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ABSTRACT

Real-time Heuristic Search in Dynamic Environments

by

Chao Chi Cheng

University of New Hampshire, May, 2019

In dynamic environments, agents often do not have time to find a complete plan to

reach a goal state, but rather must act quickly under changing circumstances. Real-time

heuristic search models this setting by requiring that the agent’s next action be selected

within a prespecified time bound. In this thesis, we study real-time search algorithms that

can tolerate a fully dynamic environment, in which action costs are not fully predictable

and can change to become either more or less expensive. We present a combination of two

previously-proposed methods that fully utilize the execution time of an agent and adopt an

advanced action selection method in a dynamic environment. We evaluate these methods

in random maps and discretized city grid maps within a dynamic environment setting. The

results suggest that one of the new algorithms is significantly superior to the originals.
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CHAPTER 1

Introduction

AI applications for agents to find a feasible path from start to goal configuration have been

heavily studied in the past. Off-line planning and on-line planning are two major approaches

to the problem. Off-line planning requires agents to have a complete plan before they start

executing. In a dynamic setting, agents in off-line planning need to know environmental

changes in advanced to be able to create a collision-free trajectory. Therefore, for an agent

trying to drive in an urban environment, off-line planning is often insufficient. Planning

in a dynamic environment such as a city requires an agent to update its plan frequently

to respond to the changes around it. The setting of real-time heuristic search models on-

line planning by requiring the agent to commit only to its next action within a strict time

limit. To prevent uncontrolled behavior, the time bound for planning is set to the time at

which the actions to which the agent has already committed will end. In this way, planning

and execution unfold in parallel. The real-time problem setting has been addressed by

many previous algorithms, such as the paradigmatic LSS-LRTA* algorithm (Koenig & Sun,

2009), but most of these only tolerate dynamic environments in which changes result in state

transitions that are more expensive than originally anticipated. One exception is PLRTA*

(Cannon, Rose, & Ruml, 2014), which is similar to LSS-LRTA* but learns separately about

static and dynamic aspects of the state space. As a result, PLRTA* has been shown to

achieve much higher performance in navigation tasks in dynamic environments.

Traditional real-time heuristic search selects actions by choosing the best node on the

lookahead frontier as its next action to execute. However, Kiesel, Burns, and Ruml (2015)

noted that, because f values tend to rise along paths when h is admissible, the node with

lowest f value on the frontier is often not the node closest to a goal. They addressed this
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situation by learning online an inadmissible heuristic ĥ and using it to derive f̂ , which is

used for prioritizing frontier expansion and action selection. They also introduce another

enhancement, dynamic lookahead, in which the agent commits to multiple actions and then

take full advantage of that execution time to increase the time bound of the next planning

iteration. They call the combination of these technique Dynamic-f̂ .

In this thesis, we propose two new algorithms, f̂ -PLRTA* and Dyn-f̂ -PLRTA*, that

enhance PLRTA* with the f̂ and dynamic lookahead techniques from Dynamic-f̂ . We

discuss how these techniques can be combined and adapted in the real-time dynamic world

setting. In an empirical evaluation, we find that Dyn-f̂ -PLRTA* outperforms the original

algorithm in the majority of scenarios tested, particularly for difficult instances and small

lookaheads. f̂ -PLRTA*, on the other hand, does not seem advantaged relative to the

original PLRTA* algorithm. We hope this work spurs further investigation into algorithms

for real-time fully dynamic environments.

1.1 Previous Work

Real-time search has been deeply studied in the past, and there are numerous real-time

algorithms that target different problem settings. In this section, we discuss some of the

previous approaches related to our algorithms.

Real-time A* (RTA*) was proposed by (Korf, 1990) and it is the very first real-time

algorithm. It has become the foundation of real-time search since it first came out. RTA*

does not require the agent to find a complete plan before executing; instead, it chooses

the next action from the neighbor node with lowest f value by performing the minimin

lookahead search until prespecified depth. Then it updates its heuristic value from the

second best f value to prevent the agent from falling into the cycle. The algorithm will

repeat the process until it reaches the goal. As RTA* admissibly updates states’ heuristic

values as it goes, it can always find a solution from the start to the goal if one exists. That

is to say, RTA* has been proven a complete algorithm when the state space is finite and

action cost is always positive. The drawbacks of RTA* are apparent. When the heuristic is
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misleading, the algorithm may take many iterations try to escape from the local minimum

as RTA* only updates the heuristic values one time per iteration. The second drawback for

RTA* is that it uses the depth as lookahead limitation causeing the time to spend on each

iteration to be difficault to estimate.

Local Search Space-Learning Real-Time A* (LSS-LRTA*) is one of the most popular

algorithms in real time heuristic search(Koenig & Sun, 2009). It addresses some of the

problems in RTA*. In each iteration, LSS-LRTA* performs a node-limited A* search to

generate its local search space (LSS). Then it uses a Dijkstra-like propagation algorithm to

back up the heuristic values of the states in the LSS from the frontier. The updated heuristic

values are then used during the next iteration to prevent the agent from becoming trapped

in a ’local minimum’ of the heuristic function. Then the agent commits to the actions

leading from its current location to the best node on the LSS frontier. Since LSS-LRTA*

has the mechanism to prevent the agent from trapping in local minimum, it is complete if

the state space is finite and the heuristic is consistent. Compared to RTA*, LSS-LRTA*

updates the heuristic value of all states in LSS, which is much greater than the number that

RTA* can update in one iteration. This gives the LSS-LRTA* the ability to escape from

local minimum faster than the RTA*. Also LSS-LRTA* uses node expansion number to

limit the search in each iteration. Compare to RTA*, it can provide a more precise timing

when performing the time-bound search.

In an environment that contains dynamic obstacles, we assume that the agent has, at

any given time, some current predictions of the future trajectories of the dynamic obstacles

(Figure 1-1) that it can use to assess the cost of future actions in terms of the probability of

a collision times a collision penalty (Kushleyev & Likhachev, 2009). Since these predictions

can change over time, it can happen that the predicted cost of an action can be larger or

smaller than it was in some previous planning iteration when that action was considered.

Unlike offline heuristic search, online search in a dynamic environment inherently features

these inadmissible g values.

In a dynamic environment, the state space usually includes time as a state variable, as
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Figure 1-1: Prediction of Future Position of A Dynamic Obstacles

being in the same position at a different time could have a very different cost or outcome

due to the dynamic obstacles. As the time variable is a priori unbounded, this implies that

the state space is infinite. This means that standard real-time search h learning does not

work effectively, as learned states will become unreachable and new states always appear.

The algorithm Partitioned Learning Real-Time A* (PLRTA*) was proposed to cope with

this problem (Cannon et al., 2014). Since most environments include static elements that do

not change over time, PLRTA* distinguishes between costs arising from static vs dynamic

elements and ignores the time when learning the static cost-to-go. Therefore, the evaluation

function of PLRTA* consists of four components — static cost-so-far gs(n), static cost-to-go

hs(n), dynamic cost-so-far gd(n), and dynamic cost-to-go hd(n) — which are combined to

form the f value:

f(n) = gd(n) + gs(n) + hd(n) + hs(n) (1.1)

A sketch of the algorithm is shown in Algorithm 1. Like LSS-LRTA*, PLRTA* has two

phases in each iteration. In the first, PLRTA* expands the search space until it reaches

the lookahead limit (line 3). In the second, PLRTA* separates the learning process into

two steps: static learning, and dynamic learning. For static learning, PLRTA* conflates all

states that differ only in time into a single abstract state. Abstract states inherit the union

of all the predecessors of their preimage states, so that backups can be performed properly.
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Algorithm 1 Partitioned Learning Real-Time A*

PLRTA*(Sstart,lookahead)

1: open = { Sstart }

2: closed = { }

3: ASTAR(open, closed, lookahead )

4: g′ ← peek(open)

5: LEARNSTATIC(open,closed)

6: LEARNDYNAMIC(open,closed)

7: return the path from start to g′

PLRTA* learns a single static heuristic value for each abstract state, thus generalizing to

future states (line 5). For dynamic learning, PLRTA* learns dynamic heuristic for each

states by performing the standard Dijkstra-style backup across the LSS, considering only

costs arising from the dynamic elements of the environment (line 6). For example, in a grid

world domain, the cost of dynamic obstacles, which their trajectory are not fully predictable,

will be learned in the dynamic learning stage. As presented by Cannon et al. (2014),

the algorithm commits to only one step in the selected path (line 7), and then replans

using (presumably) updated information. Although completeness is not possible in dynamic

environments (imagine an obstacle teasing the agent by temporarily unblocking a shortcut),

PLRTA* is guaranteed to reach a goal if there are no dynamic obstacles.

Kiesel et al. (2015) suggest two general enhancements to LSS-LRTA*. The first concerns

the heuristic. Most heuristics used with real-time search algorithms are admissible, meaning

that they are lower bounds on the actual cost. Kiesel et al. (2015) suggest that real-time

decision-making is best made on the basis of expected value, rather than lower bounds.

They attempt to derive an estimate of expected cost ĥ by learning online an estimate of

how underestimating the provided h function is. If h were accurate, the f value of a parent

node should equal the lowest f value among its successors and any difference represents an

error. By tracking the mean ε of this one-step error and multiplying it by an estimate d(n)
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Figure 1-2: The example shows the effect of the heuristic error. Blue states represent the
search space of an algorithm and green states represent the frontier states that an algorithm
needs to select for the next action.

of the number of hops in the state space graph to a goal, they obtain an estimate of the h

error and an estimate of the expected cost f̂ :

herror (n) = d̂(n) ∗ ε (1.2)

ĥ(n) = h(n) + herror (1.3)

f̂(n) = g(n) + ĥ(n) (1.4)

In the example of Figure 1-2, the underestimation of the heuristic leads the algorithm

to select the action which will bring the agent away from the goal. Consider the situation in

the example where the agent is only allowed to expand four nodes per iteration. The agent

expands four states with f value equal to 3 (blue states), then it selects the best state of the

frontier states(green states) as its action. For an algorithm that sorts states base on f value,

the best state in the frontier is the state with f value equal to 3; even though, the selected

state is not the state toward the goal. The situation is caused by the heuristic error. As

the heuristic is the lower bound of true cost-to-go, the algorithm often underestimates the

heuristic value. Prioritize the node that is fewer steps away from the goal can improve the

performance of the algorithm. As f̂ trying to estimate true cost-to-go more accurately, it

will penalize the states that are far away from the goal so that the state that is close to the
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Figure 1-3: Left: Shows the search space of the algorithm with dynamic lookahead Right:
Shows the search space of the algorithm without dynamic lookahead.

goal will have higher chance to either be selected as next state to expand or next action to

commit.

The second enhancement concerns the treatment of lookahead. In real-time search,

the lookahead size is strictly limited to ensure that an action can be selected within the

real-time bound. This bound derives from the requirement that the agent never exhibit

uncontrolled behavior: a new action must be ready by the time the currently executing

action has completed. However, if the agent commits to multiple actions after a single

planning phase, this means a larger real-time bound can be used for the next iteration. By

dynamically adjusting lookahead to fill the available time in this way, action selection can

be more informed, leading to better performance.

Figure 1-3 shows a comparison between the standard algorithm and the one with the

dynamic lookahead technique. As states with magenta color display in the graph, the search

space can have a huge difference when dynamically adjust the lookahead size.

7



CHAPTER 2

Dynamic-f̂ has proven its success in improving the overall trajectory cost of LSS-LRTA*.

In a situation with no dynamic obstacles, PLRTA* is similar to LSS-LRTA* where we can

treat the static learning phase as the learning step of LSS-LRTA* by substitute the hs to

h. Therefore, in this chapter, we explore combining Dynamic-f̂ and PLRTA*, resulting in

Dyn-f̂ -PLRTA* and its simpler variant f̂ -PLRTA*.

2.1 f̂-PLRTA*

As in PLRTA*, f̂ -PLRTA* copes with dynamic environments by partitioning the cost

into static cost(gs) and dynamic cost(gd), and learning the static cost-to-go(hs) and dynamic

cost-to-go(hd) separately. The central difference between f̂ -PLRTA* and PLRTA* is that

f̂ -PLRTA* considers the heuristic error when sorting the open list:

g(n) = gd(n) + gs(n) (2.1)

h(n) = hd(n) + hs(n) (2.2)

ĥ(n) = h(n) + d̂(n) ∗ ε (2.3)

f̂(n) = g(n) + ĥ(n) (2.4)

f̂ -PLRTA* uses a best-first search on f̂ to generate the local search space. Then it selects

the node with the lowest f̂ value as the next target state (g′, line 4 in Algorithm 1) for the

agent. Ties are broken in favor of the state with the highest time.
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Algorithm 2 Static Learning For PLRTA* with f̂

LEARNSTATIC(open,closed)

1: closed,open ← Initialize Static(open,closed)

2: while closed AND open is not empty do

3: s← peek(open)

4: open = open \{s}

5: if s ∈ closed then

6: closed = closed \{s}

7: end if

8: for p ∈ pred(s) do

9: if p ∈ closed AND hs(p) ≥ hs(s) + cs(p, s) then

10: hs(p)← hs(s) + cs(p, s)

11: if derr(p) > derr(s) then

12: derr(p)← derr(s)

13: d(p)← d(s)

14: end if

15: end if

16: end for

17: end while

2.1.1 Calculating heuristic error

In our experiment, we used one-step heuristic error model (Kiesel et al., 2015) to estimate

the heuristic error of a state.

d̂(n) =
derr (n)

1− ε̄d
(2.5)

d̂ is an estimation of the true number of steps remain to the goal from the frontier. To

calculate d̂, we average the difference of the d value of the parent and its best child (lowest

f) to get the ε̄d. We used the (derr ), which represents the estimation of the number of steps

remain to the goal from the frontier, divide by 1 - ε̄d to get d̂.
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To estimate the one-step heuristic error ε, we averaged the difference of the fstatic =

gs + hs value of a parent and its best child. In the same time, we also calculated the

difference of the estimate steps to the goal value (d) between them to estimate the average

distance error of one iteration. The average ε and average εd from one planning iteration is

used to compute herror for the next iteration, thereby avoiding any need to resort the open

list as ε changes.

Following the procedure used in Dynamic-f̂ , during the static learning phase, the algo-

rithm backs up d and derr from the frontier, as shown in Algorithm 2. Following (Thayer,

Dionne, & Ruml, 2011), we assume that the error is evenly distributed for all steps of the

path. So our heuristic error is estimated by the distance-to-goal backup from frontier (derr )

times the per-step error ε and divide by 1 minus average distance error. To back up the dis-

tance from the frontier, the distance of a predecessor would be updated to its child distance

value:

derr (parent) = derr (child) (2.6)

d(parent) = d(child) + 1 (2.7)

Although there is of course also error in the dynamic heuristic values, it is very hard

to predict due to the inherent unpredictability of dynamic obstacles. Therefore, we only

account for the static heuristic error.

2.1.2 Static world learning

Similar to PLRTA* algorithm, f̂ -PLRTA* also has a static learning phase that used to

back up the value of the static heuristic from the frontier node. The main difference is that

static learning phase of f̂ -PLRTA*also backs up the steps to go(d), and steps to go from the

frontier(derr ). During the static learning phase, the algorithm updates the static heuristic

value of an abstract state, that is, the state without time variable. To create the abstract

state, the algorithm first converts all the states with same abstract state value into a single

abstract state and combined their parent pointers to associate with the abstract state and

insert them into the open list. Then the algorithm assigns infinity to every static heuristic
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Algorithm 3 PLRTA* With Dynamic Lookahead

1: lookahead← exp per step

2: while True do

3: path ← PLRTA*(Sstart, lookahead)

4: lookahead← sizeof(path) ∗ exp per step

5: while path is not empty do

6: s← path

7: path \{s}

8: move agent to s

9: if costnew(path) > cost(path) * factor then

10: lookahead← exp per step break

11: end if

12: end while

13: end while

that is currently in the open list. The algorithm will then use abstract states to perform

the Dijkstra-like algorithm to back up the derr, d, and hs value.

2.1.3 Heuristic Decay

In the dynamic environment, the movement of a dynamic obstacle is usually unpredictable.

We may overestimate the dynamic heuristic value when an obstacle changes its moving

direction suddenly. Therefore, the dynamic heuristic we learn during the dynamic learning

phase may become misleading over time. The heuristic decay has been proposed to address

this problem. The value of dynamic heuristic of each state will decrease at each iteration.

By this, the algorithm will discount the importance of the dynamic heuristic value that it

learns before.

2.2 Dyn-f̂-PLRTA*
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Figure 2-1: Path of Dyn-f̂ -PLRTA*

Dyn-f̂ -PLRTA* adds the dynamic lookahead technique to f̂ -PLRTA*. A sketch is shown

in Algorithm 3. After the lookahead phase, the basic version of Dyn-f̂ -PLRTA* commits

to all the actions along the path from the current state to the target frontier node. To take

into account the changing predictions of the future locations of dynamic obstacles, Dyn-f̂ -

PLRTA* checks the cost of the remaining committed actions at each time step to see if the

new cost of the path is now greater than the original cost times a replanning factor (1.1 in

our experiments below). If yes, then the previously-committed actions are abandoned and

the real-time search is restarted with a time bound of one action duration.

2.2.1 Constrained Dynamic Lookahead

In preliminary experiments, we found that dynamic lookahead actually performed worse

than committing to a single action at a time. Figure 2-1 shows an example. In the left

panel, the magenta color represent the agent’s LSS. The right panel shows the overall path

for the agent from start to goal, and indicates that part of the trajectory contains actions

that were committed at the edge of the lookahead, as they lead into a wall. Other have

also reported that multiple-step commitment can perform worse than single-step (Luštrek

& Bulitko, 2006; Kiesel et al., 2015). Kiesel et al. (2015) presents the comparison of LSS-

LRTA* with single-step LSS-LRTA* (single-step f) in Figure 10 where single-step LSS-
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Algorithm 4 PLRTA* With Constrained Dynamic Lookahead

1: allows step← 1

2: while True do

3: lookahead← allows step ∗ lookahead size

4: path ← PLRTA*(Sstart, lookahead)

5: if allows step + 1 < sizeof(path) then

6: allows step← allows step + 1

7: else

8: allows step← sizeof(path)

9: end if

10: while path is not empty do

11: s← path

12: path \{s}

13: move agent to s

14: if costnew(path) > cost(path) * factor then

15: allows step← 1

16: break

17: end if

18: end while

19: end while

LRTA* outperforms LSS-LRTA*. This makes sense, as committing to only a single step

ensures lookahead from every state the agent visits. In order to allow increasing the amount

of planning while ensuring some lookahead ahead of every committed actions, we developed

balanced approach that constrains the number of committed actions to be at most one more

than in the previous iteration (Algorithm 4). In the experiments reported below, we use

this modified version of dynamic lookahead in our Dyn-f̂ -PLRTA*algorithm.
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2.2.2 Garbage Collection

Both Dyn-f̂ -PLRTA* and f̂ -PLRTA* have infinite state space due to the time variable in

the state. It important for these algorithms to have the garbage collection technique to

save computer memory. Ideally, the garbage collection for Dyn-f̂ -PLRTA* and f̂ -PLRTA*

are simply truncate all the states that have smaller timestamp than the given start state.

But in practice, Dyn-f̂ -PLRTA* can only perform the garbage collection on states that are

smaller than the current agent’s timestamp as the Dyn-f̂ -PLRTA* might be required to

replan when path cost increase.

2.2.3 Properties

Theorem 1 In a finite state space with an admissible h and no dynamic obstacles or dead

ends, Dyn-f̂ -PLRTA* is complete.

Proof: With no dynamic obstacles, gd and hd will remain 0. Even if time is a state variable,

hs applies to abstract states, effecitvely removing it from consideration. Dyn-f̂ -PLRTA*

will therefore be equivalent to Dynamic-f̂ , which is complete.(Kiesel et al., 2015) �

Theorem 2 If all the action cost are non-negative and heuristic is consistent, the static

heuristic value of the same abstract state is monotonically nondecreasing over time and

becomes more informed over time.

Proof: We follow Cannon et al. (2014)’s proof on nondecreasing static heuristic value.

We have same environmental setting and similar static learning step. As we use the same

backup strategy as they use and dynamically adjust lookahead size will not change the way

how heuristic value update, we met all the precondition of their proof and we can apply

their proof here. �

2.3 Experimental Results

To evaluate the practical performance of these new methods, we tested them on a grid

pathfinding problem with moving obstacles. (This is reminiscent of the domain used by
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Kiesel et al. (2015) to test Dynamic-f̂ , although their obstacles were fully predictable.)

The state space is {x, y, t}, where x and y represent position and the t represents time.

The agent has 9 actions: 8-way movement plus wait. Each action will be incurred a cost if

the agent is not on the goal. The dynamic obstacles are represented by a tuple {x,y,v,h,t},

where h represents the direction of the obstacle, v represents the speed, x,y represent the

position, and t represents the time of an obstacle. Obstacles move randomly with various

speed and direction. The obstacles do no follow the constraint of the grid cells, and they

change the direction and speed at the random time-step. The future movements of obstacles

are unknown to the agent, so the agent needs to predict the possible future states of a

dynamic obstacle when planning. This is done by linear extrapolation from the the two

most recent time steps and assuming Gaussian uncertainty that increases at a constant

value over time. The static heuristic is the octile distance. costdynamic is calculated by the

probability of collision times collision cost. The probability of collision is taken from the

Gaussian predictions and the collision cost of costdynamic is set to 200 and the coststatic is

0 if on the goal otherwise 1. The dynamic heuristic is 0, as it is very hard to predict the

true cost of dynamic obstacles.

We ran our experiments with different lookahead size range from 1 to 1000. The looka-

head of the dynamic version of the algorithm is calculated by lookahead size times the

number of actions committed in the previous iteration.

We use the replanning factor to decide if the dynamic algorithm need to replan the trajec-

tory due to the increase of the dynamic cost. We experimentally compared the performance

of the replanning factor from 1.0 to 2.0. And we discovered that when the replanning factor

increased, the performance of the dynamic lookahead algorithm also increased. The factor

parameter we chose for replanning in dynamic lookahead version of the algorithm is 1.1.

Although factor 2.0 yielded the best performance, a greater factor can lead to an increased

probability of hitting dynamic obstacles while it only provided a negligible improvement

over the factor 1.1.

We use two different types of maps. The first is a single 256 * 256 city map from (Sturte-
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Figure 2-2: Comparison of Different Algorithms in citymap with 0 dynamic obstacles

vant, 2012), shown in Figure 2-1. Each instance of the map has a different start and goal

pair that is randomly generated and at least 128 away from each other in Euclidean distance.

For every start goal pair we have sub-instances that have different numbers(0,20,40,60) of

random generated dynamic obstacles. The configurations of dynamic obstacles are the same

across all start goal pairs The second type is the class of uniform random maps, with static

obstacles generated randomly with the density of 10,30, and 50%. Each instance of the

random maps has randomly generated start goal pairs and each instance has 20 dynamic

obstacles. The start goal pair has the same constraint as in city map: at least 128 away

from each other in Euclidean distance. The behavior of the algorithms run on different

maps can refer to (Cheng & Ruml, )

Figure 2-2 to 2-6 presents the results for the city map with different dynamic obstacles

number. The experiment results are shown as a relative percentage of the difference between

the algorithm and PLRTA* (lower is better). One-step f̂ -PLRTA* does not show any

improvement over the original PLRTA*. However, adding balanced dynamic lookahead
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Figure 2-3: Comparison of Different Algorithms in citymap with 20 dynamic obstacles

strongly improves performance, with a stronger improvement for shorter lookaheads. (For

large lookaheads, all algorithms will converge to optimal offline A*.) In the context of

dynamic lookahead, using f̂ does not seem to make much difference.

Figure 2-7 to 2-18 presents the results on random maps with different densities and

dynamic obstacles.

Figure 2-7 to 2-14 shows a similar result to those from the city map, although we observe

that, as the obstacle density increases and the heuristic becomes less accurate, the advantage

of the dynamic lookahead algorithm strongly increases.

Figure 2-15 to 2-18 shows a situation where when there is less or no static obstacles,

the performance of dynamic lookahead algorithm strongly decreases when the number of

dynamic obstacles increases. The performance decreasing indicates the dynamic obstacles

gradually become the crucial factor of the performance when static obstacles approach 0. It

is reasonable since when there is no static obstacles and dynamic obstacles, Dyn-f̂ -PLRTA*

and PLRTA* will have the same performance. When the environment only exists dynamic

17



1 3 10 30 100 300 1000
lookahead

50

40

30

20

10

0

10

20

co
st

(%
)

Number Of Dynamic Obstacles 40

Figure 2-4: Comparison of Different Algorithms in citymap with 40 dynamic obstacles

obstacles, PLRTA* may have more advantage to react with environmental changes as it

requires to replanning for every action it commits. On the other hand, Dyn-f̂ -PLRTA*may

detour even if there is a better path exists. This can happen at the time that the dynamic

obstacles do not follow the predicted trajectory where it frees the way it initially blocks. In

this situation, Dyn-f̂ -PLRTA* will not be able to find the best route.

Figure 2-19 compares between the constraint dynamic lookahead method and the orig-

inal dynamic lookahead method on Dyn-f̂ -PLRTA*. The new constrained dynamic looka-

head is a clear improvemet over the original dynamic lookahead.

2.3.1 Hand Crafted Scenarios

Following (Cannon et al., 2014), we test our algorithms on the handcrafted scenario in a

20 x 20 grid world shown at Figure 2-20 to study the behavior of each algorithm. Cannon

et al. (2014) set the algorithms lookahead size as 1000 and they let each algorithm to run for

30 seconds and the time bound of one iteration is 0.5 seconds. To replicate their experiment,
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Figure 2-5: Comparison of Different Algorithms in citymap with 60 dynamic obstacles

Scenario PLRTA* f̂ -PLRTA* Dyn-PLRTA* Dyn-f̂ -PLRTA*

1 25(good) 25(good) 21(ok) 21(ok)

2 60(bad) 37(good) 37(good) 37(good)

3 18(good) 18(good) 18(good) 18(good)

4 7(good) 7(good) 7(good) 7(good)

5 19(good) 19(good) 20(good) 20(good)

6 21(good) 21(good) 25(bad) 25(bad)

Table 2-1: Performance of different algorithms on each scenario

we allow each algorithm to have 60 movements. In our domain 1000 lookaheads can cover

the whole map; therefore, we decided to decrease the lookahead size to 100 to better observe

the algorithm behavior. we compare the overall trajectory cost and examine the algorithm’s

behavior by its path.

Table 2-1 presents the result of the algorithms run on each scenario. In most of the
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Figure 2-6: Comparison of Different Algorithms in citymap with 80 dynamic obstacles

scenario, the algorithms generally perform well and follow the behavior we expect it to have

in each scenario. Only in scenario 1, the dynamic algorithm will not wait aside. Instead,

it will just ask the agent to go through the space near the dynamic obstacle. In scenario

2, PLRTA* follow the slow object. Therefore, it can never reach the goal within the time-

bound. In scenario 6, the dynamic algorithm will not wait at the desired location. Instead,

it would randomly travel when its road dynamic obstacles block its road. For videos of

different algorithms behavior can refer to (Cheng & Ruml, )
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Figure 2-7: Comparison of Different Algorithms in random map with 50% density and 0
dynamic obstacles
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Figure 2-8: Comparison of Different Algorithms in random map with 50% density and 20
dynamic obstacles
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Figure 2-9: Comparison of Different Algorithms in random map with 50% density and 40
dynamic obstacles
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Figure 2-10: Comparison of Different Algorithms in random map with 50% density and 60
dynamic obstacles
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Figure 2-11: Comparison of Different Algorithms in random map with 30% density and 0
dynamic obstacles
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Figure 2-12: Comparison of Different Algorithms in random map with 30% density and 20
dynamic obstacles
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Figure 2-13: Comparison of Different Algorithms in random map with 30% density and 40
dynamic obstacles
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Figure 2-14: Comparison of Different Algorithms in random map with 30% density and 60
dynamic obstacles
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Figure 2-15: Comparison of Different Algorithms in random map with 10% density and 0
dynamic obstacles
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Figure 2-16: Comparison of Different Algorithms in random map with 10% density and 20
dynamic obstacles
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Figure 2-17: Comparison of Different Algorithms in random map with 10% density and 40
dynamic obstacles
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Figure 2-18: Comparison of Different Algorithms in random map with 10% density and 60
dynamic obstacles
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Figure 2-19: Comparison of Different Dynamic Lookahead Algorithms on Dyn-f̂ -PLRTA*
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Figure 2-20: Hand Crafted Scenarious From Cannon et al. (2014)
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CHAPTER 3

Conclusion

3.1 Possible Future Extension

While our experimental result suggests Dyn-f̂ -PLRTA* offers significant improvement com-

pared to PLRTA*, f̂ -PLRTA* does not shows clear advantage. The reason f̂ -PLRTA*

shows no advantage may be due to our simplistic model of heuristic error and our lack of

a dynamic cost heuristic. These could be promising directions for future work. The other

point we should notice is that the balanced dynamic lookahead scheme replans only when

the cost of the current plan increases. It does not handle the situation where a better route

appears (Bond, Widger, Ruml, & Sun, 2010). Improving this could be another direction

for future work.

A large replanning factor can increase the performance of the dynamic lookahead algo-

rithm by reducing the replanning rate. But it is also dangerous to have a big replanning

factor as it will lead the algorithm to become less sensitive to environmental changes. There-

fore increasing the replanning factor also increase the probability of the agent get hit by

dynamic obstacles. Although we ran the experiment on the replanning factor, we did not

reach the point where the algorithm starts performing worse(hit by dynamic obstacles)

when the factor increase. It may be one direction that people can further improve the

Dyn-f̂ -PLRTA* algorithm.

Compared to PLRTA*, Dyn-f̂ -PLRTA*shows slightly worse performance when there is

no or a few static obstacles with a lot of dynamic obstacles. The reason may because of the

Dyn-f̂ -PLRTA* dynamic obstacles information may be outdated when the agent commits

the action in the trajectory. And this result in the agent could travel to an unnecessary

state since the dynamic obstacles already leave the place. Implement a fancier replanning
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condition may be able to help in this situation. Current algorithm only replan when the

cost of path increase. It is interesting to see when replanning conditions include decrased

of the path cost as one of its condition

While the performance of Dyn-f̂ -PLRTA* is promising in the dynamic grid pathfinding

domain we tested, it will be important to understand its behavior in other domains as well.

The domain used by (Cannon et al., 2014) is slightly more complex, for example, modeling

orientation and velocity of the agent.

3.2 Conclusion

In this paper, we import the enhancements to LSS-LRTA* proposed by Kiesel et al. (2015)

into the PLRTA* algorithm of Cannon et al. (2014), resulting in two new algorithms: f̂ -

PLRTA* and Dyn-f̂ -PLRTA*. While our experimental results indicate that f̂ -PLRTA* does

not offer significant benefits, Dyn-f̂ -PLRTA* outperforms the original PLRTA* algorithm

in most of the tested situation and appears quite promising. For AI systems that interact

with the real world, timely planning can be a crucial capability, and we hope that this work

spurs additional investigation into real-time search in dynamic environments.
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