Faster Bounded-Cost Search Using Inadmissible Estimates

Jordan Thayer, Roni Stern, Ariel Felner, Wheeler Ruml

jthayer@sift.net roni.stern@gmail.com felner@bgu.ac.il ruml@cs.unh.edu

Thayer et al BEES -1/25

Motivation: Optimal Search Hard, Greedy Solutions Expensive

optimal search won't scale greedy solutions too expensive

Thayer et al BEES -2/25

Motivation: Bounded Suboptimal Provides Middle Ground

impose bounds to limit cost (relative to optimal)

Thayer et al BEES -3/25

Motivation: What if I have a Budget instead of w?

What if we have a budget instead of a relative bound?

Bounded Cost Search: find a solution of cost no more than C

Thayer et al BEES -4/25

Outline

Introduction

■ Motivation

Outline

Potential Search

BEES

Conclusion

BEEPS, PTS- \widehat{h}

- motivation
- previous approach: potential search
- problem with potential search
- BEES
- bigger picture
- PTS on inadmissible heuristics, BEEPS

Thayer et al BEES -5 / 25

Introduction

Potential Search

PTS

Performance
Shortcoming

BEES

Conclusion

BEEPS, PTS-h

best-first search in order of chance of satisfying cost bound ${\cal C}$

Thayer et al BEES -6 / 25

Introduction

Potential Search

PTS

- Performance
- Shortcoming

BEES

Conclusion

BEEPS, PTS- \widehat{h}

best-first search in order of chance of satisfying cost bound ${\cal C}$

$$PT_C(n) = Pr(g(n) + h^*(n) \le C)$$

Introduction

Potential Search

PTS

- Performance
- Shortcoming

BEES

Conclusion

BEEPS, PTS- \widehat{h}

best-first search in order of chance of satisfying cost bound ${\cal C}$

$$PT_C(n) = Pr(g(n) + h^*(n) \le C)$$

unfortunately, we may not be able to compute that

 $f_{lnr}(n) = \frac{h(n)}{C - g(n)}$ produces an equivalent order under certain assumptions

PTS Performance: Non-Unit Cost Performance is Bad!

Thayer et al BEES -7/25

Potential Search Ignores Solution Length

Introduction

Potential Search

- PTS
- Performance
- Shortcoming

BEES

Conclusion

BEEPS, PTS- \widehat{h}

$$d(A) = 6$$
, $h(A) = 6$
 $d(T) = 1$, $h(T) = 10$
 $C = 20$

Potential Search Ignores Solution Length

Introduction

Potential Search

- PTS
- Performance
- Shortcoming

BEES

Conclusion

BEEPS, PTS- \widehat{h}

$$d(A) = 6$$
, $h(A) = 6$
 $d(T) = 1$, $h(T) = 10$
 $C = 20$

$$f_{lnr}(A) = \frac{6}{20-1}$$
$$f_{lnr}(T) = \frac{10}{20-10}$$

Potential Search Ignores Solution Length

Introduction

Potential Search

- PTS
- Performance
- Shortcoming

BEES

Conclusion

BEEPS, PTS- \widehat{h}

$$d(A) = 6$$
, $h(A) = 6$
 $d(T) = 1$, $h(T) = 10$
 $C = 20$

$$f_{lnr}(A) = \frac{6}{20-1}$$
$$f_{lnr}(T) = \frac{10}{20-10}$$

 ${\sf PTS}$ prefers A to T

Introduction

Potential Search

BEES

- **■** Goals
- Algorithm
- Defining Focal
- Pseudo-Code
- **■** Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

Bounded Cost Explicit Estimation Search

Thayer et al BEES -9 / 25

Goals for New Bounded Cost Search

Introduction

Potential Search

BEES

Goals

- Algorithm
- Defining Focal
- Pseudo-Code
- **■** Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

- 1. avoid reliance on error models (ie f_{lnr})
- 2. improve performance on non-unit cost domains without losing performance in unit cost domains

Thayer et al BEES -10 / 25

Bounded-Cost Explicit Estimation Search (BEES)

Introduction

Potential Search

BEES

■ Goals

■ Algorithm

- Defining Focal
- Pseudo-Code
- **■** Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

- 1. estimate which nodes are within cost bound
- 2. best-first search of these on estimated actions-to-go

Thayer et al BEES -11 / 25

Step 1: Estimate which nodes are within cost bound

Introduction

Potential Search

BEES

- **■** Goals
- Algorithm
- Defining Focal
- Pseudo-Code
- **■** Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

h(n): an admissible cost-to-go estimate

$$f(n) = g(n) + h(n)$$

 $f(n) \leq C$: could lead to a solution in bound

 $focal = \{ n \in open | f(n) \le C \}$

Step 1: Estimate which nodes are within cost bound

Introduction

Potential Search

BEES

- Goals
- Algorithm
- Defining Focal
- Pseudo-Code
- **■** Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

h(n): an admissible cost-to-go estimate

h(n): best-guess estimate of cost-to-go

$$f(n) = g(n) + h(n)$$

$$\widehat{f}(n) = g(n) + \widehat{h}(n)$$

$$\widehat{f}(n) = g(n) + \widehat{h}(n)$$

 $f(n) \leq C$: could lead to a solution in bound

 $\widehat{f}(n) \leq C$: probably leads to a solution in bound

$$\mathsf{focal} = \{ n \in open | \widehat{f}(n) \le C \}$$

What If No Nodes Appear to Be Within Bound?

Introduction

Potential Search

BEES

- **■** Goals
- Algorithm
- Defining Focal
- Pseudo-Code
- **■** Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

$$\widehat{f}(n) = g(n) + \widehat{h}(n)$$

$$f(n) = g(n) + h(n)$$

$$\widehat{f}(n) \ge f(n)$$

$$\begin{aligned} & \text{focal} = \{n \in open | \widehat{f}(n) \leq C\} \\ & \text{open} = \{n | f(n) \leq C\} \end{aligned}$$

 A^* provides an efficient way to prove no solution in C

What If No Nodes Appear to Be Within Bound?

Introduction

Potential Search

BEES

- Goals
- Algorithm
- Defining Focal
- Pseudo-Code
- **■** Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

$$\widehat{f}(n) = g(n) + \widehat{h}(n)$$

$$f(n) = g(n) + h(n)$$

$$\widehat{f}(n) \ge f(n)$$

$$\begin{aligned} & \text{focal} = \{n \in open | \widehat{f}(n) \leq C\} \\ & \text{open} = \{n | f(n) \leq C\} \end{aligned}$$

 A^* provides an efficient way to prove no solution in C

- 1. Estimate which nodes are within cost bound
- 2. Best-first search of these on estimated actions-to-go
- 3. A* search if we think no solution exists within C

Pseudo-Code for BEES

Introduction

Potential Search

BEES

- **■** Goals
- Algorithm
- Defining Focal
- Pseudo-Code
- Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

BEES is a best first search on the following rule

$$open = \{n | f(n) \le C\}$$

$$\mathsf{focal} = \{ n \in open | \widehat{f}(n) \le C \}$$

selectNode

- 1. **if** focal \neq {}
- 2. **then** return $n \in \text{focal estimated nearest to a goal}$
- 3. **else** return $n \in \text{open with minimum } f$

PTS vs. BEES on Explicit Graph

Introduction

Potential Search

BEES

- Goals
- Algorithm
- Defining Focal
- Pseudo-Code
- Example
- Performance

Conclusion

BEEPS, PTS- \widehat{h}

$$d(A) = 6$$
, $h(A) = 6$, $\widehat{f}(A) = 7$
 $d(T) = 1$, $h(T) = 10$, $\widehat{f}(T) = 20$
 $C = 20$ $f_{lnr}(A) = \frac{6}{20-1}$

$$f_{lnr}(T) = \frac{10}{20-10}$$

BEES prefers T, PTS prefers A

Empirical Evaluation

Thayer et al BEES -16 / 25

Empirical Evaluation

Thayer et al BEES -16 / 25

Empirical Evaluation

Thayer et al BEES -16 / 25

Summary

Introduction

Potential Search

BEES

Conclusion

■ Summary

BEEPS, PTS- \widehat{h}

- BEES outperforms previous state-of-the-art
- \blacksquare when action costs differ, take advantage of d
- inadmissible heuristics can speed up search
- finding solutions, making proofs are different

Thayer et al BEES -17/25

Finding Solutions, Proving Bounds Different Tasks

Introduction

Potential Search

BEES

Conclusion

Summary

BEEPS, PTS- \hat{h}

Thayer et al BEES -18 / 25

Inadmissible Heuristics Speed Search

Introduction

Potential Search

BEES

Conclusion

■ Summary

BEEPS, PTS- \widehat{h}

Thayer et al BEES -19 / 25

Use d to Go Fast

Introduction

Potential Search

BEES

Conclusion

Summary

BEEPS, PTS- \widehat{h}

Thayer et al BEES $-20\ /\ 25$

Summary

Introduction

Potential Search

BEES

Conclusion

■ Summary

BEEPS, PTS- \widehat{h}

- BEES outperforms previous state-of-the-art
- \blacksquare when action costs differ, take advantage of d
- inadmissible heuristics can speed up search
- finding solutions, making proofs are different

Thayer et al BEES -21 / 25

Using \widehat{h} in PTS

Introduction

Potential Search

BEES

Conclusion

BEEPS, PTS- \widehat{h}

\blacksquare Using \widehat{h} in PTS

- BEEPS BEES with Potential Measurements
- Performance
- EES as BC

$$f_{lnr}(n) = \frac{h(n)}{C - g(n)}$$

$$f_{lnr}(n) = \frac{\widehat{h}(n)}{C - g(n)}$$

BEEPS - **BEES** with Potential Measurements

Introduction

Potential Search

BEES

Conclusion

BEEPS, PTS- \widehat{h}

- \blacksquare Using \widehat{h} in PTS
- BEEPS BEES with Potential Measurements
- Performance
- EES as BC

BEES is a best first search on the following rule

selectNode

- 1. **if** focal \neq {}
- 2. **then** return $n \in \text{focal with minimum } \widehat{d}$
- 3. **else** return $n \in \text{open with minimum } f_{lnr}$

Thayer et al

Empirical Results

Conclusion

BEEPS, PTS- \widehat{h}

- \blacksquare Using \widehat{h} in PTS
- BEEPS BEES with Potential Measurements
- Performance
- EES as BC

Thayer et al BEES -24 / 25

Empirical Results

Thayer et al BEES -24 / 25

Empirical Results

Introduction

Potential Search

BEES

Conclusion

BEEPS, PTS- \widehat{h}

 \blacksquare Using \widehat{h} in PTS

■ BEEPS - BEES with Potential Measurements

■ Performance

■ EES as BC

Thayer et al BEES -24 / 25

EES Doesn't Work as Bounded Cost Algorithm

Thayer et al BEES -25 / 25