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Motivation: Bounded Suboptimal Provides Middle Ground
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Motivation: What if | have a Budget instead of w?
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Potential Search Stern et al, ICAPS-11

best-first search in order of chance of satisfying cost bound C
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best-first search in order of chance of satisfying cost bound C

PTg(n) = Pr(g(n) + h*(n) < C)

unfortunately, we may not be able to compute that

finr(n) = C}i(;()n) produces an equivalent order
under certain assumptions
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PTS Performance: Non-Unit Cost Performance is Bad!

Introduction

Potential Search
m PTS

m Performance

®m Shortcoming

BEES

Conclusion

BEEPS, PTS-%

O
|

log10 total raw cpu time

N
|

100 Inverse 15 Puzzles

iy
N~{
o

PTS m
Speedy w/ Cutoff ===

| | | ! |
10 20 30 40
Cost Bound

Thayer et al

BEES — 7 / 25



Potential Search Ignores Solution Length
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Step 1: Estimate which nodes are within cost bound
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(n): an admissible cost-to-go estimate

h
h(n): best-guess estimate of cost-to-go

f(n)=g(n) + h(n)
f(n) = g(n) + h(n)

f(n) < C: could lead to a solution in bound

AN

(n) < C': probably leads to a solution in bound
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focal = {n € open|f(n) < C}
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What If No Nodes Appear to Be Within Bound?
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f(n) = g(n) + h(n)
f(n)=g(n) + h(n)
f(n) =z f(n)

AN

focal = {n € open|f(n) < C'}
open = {n|f(n) < C}

A* provides an efficient way to prove no solution in C

1. Estimate which nodes are within cost bound
2. Best-first search of these on estimated actions-to-go

3. A* search if we think no solution exists within C
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Pseudo-Code for BEES
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BEES is a best first search on the following rule

open = {n|f(n) < C}
focal = {n € open|f(n) < C}

selectNode
1. if focal £ {}
2. then return n € focal estimated nearest to a goal
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else return n € open with minimum f
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Empirical Evaluation
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Finding Solutions, Proving Bounds Different Tasks
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BEEPS - BEES with Potential Measurements
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BEES is a best first search on the following rule

selectNode
1. if focal # {}
2. then return n € focal with minimum d

3.

else return n € open with minimum f;,,;,
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Empirical Results
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EES Doesn’t Work as Bounded Cost Algorithm
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