
Real-time Cost-algebraic Heuristic Search

Devin Wild Thomas and Wheeler Ruml
University of New Hampshire

Durham, NH USA
dwt@cs.unh.edu, ruml@cs.unh.edu

Abstract

Planning under time pressure arises in many situations. Real-
time heuristic search, in which an agent must compute its next
action within a prespecified time bound, has proven to be a
useful model of real-time planning. However, it is laborious
to prove the completeness of new real-time search algorithms.
In this paper, we provide a general proof of the completeness
of a standard real-time heuristic search algorithm in any prob-
lem domain that obeys the axioms of a cost algebra. The proof
includes additional detail on how h values change as the al-
gorithm learns. This foundation clarifies the dependence of
the proof on domain and algorithm properties and will ease
future applications of real-time planning.

Introduction
Real-time heuristic search (Korf 1990) is a common ap-
proach to planning under time pressure. It requires that the
planner finish computing its next action within a prespeci-
fied time bound. For example, a real-time agent might set
the time bound based on the duration of the action it is cur-
rently executing, so that it will have a next action planned
and ready to execute by the time that the current action has
finished. Typically, a real-time heuristic search alternates
through three stages: lookahead search, where the planner
performs a limited search rooted at its current state; heuristic
learning, where the developed search space is used to learn
updated heuristic values to escape local minima and improve
future searches; and commitment, where the planner selects
an action or set of actions to commit to executing.

For example, real-time A* (RTA*) (Korf 1990) searches
to a fixed depth, learns an updated heuristic value for the
root state of the search, and commits to the minimum f top-
level action (child of the root). In contrast, local search space
learning real-time A* (LSS-LRTA*) (Koenig and Sun 2009)
searches using a time-limited A*, learns an updated heuristic
for each state expanded during the search by backing up h
from the search frontier, and commits to the entire partial
plan to the minimum f node on the search frontier.

When designing a new real-time heuristic search algo-
rithm, the central property that researchers often want to
achieve is completeness, that the agent reaches a goal state if

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one exists. Typically, one proves completeness by showing
that in order to be incomplete it must have a set of states,
which we will call the circulating set, that it revisits over
and over forever and then showing that no circulating set
can exist. Previous proofs assume we are in the shortest path
setting, where cost of a path is the sum of the scalar cost of
the edges of the path, and we prefer shortest paths.

In offline heuristic search, A* has been studied in the
more general cost-algebraic setting. A cost algebra is a gen-
eralization of the typical cost propagation done by a heuris-
tic search, i.e., A* considers the cost of a path to be the
sum of the cost of the edges along said path. But, a cost-
algebraic heuristic search (Edelkamp, Jabbar, and Lluch-
Lafuente 2005) solves a more general set of problems be-
yond just shortest paths.

For example, in the widest paths problem, path cost ac-
cumulates through the operator min rather than summation,
and we prefer larger costs. On the other hand, in any-start-
time planning (Thomas et al. 2023), the cost of a plan is
a function of time, these costs accumulate through function
composition, and we prefer the earliest arriving plan. Both of
these are examples of cost algebras. Edelkamp, Jabbar, and
Lluch-Lafuente (2005) showed that cost-algebraic A* finds
optimal solutions. Further, Holte and Zilles (2019) showed
that cost-algebraic A* is optimally efficient in most1, but
not all, of the situations in which A* is optimally efficient
(Dechter and Pearl 1985). It would be useful to extend real-
time heuristic search similarly.

New variants of real-time search arise regularly. For ex-
ample, Thomas, Ruml, and Shimony (2024) define a vari-
ant of LSS-LRTA* that uses functions to represent h values
instead of scalars, and Fickert et al. (2020) define a variant
that uses probability distributions for h. Different algorithms
can have different strategies for lookahead search, heuris-
tic learning, and commitment. It would be useful to have
a general real-time search algorithm framework that could
be applied to new cost structures, as cost-algebraic A* can,
and for this algorithm to be defined generically so that spe-
cific applications have the flexibility to select the best search,
learning, and commitment strategies for their setting. This is
exactly the role of this paper. We provide a formal definition

1When you have a consistent heuristic, but not always when you
only have an admissible heuristic.

of cost-algebraic real-time local search space learning A*,
which generalizes LSS-LRTA* to the cost-algebraic setting
and to a variety of search, learning and commitment strate-
gies, and a proof of completeness for this generalized al-
gorithm. The proof includes novel detail on how the search
escapes heuristic depressions. This work clarifies the depen-
dence of the proof on domain and algorithm properties and
will ease future applications of real-time planning.

Background
Our work builds upon prior research in cost algebraic heuris-
tic search and real-time heuristic search.

Cost-algebraic Heuristic Search
Cost-algebraic A* is a generalization of A* to a more gen-
eral notion of cost than the scalar sum of costs used by A*
to solve shortest-path problems. We begin by restating the
definition2: A cost algebra is a 4-tuple ⟨Ω,×,⪯,1⟩ where Ω
is the set of possible edge and path costs, 1 is the cost of the
empty path, × is the operator for computing a path’s cost
from the costs of its edges, and ⪯ is the ordering on costs.
Definition 1 (Monoid). Let Ω be a set and × : Ω× Ω→ Ω
a binary operator. A monoid is a triple ⟨Ω,×,1⟩ such that
1 ∈ Ω and for all a, b, c ∈ Ω:
associativity a× (b× c) = (a× b)× c
identity 1× a = a× 1 = a

Definition 2 (Total order). If Ω is a set and⪯ is a total order
on Ω then a ≺ b denotes (a ⪯ b) ∧ (a ̸= b), and a ⪰ b
and a ≻ b are alternative ways of writing b ⪯ a and b ≺ a
respectively.
Definition 3 (Cost product). If ⟨Ω,×,1⟩ is a monoid and
⟨a1, · · · , an⟩ ∈ Ωn is a sequence of length n, then

n∏
i=1

ai =

1, n = 0

a1, n = 1

a1 × · · · × an, n > 1.

Definition 4 (Least). The least operator on a set of costs Ω
with ordering ⪯ is denoted

⊔
A = c with A ⊆ Ω and c ∈ A

such that ∀a ∈ A : c ⪯ a.
Definition 5 (Isotonicity). A monoid ⟨Ω,×,1⟩ with total
order ⪯ on Ω is isotone iff a ⪯ b implies both (a × c) ⪯
(b× c) and (c× a) ⪯ (c× b) for all a, b, c ∈ Ω.
Definition 6 (Cost algebra). A cost algebra is a 4-tuple
⟨Ω,×,⪯,1⟩ such that:
• ⟨Ω,×,1⟩ is a monoid,
• ⪯ is a total order on Ω,
• 1 =

⊔
Ω, and

• ⟨Ω,×,1⟩ with ⪯ is isotone.
For example, the typical shortest path optimization set-

ting, for which A* has been shown to be optimally efficient
(Dechter and Pearl 1985; Holte and Zilles 2019) is the cost-
algebra ⟨R≥0,+,≤, 0⟩ defined by the monoid ⟨R≥0,+, 0⟩
of real-valued costs accumulated through summation and the
total order ≤ over these costs.

2Definitions 1, 2, 3, 5, and 6 are from Holte and Zilles (2019).
Definition 4 is from Edelkamp, Jabbar, and Lluch-Lafuente (2005).

Real-time Heuristic Search
A real-time heuristic search problem is represented by a
seven-tuple ⟨S, σ, δ, so, h0, isGoal, b⟩, where the state space
S is the set of possible states, σ is the mapping of states to
the set of their successors, δ : S ⊗ σ(S) → R≥0 is the cost
function that defines a finite cost for every edge in σ, so ∈ S
is the start state, h0 : S → R≥0 ∪ {∞} is the initial heuris-
tic function that is non-negative for all states and 0 for all
goal states, isGoal : S → {true, false} is the goal predi-
cate defining which states are goals, and b is the time bound.
(Note that we use⊗ to denote the Cartesian product in order
to avoid confusion with the operator × of a cost algebra.)
Generally, the time bound is specified in units of time and
an estimate of the expansion rate of the search is used to
calculate a budget in expansions, e.g., a time budget of 0.1
second and an expansion rate of 100 Hz would correspond
to a budget of 10 expansions. For this work, as we are not
grounded in a particular application, we will assume that b
is a budget given directly in expansions. The most common
objective of a real-time heuristic search algorithm is to min-
imize the agent’s total trajectory cost and planning time to
reach a goal.

As an example and a starting point for our generalization
of real-time heuristic search, we will now go over a spe-
cific real-time heuristic search algorithm. Local search space
learning real-time A* (LSS-LRTA*) (Koenig and Sun 2009)
is a popular real-time heuristic search approach. It alternates
between three stages: lookahead search, heuristic learning,
and commitment. We will refer to each execution of these
three stages as an iteration of the search.

Search Lookahead The search of LSS-LRTA* is a node-
limited A*, which is the same as a typical A* search except
that the search halts either if a goal is selected for expan-
sion or the expansion budget is exhausted. A search node is
a tuple, ⟨s, g, h, p⟩ ∈ N , corresponding to the state s and
containing the extra information needed by the search: g the
cost to s, h the heuristic estimate of the cost to reach a goal
from s which is h0(n) if n has never before been generated
or the learned h(n) otherwise, and p a parent pointer to en-
able reconstructing the plan once a solution is found. We use
N to refer to the space of possible search nodes.

As in A*, the search maintains two sets: OPEN ⊂ N is
the set of nodes on the search frontier, those that have been
generated but not yet expanded, and CLOSED : S → N is
the mapping of states to their corresponding nodes that have
been expanded. In a real-time search, the agent will commit
to changing its actual state at the end of each iteration. For
this reason, we differentiate between so, the start state of
the real-time search problem as a whole, and sr, the root of
an individual iteration of the search. The node-limited A*
search repeatedly expands the lowest f(n) = g(n) + h(n)
node n ∈ OPEN , generating the children of n and adding
them to OPEN.

The search space of this node-limited search is called the
local search space (LSS):

Definition 7 (Local search space). The LSS of an iteration
of a real-time heuristic search is the search tree of nodes

(a) h before learning

A1
4.2

B6
3.8

C8
3.4

D10
3

E7
3.8

F2
2.8

G4
2.4

H
2

I9
3.4

J5
2.4

K3
1.4

L
1

M
3

N
2

O
1

P
0

Start

Goal

(b) h after learning

A
6

B
5

C
4

D
3

E
5

F
6

G
7

H
2

I
4

J
7

K
7.4

L
1

M
3

N
2

O
1

P
0

Start

Goal

Figure 1: An example of LSS-LRTA* learning

expanded by that iteration’s search. When the search phase
of an iteration of the search finishes, LSS = CLOSED.

Definition 8 (Fringe). The fringe of a set X ⊆ S is the
subset of the state space that contains exactly the succes-
sors of all states in X that are not themselves in X , i.e,⋃

x∈X σ(x) \X .

We will generally refer to nodes by their corresponding
states, e.g., ‘the state s was expanded’ rather than ‘a node
n corresponding to the state s was expanded’. The reason
for this is that we will be looking at states that have been
expanded by several different iterations of search, and thus
may have had several different nodes referring to them, with
different g-values corresponding to different starting states
for that iteration of search and possibly different h values
depending on the heuristic learning.

Heuristic Learning The learning of LSS-LRTA* backs
up h from the frontier into the LSS by backing up the
heuristic values from child c ∈ LSS ∪ fringe(LSS) to par-
ent p ∈ LSS, with the backup:

h(p)← min
c∈σ(p)

δ(p, c) + h(c). (1)

This backup is applied to each state in the LSS in a Dijkstra-
style traversal from the search frontier into the interior of
the search, such that Equation 1 holds with equality for all
states in the LSS. Some approaches, such as RTA* (Korf
1990) and wbLRTA* (Bulitko and Sampley 2016) learn an
inadmissible h with the intuition that this will speed up the
agent learning to escape local minima.

Commitment Strategy The commitment strategy of LSS-
LRTA* is to commit to executing the entire partial plan to a
best looking state on the search frontier, which is in contrast
to the RTA* strategy of committing only to the first action
along that path. The LSS-LRTA* strategy has the benefit
of increasing the natural search budget, since there is more
time to plan while the agent is executing a whole partial plan
rather than a single action.

Heuristic Learning Example Figure 1 shows an exam-
ple of LSS-LRTA* learning an improved h in 2D grid nav-
igation with 8-way motion. Figure 1a is annotated with the
initial heuristic (h0), which is 8-way distance to the goal,

ignoring obstacles. A is the start state, the expansion bud-
get is 10, tie breaking prefers low h and then right be-
fore down. Expansion order is noted at the top left of cells.
The LSS is shown in blue, the fringe (i.e. the search fron-
tier) is shown in orange, and unexplored states in gray. Fig-
ure 1b is annotated with the learned heuristic, with an ar-
row from each generated state to the predecessor that inher-
its its h value if any. The states in the local minimum (F,
G, J, and K) learn that they must go away from the goal to
escape. For example, state C learns its heuristic from state
D, state B from state C, state F from state B, and states G,
J, and K from state F. The starting state learns its heuris-
tic from state B. State D retains the same h value, however
their heuristic has changed (though the value has not), from
the original starting heuristic, (h(D) = h0(D) = 3) to a
heuristic resulting from the path to state H on the frontier,
(h(D) = δ(D,H) + h0(H) = 1 + 2 = 3). While numer-
ically this distinction does not matter, it illustrates that the
learning backup of LSS-LRTA* works by exactly propagat-
ing the frontier heuristic values throughout the interior of the
search.

Cost-algebraic LSS-LRTA*
We begin by generalizing the real-time heuristic search
problem to the cost-algebraic setting. This is straightfor-
ward: a cost-algebraic real-time heuristic search problem
on the cost algebra ⟨Ω,×,⪯,1⟩ is represented by a tuple
⟨S, σ, ω, so, h0, isGoal , b⟩, identical to a real-time heuristic
search problem except the scalar edge cost function δ has
been replaced by the cost-algebraic equivalent ω : S ⊗ S →
Ω, and h0 is cost-algebraic, i.e., h0 : S → Ω, and we assume
that h0(sg) = 1 for all goal states {sg ∈ S : isGoal(sg)}.
A plan p = ⟨s0, ...si..., sn⟩ is a sequence of states, and we
overload ω to denote the cost of a plan with:

ω(p) = ω(s0, s1) × · · · × ω(sn−1, sn) =

n∏
i=1

ω(si−1, si).

The set of plans Pu,v , for states u, v ∈ S, consists of all
plans from u to v through states in S connected by σ. To
denote the cost of a least-cost plan in S from u to v we use:

ω(Pu,v) =
⊔

p∈Pu,v

ω(p). (2)

Note that though while Pu,v may contain an infinite number
of plans, thanks to isotonicity we do not need to consider
plans with loops, so if we assume a finite sized state space
the least operation in Equation 2 need only consider the fi-
nite set of non-looping plans.

Next, we describe a cost-algebraic and generalized ver-
sion of LSS-LRTA*, Cost-algebraic Real-time local search
space Learning A* (CaRLA). CaRLA is a generalization of
LSS-LRTA* to work on any cost algebra and a more gen-
eral class of node-limited search methods beyond just A*.
We specified CaRLA generically, so that our results may be
used by as wide a variety of applications as possible. Addi-
tionally, these generalizations allow us to highlight the algo-
rithm properties our results depend on.

Algorithm 1: CaRLA

1: function CARLA(D, so, h0, isGoal, b)
2: sr ← so, h← h0

3: while ¬isGoal(s) do
4: o, c← SEARCH(D, sr, h, isGoal, b)
5: if |o| = 0 then
6: return DeadEnd
7: h← LEARN(D,h, o, c, b)
8: sr ← COMMIT(D,h, o, c)
9: return Success

The pseudocode for CaRLA is shown in Algorithm 1. A
CaRLA search is instantiated by specifying the search strat-
egy (Search), the heuristic learning strategy (Learn), and
the commitment strategy (Commit). Once instantiated, for
a specific problem instance CaRLA is given the domain D
(used by CaRLA to compute σ and ω), so the origin of the
search, h0 the original heuristic, isGoal the goal predicate,
and b the search budget. We assume that the search has a
budget sufficient to expand at least one node. The current
state and heuristic are initialized in Line 2. While the agent
is not at a goal, CaRLA alternates through the three stages
of a real-time search. The lookahead search is performed
(Line 4), originating at the current state sr and limited by
budget b, and returns the closed list (c) representing the LSS
and open list o representing the frontier. If the search re-
turns an empty frontier, then it has found itself in a dead end
and CaRLA terminates (line 5). If the search has generated a
goal then the frontier will not be empty, as it contains at least
that state. Then the heuristic learning is performed (Line 7),
using the LSS and frontier to update h. Finally, the com-
mitment strategy is used to select the next state sr for the
agent (Line 8). We now specify the requirements we place
on Search, Learn, and Commit for CaRLA.

Search Lookahead The CaRLA search is a node-limited
cost-algebraic search. Our only requirement for the search
lookahead is that it produces a LSS containing at least the
root, and generate the fringe of that LSS. For example,
cost-algebraic A*, cost-algebraic GBFS, cost-algebraic fo-
cal search, and cost-algebraic breadth-first search would all
be compatible with our results, though we would not ex-
pect all of these search methods to perform equally well.
Methods based on depth-first or beam search could also
work if modified to retain a closed list of expanded nodes
with parent pointers for heuristic learning. Likewise, in cost-
algebras where a weight is applicable a cost-algebra spe-
cific weighted A* would work. In fact, it is often possible
(though not necessarily helpful) to do a normal shortest path
search. For example, consider a real-time agent navigating
in the widest path cost-algebra. While likely not as useful
as a widest path search, a shortest path search would still
generate an LSS that the agent could use.

Heuristic Learning CaRLA’s learning is a sequence of
cost-algebraic backups from child c ∈ LSS ∪ fringe(LSS)
to parent p ∈ LSS. Equation 3 is a straightforward general-
ization of the LSS-LRTA* backup (Equation 1). Summation

has been replaced by the × operator and scalar minimiza-
tion over the children has been replaced by the cost algebraic
least operation (

⊔
).

h(p)←
⊔
{ω(p, c)× h(c) : c ∈ σ(p)} (3)

We require that CaRLA’s learning component implement
Equation 3 in a way we will call thorough.

Definition 9 (Thorough). A heuristic learning approach is
thorough iff the following condition holds after the heuristic
learning stage of a search iteration is complete:

∀p ∈ LSS : h(p) =
⊔
{ω(p, c)× h(c) : c ∈ σ(p)}

Similar to its search stage, CaRLA does not prescribe a
specific traversal to order the learning, only that the learning
is thorough and takes at most time c = b−runtime(Search)
(so that it is real-time). For example, Pemberton and Korf
(1992) fill a queue with all the states of the LSS and re-
peatedly pop from the queue, backing up the h value of
the popped state s and placing all states with s as a child
back on the queue if h(s) changed, while LSS-LRTA* uses a
Dijkstra-style traversal, which Edelkamp, Jabbar, and Lluch-
Lafuente (2005) prove also finds optimal solutions in a cost
algebra. Both of these approaches are thorough because they
guarantee to backup to state s after all children c ∈ σ(s)
with h(c) ≺ h(s) . This is because Pemberton and Korf
(1992) place all predecessors back on the backup queue for
every child updated, and the Dijkstra style traversal performs
backups in h-order. The node-limited CaRLA search look
ahead produces a LSS with O(1) size, so a Dijkstra-style
traversal would be O(1) in time. However, by requiring that
our learning be thorough we have excluded approaches (with
existing completeness proofs) such as (L)RTA* that only up-
date a single state and wbLRTA* that deliberately scales the
learned heuristic. One of the reasons we do not generalize
to a weighted inadmissible heuristic is that it is not obvious
how the concept of a scalar weight, as used by wbLRTA*
and similar algorithms (or in the offline setting, weighted
A*) would be translated generally to all cost-algebraic set-
tings.

Commitment Strategy CaRLA commits towards a best
frontier state. We require that CaRLA’s commitment strat-
egy be goal aware:

Definition 10 (Goal aware). A commitment strategy is goal
aware iff when at least one goal state is present in the LSS it
commits to a state along a path to a least cost goal.

Most algorithms terminate the search lookahead when a
goal is expanded, and commit to moving towards it. If a goal
is not present, it will commit to a ‘best’ frontier node. As
what combination of g, h, or other values make a node the
best is an open area of research, we define a general standard
to use with CaRLA.

Definition 11 (Productive). A commitment strategy is pro-
ductive iff when at current state sr it commits to a state along
the path to a frontier state sf with h(sf) ≺ h(sr) unless
there is a goal in the LSS.

Lemma 12. Assuming positive action costs (ω(a, b) ≻ 1),
a CaRLA search iteration, which has completed lookahead
search and heuristic learning has at least one frontier state
sf with h(sf) ≺ h(sr).

Proof. Because CaRLA’s learning completed it must not
have detected a dead-end, so the search frontier is not empty.
Consider a least child sc of sr where (because CaRLA is
productive) h(sr) = ω(sr, sc)×h(sc). Because action costs
are positive, h(sc) ≺ h(sr). Follow the same logic for the
children of sc and their successors until the frontier state sf
is reached, h(sf) ≺ . . . ≺ h(sc) ≺ h(sr).

We define CaRLA to have a productive commitment strat-
egy. For example: the best top-level action strategy of RTA*,
the best frontier node strategy of LSS-LRTA* and the dy-
namic lookahead strategy using f of Kiesel, Burns, and
Ruml (2015) that interpolates between them are all produc-
tive because they select the minimum f = g + h frontier
node and then move some distance along the path to it. It
is also compatible with a greedy style where f = h, or
a weighted style if the cost algebra supports an operation
akin to scaling the weight on h. Strategies such as selecting
a frontier node by minimum expected plan cost f̂ (Kiesel,
Burns, and Ruml 2015) would not be covered by CaRLA
without adding a restriction on h to guarantee that the com-
mitment strategy is productive.

In summary, we require that CaRLA conducts a looka-
head search that generates a LSS, we require that CaRLA
is thorough in backing up h into that LSS, and finally
that CaRLA’s commitment strategy productively commits
to moving towards a state with lower h.

Completeness of CaRLA
In this section we show that CaRLA is complete, i.e., it even-
tually reaches a goal. We make the following assumptions
about the search problem:
A1 all actions costs are positive, i.e., ω(a, b) ≻ 1;
A2 the state space is finite, i.e., |S| <∞; and
A3 a goal is reachable from every state.
Note that 1 is defined as the identity (Definition 1) and as the
least element of Ω (Definition 6), which means that a cost
algebra is already defined to have non-negative edge costs,
so A1 is only a slight strengthening.

Our proof is based on the basic structure of the proof of
Fickert et al. (2020) for Nancy, which is itself based on the
completeness proofs for weighted lateral LRTA* (Bulitko
and Sampley 2016) and RTA* (Korf 1990). In outline, we
show that the algorithm can only fail to terminate if it be-
comes stuck in a circulating set of nodes that are visited in-
finitely often, and under our assumptions, no such set can
exist. We will do this with more detail than previous proofs,
elucidating the dynamics of heuristic learning.
Definition 13 (Circulating set). A circulating set is a subset
of the state space, S◦ ⊆ S, such that there exists a time t◦
where, for all times t > t◦, any state expanded by the search
is in S◦ and every state in S◦ is expanded an infinite number
of times after time t.

S

sr LSS
fringe(LSS)

fringe(S◦)

S◦

Figure 2: Illustration of the subspaces of state space S: S◦
and LSS are shown in blue, and their fringes in orange.

We denote the fringe of S◦ as Sf , such that:

Sf := {s ∈ S \ S◦ : (∃s◦ ∈ S◦ : s ∈ σ(s◦)}.
Naturally, as each parent in S◦ is expanded infinitely often,
each child in the fringe is generated infinitely often. S◦ does
not contain a goal state, as CaRLA is goal aware.

For example, Figure 2 shows a cartoon state space S with
a donut shaped circulating set S◦. The agent might expand
each state in S◦ as it loops around the circle. Also shown
is the LSS of a search originating at state sr with search
frontier fringe(LSS). States in the fringe of the LSS may be
in the fringe of S◦ or they may be in S◦ itself.

We begin by assuming in contradiction that CaRLA is in-
complete.
Lemma 14. If CaRLA is incomplete, it must have a circu-
lating set.

Proof. CaRLA only terminates when a goal is reached (Al-
gorithm 1 Line 9), because by A3 no dead-ends exist, so if it
is incomplete it must not terminate. By A2 the search space
is finite. So label each expanded state s ∈ S, with the time
ts when it is last expanded, with ts = ∞ if s is always ex-
panded again after all times t ∈ R. Leave unexpanded states
unlabeled. As the search space is finite, if CaRLA does not
terminate some labeled states must have ts = ∞, so define
S◦ ← {s ∈ S : ts =∞} and t◦ ← maxs∈S\S◦ ts.

We next define three important properties of heuristics
over sets of states. To our knowledge, the first two (local ad-
missibility and local consistency) are novel, while local op-
timality has appeared in many prior works under the name
local consistency. We have made this change so that local
consistency is more similar to global consistency.
Definition 15 (Local admissibility). A heuristic h is locally
admissible on set SL ⊆ S if it does not overestimate the cost
to reach the goal given the current estimates on the fringe of
SL. That is, with F ← fringe(SL) and recalling Equation 2,

∀s ∈ SL : ∀sf ∈ F : h(s) ⪯ ω(Ps,sf)× h(sf).

A heuristic is globally admissible when it does not over-
estimate the cost to reach any goal. With A*, a globally ad-
missible heuristic guarantees that search will return an opti-
mal solution. In contrast, local admissibility is defined with
respect to the fringe of a set of states, rather than the goals.

A
h = 3

B
h = 5

C
h = 0

1
1

3

(a)

A
h = 0

B
h = 0

C
h = k

D
h = 0

1

1

1

(b)

Figure 3: Two examples showing CaRLA’s behavior. A is
the start, and a double circle indicates a goal.

Definition 16 (Local consistency). A heuristic h is locally
consistent on set SL ⊆ S if:

∀p ∈ SL : ∀c ∈ σ(p) : h(p) ⪯ ω(p, c)× h(c).

The property of local consistency is identical to the global
consistency we are used to, however it is local to the set SL

rather than the entire state space.
Definition 17 (Local optimality). A heuristic h is locally
optimal on set SL ⊆ S if it is locally consistent and:

∀p ∈ SL : ∃c ∈ σ(p) : h(p) = ω(p, c)× h(c).

Local optimality is similar to local admissibility, in that
it is anchored to the values on the fringe of SL rather than
the goal (when there is not a goal in SL). For simplicity,
in our proofs we will strain these definitions by referring to
states that are, for example, ‘inadmissible on S◦’. By this,
we mean to identify and select a state that is violating the
corresponding relationship, in this case the state s ∈ S◦ such
that ∃sf ∈ F : h(s) ≻ ω(Ps,sf)× h(sf).
Observation 18. Because CaRLA’s learning is thorough,
after each iteration of search CaRLA learns a locally opti-
mal heuristic on the LSS.

However local admissibility, or even local optimality do
not imply global admissibility. For example, consider the
problem shown in Figure 3a, we have 3 states: A, B, and
C and three edges: AB,BC, and AC with costs 1, 1, and 3
respectively. The goal is C, and A has h(A) = 3. However,
B has h(B) = 5, and so search with an expansion budget of
1, starting at A will generate B with f = 1 + 5 and C with
f = 3+0 and commit to C. It will never expand B, and thus
never learn that h(B) and therefore h(A) are inadmissible.
This is despite the fact that h(A) is locally optimal on the
LSS ({A,C}) in this example.

We now explore how heuristic learning propagates in S◦.
Fundamentally, it does so through repeated learning on LSSs
that overlap, while the fringe of S◦ acts as an anchor on
the h values. To more clearly understand this relationship,
we define two additional concepts: a sweep, which is to S◦
what an iteration of search is to the LSS; and the layer of
a state, which describes how deep it is in S◦ relative to the
fringe(S◦).
Definition 19 (Sweep). A sweep of a set X ⊆ S is a finite
and contiguous sequence of iterations of a real time search,

taking place over the interval of time i = [tb, te], such that
every state in X is expanded at least once during i.

In general, we will refer to a sweep of the circulating set,
after which each s ∈ S◦ has been expanded at least one more
time. As each state is expanded infinitely often, there must
be a sweep infinitely often.
Definition 20 (Layer). For a set SL ⊆ S, the layer of a state
s ∈ SL is the minimum number of states s ∈ SL along any
best-looking path through the fringe of SL. More precisely,
where Pf ← {p ∈ Ps,sf |sf ∈ fringe(SL)}:

layer(s) = min
{p∈Pf :ω(p)⪯ω(Pf)}

|p|

In the context of the heuristic learning of CaRLA, the
backups in the circulating set proceed layer-by layer. Lay-
ers are the natural unit of induction for the heuristic learning
of CaRLA. We denote the ith layer of SL as Si = {s ∈
SL : layer(s) = i}. Note that there may be a path from s
to the frontier that contains fewer than layer(s) steps, this
is because we restrict layers to only consider minimum cost
paths to the frontier.
Lemma 21. If a heuristic h is locally consistent on set SL ∈
S, it is also locally admissible on SL.

Proof. By induction on layer. In the base case, the fringe
of S1 is a subset of the children of states in S1, so local
admissibility holds. For each layer i, the optimal path to the
frontier must be through a state in the layer i − 1. At layer
i − 1 local admissibility holds, so by local consistency of h
on SL, it holds for layer i.

Observation 22. If a heuristic h is locally admissible on set
SL, a CaRLA learning backup to parent p ∈ SL from child
c ∈ σ(p) cannot make h locally inadmissible.

Now we address the possibility of inadmissible heuris-
tic values within S◦. One could imagine a situation where a
child on the search frontier tricks its parent into learning an
artificially high h. However, while that may happen at the
start of the search, it will not happen forever.
Lemma 23. There exists a finite integer k such that, after k
sweeps of S◦, the learned h is locally admissible on

⋃k
i=0 Si

forever.

Proof. By induction on layer i = 1 ... k. In the base case,
layer 1, the path to the frontier is only a single edge. And
because we are in layer 1, this fringe child must be consid-
ered by Equation 3 and either the h will immediately backup
from the fringe node, meaning it is locally optimal, or it will
backup a lower h from a state in the circulating set, that was
in the search frontier for this iteration of CaRLA. Thus after
1 sweep, all states in layer 1 will be locally admissible. Note
that in deeper layers, with insufficient sweeps, it could be
possible that all the children under consideration are locally
inadmissible on S◦, however this is not the case when the
prior layer is guaranteed to be locally admissible. For the
inductive step, consider layer i after i sweeps. Every state
must have at least one child from layer i − 1 that is locally
admissible, so they will either backup a locally admissible h
from that child or a lower h from some other child.

(a) h0

1
2
3
4
5

(b) h1

1
2
3
4
5

(c) h2

1
2
3
4
5

sf0 s1 s2 s3 sf4

Figure 4: An example illustrating Lemma 23

Admissibility Example Figure 4 illustrates the result of
Lemma 23 by showing how the heuristic can evolve over
the course of three sweeps, shown as h0, h1, and h2. We
have five states. The first and last (sf0 , sf4) are on the fringe,
while the rest (s1, s2, s3) are in the circulating set. Neigh-
boring states on the axis are connected by bidirectional unit
edges, and the rest of the circulating set is not shown. Let
us assume that, during a sweep a 1 expansion budget search
visits each of the three circulating set states in order (s1 then
s2 then s3) possibly while visiting other states that are not
shown in between. In the beginning (h0), we have s1 and s3
with locally inadmissible heuristics, and s2 with a not locally
optimal heuristic. After one sweep (h1), we have s1 learning
a lower h from sf0 , s2 from the newly decreased s1 (or from
s3) and then s3 from sf4 . Notice that after 1 sweep we are
now locally admissible for the first layer (s1, s3) but not the
second (s2). After the next sweep (h2), by s2 learning from
s3 the inadmissibility is corrected, and now all shown states
have a locally optimal heuristic.

Corollary 24. After a finite number of sweeps of S◦, CaRLA
has learned a locally admissible h on S◦.

Proof. By A2, |S| is finite, so |S◦| is as well. If a state s ∈
S◦ has layer(s) > |S◦|, the least cost plan to the fringe must
involve a cycle. That cycle could be removed, and must have
positive cost by A1, which would contradict it being a least
cost plan. Therefore, no state can have layer(s) > |S◦| and
so by Lemma 23 we need at most |S◦| sweeps.

Now that we have limited h from above by showing that it

is eventually locally admissible on S◦, we now limit it from
below by showing that there is an aspect of h that is mono-
tonically increasing. Recall from the discussion of Figure 1
that an h value learned by CaRLA can be viewed as a tuple:
h(s) = ⟨p, h0(s

′)⟩ where we say h(s) is based on p (which
is a shortest path from s to s′), h0(s

′) is the original h value
of s′ at the start of the search, and h(s) = ω(p) × h0(s

′) is
the current heuristic value of s, which is the result of back-
ing up the original heuristic value of s′ along p. With this in
mind, we are ready to show that CaRLA is complete.

In this proof, the local admissibility of h will provide
an upper bound while the monotonic raising of the low-
est h value in S◦ provides a lower bound. The proof has
two steps. First, we show that the least h value of not lo-
cally optimal state smin is monotonically increasing. Then,
we show that only a finite number of these increases are re-
quired to raise the h values to be locally optimal. Our proof
of Lemma 25 shares similar elements with the proof of con-
vergence for asynchronous value iteration (Bertsekas 2012,
Section 2.6.1), but extended to the cost-algebraic setting.

To understand how h(smin) increases, consider a CaRLA
agent with a search budget of 1 expansion in the example
shown in Figure 3b. Because C has such a bad heuristic,
CaRLA will commit to B and learn h(A)← h(B)+1, then
from B it will commit to A and learn h(B) ← h(A) + 1.
This ping-pong effect (Edelkamp and Eckerle 1997; Sturte-
vant and Bulitko 2016) is an illustration of how the agent
may need to update A k/2 times before the heuristic is
locally optimal on the set {A,B,C} and the agent will
commit to C rather than B. Specifically, the set of paths
is P = {⟨A⟩, ⟨A,B⟩, ⟨A,B,A⟩ . . . ⟨A,B, . . . , B,A⟩}, and
the set of possible paths for learned h values is P ′ = {p ∈
P : |p| ≤ k}, which is finite. Each time we ping-pong from
A to B and back, the two shortest remaining paths in P ′ are
eliminated and CaRLA can no longer base h values on them.

Lemma 25. After a finite number of sweeps of S◦, CaRLA
has learned a locally optimal h on S◦.

Proof. We know h is admissible after a finite number of
sweeps by Corollary 24, so consider those sweeps to have
been completed and h to be admissible.

We will consider a state to be labeled exact at the end
of a learning stage when we have proven that its h value
is locally optimal and will not change in the future (similar
to the labeling used in Labeled RTDP, (Bonet and Geffner
2003)). We will inductively prove that S◦ will be correctly
labeled exact. The base case for our induction is the fringe of
S◦. The fringe states are not in S◦ so it is a vacuous truth that
they are locally optimal on S◦. They will never be expanded,
so their h will never change and it is correct to label them
exact.

Now for the inductive step, assume that all states currently
marked exact are locally optimal. Consider the subset of S◦
that has not been marked exact Sie ← {s ∈ S◦ : ¬exact(s)}
and a least h state smin ∈ Sie, i.e., ∀s ∈ Sie : h(smin) ⪯
h(s). We will show that either smin will be marked exact
and therefore removed from Sie or h(smin) will increase. A
least child of smin is sc where (because CaRLA’s learning
stage is thorough) h(smin) = ω(smin, sc)×h(sc). There are

two cases to consider: if sc is marked exact or not. If sc is
marked exact, then smin can also be marked exact because
there is no state in Sie with a lower h for smin to learn from
and h(sc) is locally optimal and will not change. However,
if sc is not labeled exact, we still know that for all descen-
dants d of smin not marked exact, h(s) ⪯ h(d), and by A1
action costs are positive so no h based on paths from these
descendants can lower h(smin). Therefore, h(smin) is mono-
tonically increasing if its least child is not marked exact.

What remains is to show that it requires only a finite num-
ber of smin raises from states not marked exact until h is lo-
cally optimal on S◦. Consider the set of all possible h values
that can be learned by states in S◦. Each h(s) for state s cor-
responds to an original h0(s

′) for some state s′ and a path p
from s to s′, giving h(s) = ω(p)× h0(s

′). By A2 S is finite
so the set of states and the set of possible paths p ∈ Padm
(with cost low enough to be the basis of an admissible h) are
finite. Each time we increase h(smin), we are eliminating
the path that h(smin) was based on from Padm, along with
any other paths with lower cost (because there is no state
with lower h that could be based on them). Because Padm is
of finite size, if we continue to remove elements from it, it
will eventually be empty. This implies that there are no more
least cost children not marked exact, because we would have
monotonically increased h(smin) so many times that there
are no possible paths in Padm to base a not locally optimal
heuristic on. Because all least cost children are now marked
exact, the first case applies and we can correctly mark smin

exact. This completes the inductive step. Therefore, after a
finite number of sweeps, h is locally optimal on S◦.

In summary, we have shown that CaRLA will learn a lo-
cally admissible heuristic on the circulating set, with the lo-
cal admissibility growing layer by layer from the fringe of
the circulating set. Once the heuristic is admissible, the re-
maining task is to fill in heuristic depressions. Generally this
will progress bottom up in each local minimum as illustrated
in the ping-pong example (Figure 3b). Eventually this will
lead to a locally optimal heuristic on the circulating set, and
because CaRLA is productive it will eventually leave the cir-
culating set in search of lower h.

Theorem 26. CaRLA is complete.

Proof. Consider, in contradiction, a CaRLA search that fails
to find a goal. It must have a circulating set S◦ (Lemma 14),
and after a finite number of steps the h will be locally opti-
mal on S◦ (Lemma 25). Consider the root of an iteration of
search. Because the heuristic is locally optimal and because
the commitment strategy is productive, the best looking path
found by the search will lead towards a lower h state s′. Any
state s ∈ S◦ with h(s′) ≺ h(s) will not be visited again un-
til its h is lowered, something that can not happen unless the
agent leaves the circulating set because h is locally optimal
on S◦. Therefore, the set of states {s ∈ S◦ : h(s) ≺ h(s′)}
with h sufficiently low to visit is monotonically decreasing
in size, until it is empty. CaRLA then must commit to (or
expand) a fringe state because the fringe and its descendants
will be the only way to commit to a state with a lower h,
which must exist (Lemma 12). This is a contradiction with

the definition of the circulating set, because CaRLA will ex-
pand a state outside the circulating set.

The contradiction arises because the circulating set can
not exist as more than a transient phenomenon. Along with
the generalization to the cost-algebra setting, the novelty of
our approach to proving completeness is in the generality of
the CaRLA framework, and in the clearer description of the
process the heuristic goes through, first becoming admissi-
ble, then optimal by increasing the lowest states.

Prior work has either 1) assumed an admissible h0 (Korf
1990; Koenig and Sun 2009; Edelkamp and Eckerle 1997),
or 2) like Fickert et al. (2020) and Pemberton and Korf
(1992) observed that each state is updated infinitely often
and appealled to the convergence of asynchronous value iter-
ation (Bertsekas 2012), or 3) not learned admissible heuris-
tics (e.g. RTA* (Korf 1990) and weighted lateral LRTA*
(Bulitko and Sampley 2016)).

Related Work
Heuristic depressions (Ishida 1992; Sturtevant and Bulitko
2016) are a key challenge for real-time heurisitc search.
Two of the strategies to escape them more quickly are to
do more search, and to learn more aggressively. Hernández
and Baier (2012) describe how real-time heuristic search al-
gorithms can be guided to avoid heuristic depressions, Her-
nandez et al. (2017) describe a pruning strategy to avoid
re-exploring the same states in subsequent episodes of the
search. In the related non-deterministic planning setting,
Bonet and Geffner (2003) describe how to label and avoid
re-exploring states whose value has already converged.
Other approaches learn an inadmissible weighted heuristic
that more quickly fills in the heuristic depression (Shimbo
and Ishida 2003; Bulitko and Sampley 2016). Bulitko and
Lee (2011) describe an alterrnative general framework of
real-time heuritic search algorithms, however a weighted
heuristic is a core component of their framework that does
not generalize easily to all cost-algebras.

Conclusion
CaRLA is a generic framework for cost-algebraic real-time
heuristic search. When used with a thorough learning strat-
egy and a goal-aware and productive commitment strategy,
CaRLA is complete. Our proofs illustrate how the search es-
capes heuristic depressions, first by learning an admissible
heuristic, then by raising that admissible heuristic until the
agent is forced out. This foundation clarifies the dependence
of the proofs on domain and algorithm properties and will
ease future applications of real-time planning.

Acknowledgments
Our thanks to Malte Helmert for suggesting this topic to us.
We are grateful for support from the United States National
Science Foundation via grant 2008594.

References
Bertsekas, D. 2012. Dynamic Programming and optimal
control: Volume II; Approximate Dynamic Programming.
Athena Scientific. ISBN 9781886529441.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming. In
Proceedings of ICAPS.
Bulitko, V.; and Lee, G. 2011. Learning in Real-Time
Search: A Unifying Framework. Journal of Artificial In-
telligence Research.
Bulitko, V.; and Sampley, A. 2016. Weighted lateral learning
in real-time heuristic search. In Proceedings of SoCS.
Dechter, R.; and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the ACM.
Edelkamp, S.; and Eckerle, J. 1997. New strategies in learn-
ing real time heuristic search. In Proceedings of the AAAI
Workshop on On-Line Search.
Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A. 2005.
Cost-algebraic heuristic search. In Proceedings of AAAI.
Fickert, M.; Gu, T.; Staut, L.; Ruml, W.; Hoffmann, J.; and
Patrik, M. 2020. Beliefs We Can Believe In: Replacing As-
sumptions with Data in Real-Time Search. In Proceedings
of AAAI.
Hernández, C.; and Baier, J. A. 2012. Avoiding and escaping
depressions in real-time heuristic search. Journal of Artifi-
cial Intelligence Research.
Hernandez, C.; Botea, A.; Baier, J. A.; and Bulitko, V. 2017.
Online Bridged Pruning for Real-Time Search with Arbi-
trary Lookaheads. In Proceedings of IJCAI.
Holte, R. C.; and Zilles, S. 2019. On the Optimal Efficiency
of Cost-Algebraic A*. Proceedings of AAAI.
Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of AAAI.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: experimental results in video
games. Journal of Artificial Intelligence Research.
Koenig, S.; and Sun, X. 2009. Comparing real-time and
incremental heuristic search for real-time situated agents.
Journal of Autonomous Agents and Multi-Agent Systems.
Korf, R. E. 1990. Real-time Heuristic Search. Journal of
Artificial Intelligence.
Pemberton, J.; and Korf, R. 1992. Making locally optimal
decisions on graphs with cycles (Technical Report 920004).
Computer Science Department, University of California at
Los Angeles.
Shimbo, M.; and Ishida, T. 2003. Controlling the learning
process of real-time heuristic search. Journal of Artificial
Intelligence.
Sturtevant, N. R.; and Bulitko, V. 2016. Scrubbing During
Learning In Real-time Heuristic Search. Journal of Artificial
Intelligence Research.
Thomas, D. W.; Ruml, W.; and Shimony, S. E. 2024. Real-
time Safe Interval Path Planning. In Proceedings of SoCS.

Thomas, D. W.; Shimony, S. E.; Ruml, W.; Karpas, E.; Sh-
perberg, S. S.; and Coles, A. 2023. Any-Start-Time Planning
for SIPP. In Proceedings of the ICAPS Workshop on Heuris-
tics and Search for Domain-Independent Planning.

