
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Speedy Search Thayer et al SoCS-09
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Speedy Search Thayer et al SoCS-09

Life Four-way Grids 35% Obstacles

1- ®

Introduction

d(n)
Suboptimal Search
m Speedy Search |
B alternation
m d Beams
® Summary >
=
Bounded Suboptimal g 0.8 —
@
Anytime Search o
S
Summary E @
= 4
Backup Slides n
0.6 —
A*onf g
greedy
speedy S
T T T T r
-1 0

log10 total raw cpu time

finds solutions faster at cost of quality

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search — 9 / 40



Speedy Search Thayer et al SoCS-09
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Alternating Between h and d

ntroduction Why not try alternating between h and d?
d(n) (Helmert and Roger ICAPS-10)

Suboptimal Search

m Speedy Search

1

m d Beams

maintain one best-first queue on distance-to-go estimate, d(n).
maintain another on cost-to-go estimate, h(n)
Bounded Suboptimal . 3 expand nodes from both, alternating between them

Anytime Search

N

® Summary

Summary

Backup Slides
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Alternating Between h and d

Introduction

fromg = true
while open; has nodes
if fromy
then n <+ besty
else n < best ¢
remove n from open, and open,
if n is a goal then return n
otherwise expand n, inserting its children into
openg and openy,
9. toggle fromy
10. return failure

d(n)

Suboptimal Search
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Alternating Between h and d
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alternating provides a middle ground between greedy and speedy
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Beam Search On d Wilt and Ruml, SoCS-11

Breadth-First Beam Search

Introduction

d(n)

Suboptimal Search
™ Speedy Search 1.  run breadth-first search with a fixed sized open list

m alternation
2. filter out nodes with high d(n)

® Summary
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Summary
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Beam Search On d Wilt and Ruml, SoCS-11

Introduction

while open has nodes
for each n € open
if n is a goal, return n
UL otherwise expand n, adding to children
a Summary open becomes best width children in children
Bounded Suboptimal  Da. best according to f(n) = g(n) + h(n)
return failure
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Suboptimal Search

m Speedy Search
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Beam Search On d Wilt and Ruml, SoCS-11

Introduction

while open has nodes
for each n € open
if n is a goal, return n
ol otherwise expand n, adding to children
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Beam Search On d Wilt and Ruml, SoCS-11
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ignoring cost information can improve performance
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Summary: d in Suboptimal Search

Introduction m when minimizing solving time, search on d

d(n)

Suboptimal Search m distance estimates easy to use in suboptimal search

m Speedy Search

m alternation no bounds to worry about

m d Beams

generally, just swap d for h, Depth for g

Bounded Suboptimal

Anytime Search m some cost information can be retained by using dcpeapest
Summary

but search on djcqrest likely faster
Backup Slides

m solution quality tends to suffer

but speed and coverage improve
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Bounded Suboptimal

Bounded Suboptimal Search
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Outline: Distance Estimates In Bounded Suboptimal Search

Introduction m proving bounds (for those who just came in)
d(n)

Suboptimal Search | reVised dynamica”y Welghted A*
Bounded Suboptimal .

S——e scales w according to dcheapest
® Bounds

m Skeptical Search m Skeptical search

mA”

" EES use d to learn better h

® Summary

Anytime Search full talk wednesday 10:30
Summary

Backup Slides u A;k

use d to find solution within bound fast

m explicit estimation search

uses inadmissible heuristics to correct flaw in AZ
full talk at IJCAI-11 on Friday July 22
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Dynamically Weighted A* Pohl, 1JCAI-73

uninteresting alone, but useful in anytime frameworks

Introduction

d(n)

Suboptimal Search

: *
Bounded Suboptimal 1. run weighted A
= rdwA* as search progresses, decrease weight

® Bounds
m Skeptical Search
mA”
[
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EES never weighted more than weighted A*, so same bound holds

Summary

Anytime Search

Summary fde*(n) — g(n) + W - (1 — %hogg)) . h(’n,)

Backup Slides fwasx(n) = g(n) +w - h(n)
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Dynamically Weighted A* Pohl, 1JCAI-73

uninteresting alone, but useful in anytime frameworks

Introduction
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Suboptimal Search

Bounded Suboptimal

m Bounds

m Skeptical Search
mA”

m EES

® Summary

Anytime Search

Summary

Backup Slides

moving away from root # moving towards goal!
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Revised Dynamically Weighted A* Thayer and Ruml ICAPS-09

Introduction 1.  run weighted A*

) 2. as search progresses, decrease weight
Suboptimal Search

Bounded Suboptimal

m Bounds frde* (n) — g(’n,) -+ h(n) + w - d(Toot) . h(n)

Skeptical Search
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[
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Revised Dynamically Weighted A* Thayer and Ruml ICAPS-09
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Revised Dynamically Weighted A* Thayer and Ruml ICAPS-09

Introduction fde* = g(’n,) —+ h(’n) W - maﬂf(l, m@n(o, (1 — %@gg))))

d(n)

Suboptimal Search

Bounded Suboptimal
® Bounds
m Skeptical Search
mA”
m EES d( )
. n
m Summary frawas = g(n) + h(n) - maz(1, min(w, w - z5.555))

Anytime Search
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Two Ways To Provide Bounds

Introduction ‘ root f(n) (n) + h(n)
f'(n) = g(n) +w-h(n)

d(n)

Suboptimal Search

Bounded Suboptimal

\/@/\/ m p is the deepest node on
m Skeptical Search an Optlma| path to Opt

mA”
m EES

® Summary

e Sesreh g(sol)
sumer /(o) < '(p)
Backup Slides glp)+w-h(p) < w- (g(p) + h(p))
w - f(p) < w- f(opt)
w - g(opt)

1. works for any f'(p) < w - f(p)
2. g(p) +w- h(p) <w(g(p) + h(p))!
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Skeptical Search Thayer And Ruml ICAPS 2011

Introduction m use d to adjust cost-to-go heuristic
d(n)
Suboptimal Search m use adjusted heuristic in optimistic search:

Bounded Suboptimal
B rdwA*

m Bounds

1. aggressive: run weighted A* with an inadmissible heuristic
mA” ~
= EES f'(n) =gn)+w-h(n)

® Summary

if h close to h* solution should be within bound

Anytime Search

Summary

2. cleanup: check w - bests > f(sol)

Backup Slides

expand best ¢ until within bound

guarantees solution quality
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Skeptical Search Thayer And Ruml ICAPS 2011

Introduction ‘ root "D Is the deepeSt node on
d(n) an optimal path to opt.

Suboptimal Search

Sourded Sulbemifine] m bestf Is the node with the

B rdwA* \/®/\/ smallest f value.

m Bounds

;i

® Summary

Anytime Search f(p) S f(Opt)
Summary f(b@Stf) < f(p)

Backup Slides

best s provides a lower bound on solution cost

determine best s by priority queue sorted on f
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Using d And Observed Error To Correct h

f(p) should equal f(bc)

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal
m rdwA*

® Bounds

mA”

m EES

® Summary

Anytime Search

Summary

Backup Slides

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search — 19 / 40



Using d And Observed Error To Correct h

f(p) should equal f(bc)

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal

(o) = [f7(be)

m rdwA¥* * *
" Bound: g(p) +h*(p) = g(bc)+ h*(be)
_ eptlcal Search : h* (p) — h* (bC) —|_ C(]?7 bC)
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Backup Slides

Jordan Thayer and Wheeler Ruml (UNH) Distance Estimates For Search — 19 / 40



Using d And Observed Error To Correct h

f(p) should equal f(bc)

Introduction

d(n)
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" Bound: g(p) +h*(p) = g(bc)+ h*(be)
_ eptlcal Search : h* (p) — h* (bC) —|_ C(]?7 bC)
m EES
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® Summary

Anytime Search

Summary

h(p) = h(bec)+ c(p,bc) — e,
e, = h(bc)+ c(p,bc) — h(p)

Backup Slides
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Using d And Observed Error To Correct h

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal
B rdwA*

m Bounds
. °
m AT - [
m EES

o

® Summary

Anytime Search

Summary

Backup Slides

f(p) should equal f(bc)

() = f*(bc)
g(p) +h*(p) = g(bec) + h*(bc)
h*(p) = h*(bc) + c(p,be)

h(p) = h(bec)+ c(p,bc) — e,
e, = h(bc)+ c(p,bc) — h(p)

h(n) = h(n)+6,-dn)
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Using d And Observed Error To Correct h

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal
B rdwA*

® Bounds

m Skeptical Search - P *
mA” . ° h (p)
m EES

m Summary . [

Anytime Search

Summary E h(p)

Backup Slides

f(p) should equal f(bc)

f*(be)
g(bc) + h*(bc)
h*(bc) + c(p, be)

h(bc) + c(p, bc) — €p,
h(bc) 4 ¢(p, be) — h(p)

h(n) + €, - d(n)

AN

h(n) + €, - d(n)
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Skeptical Search Performance

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal

100 Inverse 15 Puzzles

Optimistic =====:
Skeptical == ===
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m rdwA¥*

m Bounds

m Skeptical Search
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Summary
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Suboptimality
every expansion provides information; use it!
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A* Pearl And Kim 1982

I troduction intuition: of all solutions within the bound, the nearest
d(n) should be the fastest to find.

Suboptimal Search

Bounded Suboptimal
B rdwA*

® Bounds

m Skeptical Search

- -

s best-first search on two lists:

m Summary open: all generated but unexpanded nodes, sorted on f(n).
Anytime Search focal: all nodes where f(n) < w - f(besty) sorted on d(n)

2urmmary Expand the best node from focal

Backup Slides
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A* Doesn’t Work Very Well Thayer et al SoCS-09

—

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal
B rdwA*

® Bounds

m Skeptical Search
m EES

® Summary

Anytime Search

Summary

Backup Slides
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Suboptimality
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Why Doesn’'t A* Work Well? Thayer et al SoCS-09

ntroduction open all generated but unexpanded nodes, sorted on f(n).

d(n) focal all nodes where f(n) < w - f(bests) sorted on d(n)

Suboptimal Search

Bounded Suboptimal

m rdwA*

® Bounds
m Skeptical Search Often d

mA”

T open ooooooc

Anytime Search

Backup Slides foc a I O O O
best
d p ? often f
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Why Doesn’'t A* Work Well? Thayer et al SoCS-09

ntroduction open all generated but unexpanded nodes, sorted on f(n).

d(n) focal all nodes where f(n) < w - f(bests) sorted on d(n)

Suboptimal Search

Bounded Suboptimal

m rdwA*

® Bounds
m Skeptical Search f Often d

A mﬂ

m EES

s OpEN
Anytime Search

Summary

Backup Slides fOC a I O O O

best best
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Why Doesn’'t A* Work Well? Thayer et al SoCS-09

I troduction open all generated but unexpanded nodes, sorted on f(n).
d(n) focal all nodes where f(n) < w - f(bests) sorted on d(n)

Suboptimal Search

Bounded Suboptimal
B rdwA*

® Bounds
m Skeptical Search f Often d
best

m EES

s OPEN
Anytime Search

Summary

Backup Slides fOC a I O O O

best bESt

d4 }oﬁenf

f rises as search progresses (h is admissible)
best,'s children won't remain on focal
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Explicit Estimation Search

Thayer And Ruml 1JCAI 2011

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal
B rdwA*

® Bounds

m Skeptical Search
mA”

® Summary

Anytime Search

Summary

Backup Slides

intuition: pursuing the shortest solution within the bound
should be fast

intuition’: using unbiased estimates of cost should prevent
f from rising
open all generated but unexpanded nodes, sorted on f(n).

AN AN

focal all nodes where f(n) < w - f(bestf), sorted on d(n)

cleanup all generated but unexpanded nodes, sorted on f(n)

select N ode

AN

1. if f(bests) <w- f(besty) then best~

P

2. else if f(besth) < w - f(bests) then besth

3. else bestf
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Explicit Estimation Search Thayer And Ruml 1JCAI 2011

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal
B rdwA*

® Bounds

m Skeptical Search
mA”

® Summary

Anytime Search

Summary

Backup Slides
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Suboptimality
searching on d better than augmenting cost estimates
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Explicit Estimation Search

Thayer And Ruml 1JCAI 2011

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal
B rdwA*

® Bounds

m Skeptical Search
mA”

® Summary

Anytime Search

Summary

Backup Slides

logl0 total raw cpu time

Life Four-way Grid World
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w A* ——

s

Suboptimality

Life Four-way Grid World

Skeptical == ===

3
|

log10 total nodes generated
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Suboptimality

EES not best if expansion essentially free
thank you planning community!
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Summary: d in Bounded Suboptimal Search

Introduction m d needn’'t be admissible
d(n)

_ even though an admissible h is required
Suboptimal Search

Bounded Suboptimal inadmissible guidance with quality bounds
rdwA*

Bounds
Skeptical Search
Al : : ] . .
EES provides estimate of quantity being optimized

Anytime Search m d can be computed alongside h

m d can dramatically improve performance

Summary

so it's essentially free
Backup Slides

m can be used to add introspection to search

Wednesday 10:30 “Frontiers of Planning”
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Anytime Search

Anytime Search
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Distance Estimates In Anytime Search

Introduction m d-fenestration

d(n)

explores a subset of search space based on d values

Suboptimal Search

Bounded Suboptimal

m size-cost search
Anytime Search

m d-Fenestration searches on length, but prunes on cost

m Size-Cost
m Frameworks

m continued, repairing, restarting search

Summary

Backup Slides use existing frameworks with d-aware search
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Anytime Window A¥* Aine and Chakrabarti, I1JCAI-07

I troduction force nodes being compared to be similarly informed
d(n) assume similar depth implies similarly accurate heuristics

Suboptimal Search

Bounded Suboptimal @
Anytime Search

m Size-Cost
®m Frameworks

Summary

Backup Slides

=
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Anytime Window A¥* Aine and Chakrabarti, I1JCAI-07

I troduction force nodes being compared to be similarly informed
d(n) assume similar depth implies similarly accurate heuristics
Suboptimal Search assumes depth o< d, conflates effort with progress

Bounded Suboptimal

Anytime Search

B d-Fenestration

m Size-Cost
®m Frameworks

Summary

Backup Slides

d and depth are not always related
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d-Fenestration Thayer and Ruml SoCS-10

I troduction force nodes being compared to be similarly informed
d(n) assume similar d implies similarly accurate heuristics

Suboptimal Search

Bounded Suboptimal

Anytime Search

B d-Fenestration

B Size-Cost
®m Frameworks

Summary

Backup Slides
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d-Fenestration Thayer and Ruml SoCS-10

Introduction 1.  while open is not empty

o) 2. select n € open with minimum f(n)

Suboptimal Search 3 If n iS 3 goal

Bounded Suboptimal _ )

Anytime Search 4. update incumbent solution

5. empty delay into open

" ometost 6. increment window

Summary 7. set ming to int

Backup Slides 8. if d(n) —ming > window add n to delay
9. otherwise for each child ¢ of n
10. if d(c) < ming then ming := d(c)
11. if d(c) — ming < window add c¢ to open
12. otherwise add c to delay
13. if delay is not empty
14. empty delay into open, set ming to inf,
15. increment window, and goto 1

16. otherwise return incumbent
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d-Fenestration Thayer and Ruml SoCS-10

Korf's 100 15 Puzzles - Inverse Cost

d(n) 'r" |
Suboptimal Search " d-Fenestration == ===
. . ”
Bounded Suboptimal 0.8l Anytime Window A™ s
Anytime Search :
i
m Size-Cost o i
m Frameworks E 11
2y}
Summary S |
- [
Backup Slides o |
o
o=
i) |
=041
o
n |
|
|
|
11
|
|
0 —
| ' [ ' [ ' |
0 100 200 300

raw cpu time
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Size-Cost Search Cushing et al SoCS-10

Introduction in domains with a large range of action costs,
o) cost-based search performs poorly.

Suboptimal Search

Bounded Suboptimal

Anytime Search

B d-Fenestration

® Frameworks

Summary

Backup Slides

search on length instead, use pruning to converge on optimal.

1. run A* on length
2. keep going, pruning on f(n).
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Size-Cost Search Cushing et al SoCS-10

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal

Anytime Search

B d-Fenestration

® Frameworks

Summary

Backup Slides
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Size-Cost Search Cushing et al SoCS-10

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal

Anytime Search

B d-Fenestration

® Frameworks

Summary

Backup Slides
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Size-Cost Search Cushing et al SoCS-10

Introduction

. while open has nodes
remove n from open with minimum L(n)
if n is a goal then set n as inc
otherwise for each child c of n
if f(c) < f(inc) insert ¢ into open
. return nc

d(n)

Suboptimal Search

Bounded Suboptimal

Anytime Search

B d-Fenestration

® Frameworks

o N

Summary

Backup Slides
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Size-Cost Search Cushing et al SoCS-10

Korf's 100 15 Puzzles - Inverse Cost Life Four-way Grids 35% Obstacles
IntrOdUCtion ?____i————mITeSTﬁt%F:E:: B -
- . -
# Size Cost ==we=r ansd®”
i) |' Anytime Window A% e 0.8 — T JERET L
LusEs?
Suboptimal Search 0.8 : '“__I__..---‘ e
| K ——
Bounded Suboptimal I .
2 | B>y
. A= J =
Anytime Search = I =
. =)
m d-Fenestration & : SRR RAPPPRERLTE CF &
§ |t L g
= 1 R £ 0.4
® Frameworks = 0.4 R _g
n | ‘0’ N
Summary : s
Backup Slides . ::' T T
E L— l l Size Qost ==uuns
J— 1ld-Fenestration == ===
0 0 - Anytime Window A* e
| ' | ' | ' | [ T [ T ]
0 100 200 300 0 100 200 300
raw cpu time raw cpu time

size-cost search handles duplicates better than d-Fenestration
for technical reasons, d-fenestration can't easily delay duplicates
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Anytime Algorithms Based on Weighted A*

anytime weighted A*, Hansen et al 1997

Introduction

d(n) 1. run weighted A*
Suboptimal Search 2 I-I'-' yOU ﬁnd a goal’ keep gOing

Bounded Suboptimal

Anytime Search

B d-Fenestration

m Size-Cost anytime repairing A*, Likhachev et al, 2003
Summary 1. run weighted A*

2 if you find a duplicate, don't look at it just yet.
3. if you find a goal
4 dump duplicates into open, reduce w, keep going.

Backup Slides

restarting weighted A*, Richter et al 2010

1. run weighted A*
2.  if you find a goal, start over with a lower weight.
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Anytime Algorithms Based on Weighted A*

continued search, Hansen and Zhou 1997

Introduction

d(n) 1. EES, A, rdwA¥*, ...

€ !

Suboptimal Search 2. if you find a goal, keep going.
Bounded Suboptimal

Anytime Search

B d-Fenestration
m Size-Cost repairing search, Likhachev et al, 2003
1. EES, A!, rdwA*, ...

Summary €

2 if you find a duplicate, don't look at it just yet.
3. if you find a goal
4 dump duplicates into open, reduce w, keep going.

Backup Slides

restarting search, Richter et al 2010

1. EES, A rdwA*, ..
2.  if you find a goal, start over with a lower weight.
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Anytime Algorithms Based on Weighted A*

Introduction specific results / guidelines not available
i) continued search, Hansen and Zhou 1997

Suboptimal Search
Bounded Suboptimal m tight lower bound

Anytime Search
m d-Fenestration [ feW CyC|eS

m Size-Cost

®m Frameworks

Summary

repairing search, Likhachev et al, 2003

Backup Slides

m many duplicates

m difficult to tune algorithm parameters
restarting search, Richter et al 2010

m cheap expansion

m heuristic bias in underlying search
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Distance Estimates In Anytime Search

Rtrediction m use d to force progress: d-fenestration
d(n)

and make for fairer comparisons

Suboptimal Search

Bounded Suboptimal

m use d to guide search directly: size-cost search
Anytime Search

m d-Fenestration rely on pruning to get high quality solutions

m Size-Cost

®m Frameworks

Summary

Backup Slides EES and A? both rely on d and work well

m use d-based algorithms in anytime frameworks

frameworks can make up for algorithm weaknesses

different problems have different best algorithms
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Summary

Summary
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d estimates length

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal

Anytime Search

Summary

m d estimates length
m Use d
m Bibliography

Backup Slides

d estimates solution length
dnearest €Stimates nearest solution

dcheapest €Stimates cheapest solution

they can be computed at the same time
compute deqrest by ignoring all cost information

d estimates don't have to be admissible

admissible A is required for pruning, bounding

Jordan Thayer and Wheeler Ruml (UNH)
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d is super effective!

Introduction m d(n) in suboptimal search
d(n)

d represents the quantity you're optimizing

Suboptimal Search

Bounded Suboptimal dcheapest re€tains some cost information

Anytime Search

useful in correcting h

Summary

m d estimates length

m d(n) in bounded suboptimal search

m Bibliography
Backup Slides d represents the quantity you're optimizing

inadmissible d needn't compromise bounds

m d(n) in anytime search
useful in finding solutions quickly

a key component with unknown deadlines
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d is super effective!

Heavy Vacuum Korf's 100 15 Puzzles - Inverse Cost
Introduction { == greedyonh
= === oreedy on d
d(n)
400 o7 HPH
Suboptimal Search :
£ =
Bounded Suboptimal s R
& <]
. 2 g 0.6
Anytime Search 5 § 0.6
S 200 - s
Summary 8 1
m d estimates length
h 0.5 o A
m Use d
m Bibliography 1 greedyonh O
1 greedyond A
i f T T T 1 T T T T T
Backup Slides 0 " - 5 5 . ;
Size log10 total raw cpu time
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Introduction

d(n)

Suboptimal Search

Bounded Suboptimal

Anytime Search

Summary

m d estimates length
m Use d
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Backup Slides
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Heavy Vacuums Domain

Introduction

d(n) )
Suboptimal Search @)

Bounded Suboptimal

Anytime Search

Summary

Backup Slides

®m Domain

m Nearest
m Cheapest i|!

m Goal: Navigate To And Vacuum All Dirt

m Action Cost: 1+ # Vacuumed Dirt
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d-Nearest Length Of Shortest Solution

Introduction H

)
Suboptimal Search 0]
Bounded Suboptimal

Anytime Search

Summary ‘ @
Backup Slides j E) )

®

®m Domain

©
m Cheapest :|!

"

Estimate The Length Of The Shortest Possible Solution
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d-Nearest Length Of Shortest Solution

Introduction

d(n)
Suboptimal Search 0]

Bounded Suboptimal

P

Anytime Search

Summary ‘ @
. H HB
Backup Slides p J.u
® Domain
S
m Cheapest
[

"

1. Compute Manhattan Distance Between All Dirt Pairs
2. Build Minimum Spanning Tree Of Dirt Piles

3. Find Manhattan Distance From Vacuum To Dirt

4. Sum Edges In 2 And Minimum Of 3
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d-Cheapest Length Of Cheapest Solution

Introduction

d(n)

Suboptimal Search

Bounded Suboptimal

Anytime Search

Summary

Backup Slides
® Domain

m Nearest

Hﬂ 16
ol
H
16 H B
61—
[ E|!

1. Compute Manhattan Distance Between All Dirt Pairs
2. Build Minimum Spanning Tree Of Dirt Piles

3. Find Manhattan Distance From Vacuum To Dirt

4. Sort Edges In 2, Longest First

5. Iterate Over 4, Summing ¢ + weight - edge
6. Sum 5 And Minimum Of 3
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d-Cheapest Length Of Cheapest Solution

Introduction 1. Compute Manhattan Distance Between All Dirt Pairs
o) 2. Build Minimum Spanning Tree Of Dirt Piles
Z”bOZti::' Eeafh ~ 3.Find Manhattan Distance From Vacuum To Dirt
A::I/:imee S:ar:: ~ 4. Sort Edges In 2, Longest First
Summary 5. lterate Over 4, Summing i + wetght - edge
el Sl 6. Sum 5 And Minimum Of 3
- e
1. Compute Manhattan Distance Between All Dirt Pairs
2. Build Minimum Spanning Tree Of Dirt Piles
3. Find Manhattan Distance From Vacuum To Dirt
4. Sum Edges In 2 And Minimum Of 3
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Length Of Cheapest Solution

d-Cheapest
Introduction 1. Compute Manhattan Distance Between All Dirt Pairs
o) 2. Build Minimum Spanning Tree Of Dirt Piles
Z”b°:t:n:' Eeafh - 3. Find Manhattan Distance From Vacuum To Dirt
A::I/:ir:e S:ar:: ~ 4. Sort Edges In 2, Longest First
Summary 5. lterate Over 4, Summing i + wetght - edge
6. Sum 5 And Minimum Of 3

Backup Slides
® Domain

m Nearest

1

3

. Assume No Obstacles
. Greedily Solve The Problem
. Report Solution Length
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