
A Bayesian Effort Bias for Sampling-based Motion Planning

Scott Kiesel and Wheeler Ruml

Department of Computer Science
University of New Hampshire

Durham, NH 03824 USA

Abstract

Recent advances in sampling-based motion planning
have exploited concepts similar to those used in the
heuristic graph search community, such as computing
heuristic cost-to-go estimates and using state-space ab-
stractions to derive them. Following this trend, we ex-
plore how the concept of search effort can be exploited
to find plans quickly. Previous work in motion plan-
ning attempts to find plans quickly by preferring states
with low cost-to-go. Recent work in graph search sug-
gests that following search-effort-to-go estimates can
yield faster planning. In this paper, we demonstrate how
this idea can be adapted to the context of motion plan-
ning. Our planner, BEAST, uses on-line Bayesian esti-
mates of effort to guide the expansion of a motion tree
toward states through which a plan is estimated to be
easy to find. We present results in five simulated do-
mains (Kinematic and Dynamic Car, Hovercraft, Blimp
and Quadrotor) indicating that BEAST is able to find
solutions more quickly and has a higher success rate
than previous methods. We see this work as further
strengthening the algorithmic connections between mo-
tion planning and heuristic graph search.

Introduction
We address the problem of single-query kinodynamic mo-
tion planning: given a start state, description of the obstacles
in the workspace, and a goal region, find a dynamically fea-
sible continuous trajectory (a sequence of piece-wise con-
stant controls) that takes the robot from the start state to
the goal region without intersecting obstacles (Choset et al.
2005; LaValle 2006). We work within the framework of mo-
tion trees, popularized by sampling-based motion planning,
in which the planner grows a tree of feasible motions from
the start state, attempting to reach the goal state. This ap-
proach is appealing because it applies to any vehicle that
can be forward simulated, allowing the planner to respect
realistic constraints such as acceleration limits. Examples of
algorithms taking this approach include RRT (LaValle and
Kuffner 2001), KPIECE (Şucan and Kavraki 2009), and P-
PRM (Le and Plaku 2014).

Although the figure of merit on which these algorithms
are usually compared is the time taken to find a (com-
plete and feasible) solution. Close examination of these al-
gorithms reveals that their search strategies are not explic-

itly designed to optimize that measure. RRT uses sampling
with a voronoi bias to encourage rapidly covering the entire
state space. KPIECE uses more sophisticated coverage esti-
mates to achieve the same end. Focusing on regions of the
state space with low motion tree coverage helps to grow the
tree outward, but is not focused on reaching the goal. Cover-
age promotes probabilistic completeness but not necessarily
finding a solution quickly.

In artificial intelligence, a central principle for exploring
large state spaces is to exploit heuristic information to fo-
cus problem-solving in promising regions. The A* heuris-
tic graph search algorithm serves as the central paradigm.
In motion planning, the P-PRM algorithm exploits heuristic
cost-to-go information to guide growth of its motion tree,
with the aim of finding solutions faster than unguided meth-
ods. While focusing on low cost regions directs sampling
toward the goal, it ignores the effort that can be required for
a motion planner to thread a trajectory through a cluttered
area. In this way, cost-to-go estimates can encourage the
search to focus on challenging portions of the state space,
slowing the search. Fundamentally, optimizing solution cost
is not the same as optimizing planning effort.

Recent work in heuristic graph search has recognized the
separate roles of cost and effort estimates in guiding search,
particularly when solutions are desired quickly (Thayer and
Ruml 2009; Thayer and Ruml 2011). In this paper, we show
how to exploit that idea in the context of motion planning.
We propose an algorithm, Bayesian Effort-Aided Search
Trees (BEAST), that biases tree growth through regions in
the state space believed to be easy to traverse. If motion
propagation does not go as anticipated, effort estimates are
updated online based on the planner’s experience, and used
to redirect planning effort to more fruitful parts of the state
space. We implement this method in the Open Motion Plan-
ning Library (OMPL) (Sucan, Moll, and Kavraki 2012) and
evaluate it in five different simulated domains (Kinematic
and Dynamic Car, Hovercraft, Blimp and Quadrotor). The
results suggest that BEAST successfully uses effort estimates
to efficiently allocate planning effort: it finds solutions faster
than RRT, KPIECE, and P-PRM and is the only method able
to solve all benchmark instances. We see this work as a fur-
ther demonstration of how ideas from heuristic graph search
can be useful in motion planning.



Previous Work
There has been much previous work on biases for sampling-
based motion planners. The two most prominent types in the
recent literature have been to bias toward less explored por-
tions of the state space or to bias exploration toward regions
of the state space believed to contain low cost solutions.
Both of these biases have shown strong results in finding
solutions quickly. The two state of the art algorithms con-
sidered in this paper are KPIECE (Şucan and Kavraki 2009)
and P-PRM (Le and Plaku 2014).

KPIECE
Kinodynamic Planning by Interior-Exterior Cell Explo-
ration, or KPIECE (Şucan and Kavraki 2009), is an algo-
rithm that uses a multi-level projection of the state space to
estimate coverage in the state space. It then uses these cov-
erage estimates to reason about portions of the state space to
explore next. Expansive Space Trees (EST) (Hsu, Latombe,
and Motwani 1999) and Path-Directed Subdivision Tree
(PDST) (Ladd and Kavraki 2005) also focus on less ex-
plored portions of the state space but have been shown to
be outperformed by KPIECE. The general all-around good
performance of KPIECE has led to its selection as the de-
fault motion planner in OMPL.

KPIECE is focused on quickly covering as much of the
state space as possible. It always gives priority to less cov-
ered areas of the state space. When an area of low coverage
is discovered it attempts to extend the motion tree into that
area. It uses a coarse resolution initially to find out roughly
which area is less explored. Within this area, finer resolu-
tions can then be employed to more accurately detect less
explored areas.

While KPIECE targets exploring unvisited areas of the
state space, this may not always be the fastest approach to
finding the goal. Certainly targeting exploration toward the
goal could help improve performance.

P-PRM
P-PRM (Le and Plaku 2014) is based on ideas from an ear-
lier planner called Synergistic Combination of Layers of
Planning (SyCLOP) (Plaku, Kavraki, and Vardi 2010). It
shares the intuition that information from a discrete abstrac-
tion of the workspace can be used to identify low level paths
that may lead to the goal. While SyCLOP was shown to be
very successful, in recent work P-PRM has been shown to
outperform SyCLOP in a variety of planning problems.

P-PRM uses the geometric component of the state space
to construct a Probablistic Roadmap (PRM) (Kavraki et al.
1996). It generates random states in the geometric space,
then connects each state to its nearest neighbors via an
edge, forming a graph. The edges in the graph are collision
checked and removed from the graph if a collision along
them is found. The graph vertices represent regions of ge-
ometric space and the edges summarize the connectivity of
the regions.

P-PRM runs a Dijkstra search out from the abstract region
containing the concrete goal to compute h-values, or heuris-
tic estimates of cost to the goal. It then uses these heuristic

values, and the associated shortest paths from the goal to
each abstract node, to bias sampling.

It searches by maintaining a queue of abstract states in
the graph sorted by increasing scores (initially their h-value,
see the paper for details). At each search iteration the ab-
stract state with the lowest score is selected. An abstract state
along the cheapest precomputed path rooted at the currently
selected state is chosen. This state is then used to create a
random concrete state within some pre-specified state ra-
dius. This is now the ”target” state used similarly to when
plain RRT chooses a state uniformly at random. That means
that the nearest state in the existing motion tree is chosen
as the root for the new propagation which is steered (if
possible) toward the random state. Any new abstract states
touched by the propagation attempt are added to the queue
if not previously enqueued.

P-PRM tries to pursue the completion of low cost paths
by following its heuristic estimates in the abstract space. It
tries to avoid getting stuck during planning by penalizing the
score of abstract states when they are examined.

Speedy Search
While RRT and KPIECE are often the reliable workhorses
of motion planning, the success of heuristically-informed
graph search algorithms such as A* (Hart, Nilsson, and
Raphael 1968) in artificial intelligence would suggest that
brute-force expansion into all unexplored regions of the state
space (in a manner similar to Dijkstra’s algorithm) is not an
optimal strategy. P-PRM has been shown to provide state of
the art performance by exploiting heuristic cost-to-go guid-
ance. Yet recent results in the heuristic graph search commu-
nity show that exploring the state space based on cost often
does not give the best speedup.

In the context of discrete graphs, Greedy search, which
focuses on nodes with low heuristic cost-to-goal, is often
surpassed by ‘Speedy search’, which focuses on nodes with
a low estimated number of hops (or graphs edges) to the
goal (Thayer and Ruml 2009; Wilt and Ruml 2014). In this
paper, we present one attempt at adapting this idea to motion
planning, in which the state and action spaces are continuous
and there is no predefined graph structure.

Exploiting Effort Estimates
While there is not a direct translation of the ”number of
edges to the goal” concept, there is still a notion of search
effort. In heuristic search, the fewer expansions needed to
find the goal, typically the quicker a solution is found. In
sampling-based motion planning, the unit of measure would
be the number of samples, or propagation attempts in the
motion tree. Each forward propagation of the system state
requires collision checking, which is computationally ex-
pensive. The fewer propagation attempts made before find-
ing the goal, typically the faster a solution is found (assum-
ing reasonable iteration overhead).

Overview
Bayesian Effort-Aided Search Trees (BEAST) is a novel
method that tries to find solutions as quickly as possible by



constructing solutions which it estimates require the least
effort to build. It maintains online Bayesian estimates of the
effort of connecting abstract regions of the state space and
allocates its search effort to the region of the state space that
is estimated to require the lowest effort to connect to the ab-
stract goal region.

BEAST exploits a discrete abstraction of the state space.
In the experiments reported below, we use a PRM workspace
abstraction very similar to the one used by P-PRM. We begin
by identifying the geometric component of the state space.
The abstraction will exist only in this subspace. We generate
uniformly random states in the abstract space (1000 in the
experiments below). As in P-PRM, these states induce a di-
vision of the state space into abstract regions (by associating
any concrete state with the nearest abstract state). Neighbor-
ing abstract states (the 5 nearest in the experiments below)
are connected by directed edges, forming a directed graph.
(If the abstract start and goal regions remain unconnected,
additional samples are taken until they are.)

As just discussed, for each edge e, BEAST maintains an
effort estimate, ee(e), of how many propagation attempts
would be required on average to take a concrete state con-
tained in the abstract region represented by the source ver-
tex of the edge to a concrete state contained in the abstract
region represented by the end vertex. These estimates are
initialized by a geometric collision check along the abstract
edge. However, BEAST explicitly acknowledges that this
quick check in geometric space is only a rough approxi-
mation of a robot’s ability to steer from one region to the
other. We represent our uncertain belief about each edge in
a Bayesian style: we regard a propagation attempt as sam-
pling a Bernoulli variable and we maintain a beta distribu-
tion (with parameters α, β) over its success probability. The
initial geometric collision check provides some evidence
about this probability, and then each propagation attempt
during planning provides additional evidence. In the exper-
iments reported below, an edge with a detected collision is
initialized to α = 1, β = 10, and all other edges are initial-
ized to α = 10, β = 1. Successful attempts increase α by
one and unsuccessful attempts increase β by one. Based on
our belief, we estimate the number of propagation attempts
that will be necessary in order to have a successful one as
(α+ β)/α.

BEAST uses the abstract graph as a metareasoning tool
to decide where it should spend its time growing the mo-
tion tree. We only consider abstract regions touched by the
motion tree and each edge from the corresponding vertex
in the abstract graph represents a possible propagation at-
tempt. We compute, for each directed edge e, the expected
total effort te(e) required to reach the abstract goal if we
start propagating a state from its start region through its end
region and onward to the goal. For ‘exterior’ edges, whose
start region has not yet had a successful propagation into its
end region, this is straightforward: the effort to cross that
edge plus the total effort-to-goal from the end vertex. More
formally: if, for every vertex in the abstract graph, we let
te(v) be the minimum over its outgoing edges e of te(e),
then te(e) = ee(e) + te(e.end). ‘Interior’ edges are more
complex. Unless the goal region has been reached, any inte-

BEAST(Abstraction, Start,Goal)
1. AbstractStart = Abstraction.Map(Start)
2. AbstractGoal = Abstraction.Map(Goal)
3. Abstraction.PropagateEffortEstimates()
4. Open.Push(AbstractStart.GetOutgoingEdges())
5. While NotFoundGoal
6. Edge = Open.Pop()
7. StartState = Edge.Start.Sample()
8. EndState = Edge.End.Sample()
9. ResultState = Steer(StartState, EndState)

// Or Propagate With Random Control
10. Success = Edge.End.Contains(ResultState)
11. If Success
12. Edge.UpdateWithSuccessfulPropagation()
13. If Edge.End == AbstractGoal
14. Open.Push(GoalEdge)

// Goal Region To Goal State
15. Else
16. Edge.UpdateWithFailedPropagation()
17. Abstraction.PropagateEffortEstimates()
18. Open.Push(Edge)
19. If Success
20. Open.Push(Edge.End.GetOutgoingEdges())

Figure 1: Pseudocode for the BEAST algorithm.

rior edge will lead to an exterior edge that has a lower total
effort estimate, so such edges may not appear to be useful for
propagation. However, recall that our state space abstraction
might be very rough, and not all concrete states falling in
the same abstract region are necessarily equivalent. We may
well want to propagate along an interior edge in order to add
additional states to the end region, in the hopes that this will
increase the probability of being able to propagate onward
from there. We model this by assuming that an additional
state in the destination region will raise its α by 1/n, where
n is the number of states already in the region. (We want this
bonus to depend inversely on the number of existing states,
to reflect the decreasing marginal utility of each additional
state.) So for an interior edge e with a destination vertex d
that contains n states in its abstract region,

te(e) = ee(e)+ min
e2∈e.out

e2.α+ 1/n+ e2.β

e2.α+ 1/n
+ te(e2.dest).

Details
Pseudocode for BEAST is presented in Figure 1. The algo-
rithm is passed an abstraction of the workspace, concrete
start state and a concrete goal state. BEAST first begins
by propagating effort estimates through the abstract graph
outward from the region containing the concrete goal state
(line 3). For efficiency, the collision checking and beta dis-
tribution initialization can be done lazily.

We use the pseudocode in Figure 2 to estimate the number
of propagation attempts needed if the planner were to start
by propagating along a specific edge. For exterior edges, this
effort value is straightforward (line 22).

On Line 25 for interior edges, we examine each of the



GetEffort(Edge)
21. If Not Edge.interior
22. Return ee(Edge) + te(Edge.End)
23. Else
24. Child Edges = Edge.End.GetOutgoingEdges()
25. Return ee(Edge) +

minChild∈Child Edges OptimisticBenefit(Child) +
te(Child.End)

OptimisticBenefit(Edge)
26. PositiveEffect = 1. / Edge.Start.NumStates
27. Optα = Edge.α + PositiveEffect
28. Return (Optα + Edge.β) / Optα

Figure 2: Pseudocode for calculating an edge effort value.

children of the current edge to see which child edge would
require the least effort to arrive at the goal if it were pro-
vided another state in its start region. We take the minimum
effort over the children and add in the estimated effort of
propagating along the current edge.

If effort estimates were static, a single pass of Dijk-
stra’s algorithm would suffice to compute te values. In our
case, edge effort estimates change over time so we use an
incremental best-first search called D* Lite (Koenig and
Likhachev 2002) to avoid replanning from scratch. D* Lite
updates the heuristic estimates for cost to go to the goal at
each vertex in the graph, in our case we are using effort (te)
to go instead. While propagating effort at each vertex we
also store an effort estimate at each edge which is calculated
using GetEffort .

To reiterate, this value can be seen as an estimate of how
many samples will be required to reach the goal if you were
to choose to propagate along an edge and then choose the
minimum effort edges thereafter. A queue called Open is
then initialized with outgoing edges from the abstract region
containing the concrete start state(line 4). Open is sorted in
increasing order of edge effort. The search always considers
the least effort edge first.

The algorithm proceeds by popping the edge off Open
with the lowest estimated effort (line 6). This edge is then
sampled at its start abstract region and its end abstract region
in lines 7-8. In our implementation, the concrete state in the
edge’s start region that has been selected the fewest number
of times is chosen as the StartState . A concrete state is cho-
sen from the edge’s abstract end region uniformly at random
within some radius centered around the region’s centroid.

An attempt is made to grow the tree from StartState to
EndState using a steering function (line 9). In our imple-
mentation if no steering function was available in OMPL,
we instead generated 10 random controls, applied each to
StartState and the resulting motion that got closest to
EndState was chosen. 1

If the newly propagated motion at any point reached the

1This functionality was implemented at the control sampler
level in OMPL for each domain so any algorithm using ”sampleTo”
provided by the domain’s control sampler received equal benefit.

target abstract region (the selected edge’s end region), the
edge is updated with a successful trial (line 10-12). This sim-
ply adds one to the α value of the beta distribution associated
with this edge.

If the target region is not reached, the β bucket is incre-
mented (line 16). With each trial to propagate along an edge
we update our belief about the effort required to reach the
goal by using the edge. This effectively changes the edge
”cost” in the abstract graph and we use our incremental
search to update the effort estimates throughout the graph
based on this local update (line 17).

If the edge was successfully propagated along, we also
add its child edges (outgoing edges from the current edge’s
end region) to the Open list (line 20). We re-add the current
edge to the Open in all outcomes (line 18).

There is also a special case (line 13) added which enables
us to use sparse abstractions. With sparse abstractions we
can compute our effort values more efficiently during each
iteration. However, when the goal abstract region is reached,
with a sparse abstraction, it may cover a large portion of the
state space. Growing the tree into a possibly large goal re-
gion may not be focused enough to find a state close to the
goal state. To combat this we add a special GoalEdge to
Open (line 14). This is an edge that when expanded will
return a StartState from the goal abstract region and an
EndState focused around the actual concrete goal state.

Experiments

All experiments were run using control algorithms from the
OMPL framework where available (KPIECE and RRT). P-
PRM was implemented following closely along with the
description and pseudo code included in the paper. Exper-
iments also used OMPL’s implementation of a Kinematic
Car, Dynamic Car, Blimp and Quadrotor vehicle, as detailed
below. We implemented a Hovercraft in OMPL following
Lynch (1999).

Kinematic Car

The mesh used for the Kinematic Car vehicle is shown in
Figure 3 panel (a). The equations defining the Kinematic
Car’s motion and control inputs in OMPL are as follows:

ẋ = u0 · cos(θ),
ẏ = u0 · sin(θ),

θ̇ =
u0
L
· tan(u1)

where the control inputs (u0, u1) are the translational veloc-
ity and the steering angle, respectively, and L is the distance
between the front and rear axle of the car which is set to 1.

Dynamic Car

The mesh used for the Dynamic Car vehicle is shown in Fig-
ure 3 panel (a). The equations defining the Dynamic Car’s



motion and control inputs in OMPL are as follows:

ẋ = v · cos(θ),
ẏ = v · sin(θ),

θ̇ =
v ·m
L
· tan(φ),

v̇ = u0,

φ̇ = u1

where v is the speed, φ the steering angle, the controls
(u0, u1) control their rate of change, m is the mass of the
car (set to 1), and L is the distance between the front and
rear axle of the car (also set to 1)

Hovercraft
The mesh used for the Hovercraft vehicle is shown in Fig-
ure 3 panel (a). The equations defining the Hovercrafts’s mo-
tion and control inputs from Lynch (1999) are as follows:

ẋ =
F

M
cos(θ)− Bt

M
x,

ẏ =
F

M
sin(θ)− Bt

M
y,

θ̇ =
τ

0.5 ·M ·R2
− Br
M
· θ

where F is the force exerted by the thrusters and τ is the
torque exerted by the thrusters. Bt and Br are the transla-
tional and rotational friction coefficients (both set to 0). M
is the mass of the robot andR is the radius of the robot (both
set to 1).

Blimp
The mesh used for the Blimp vehicle is shown in Figure 3
panel (b). The equations defining the Blimp’s motion and
control inputs in OMPL are as follows:

ẍ = uf · cos(θ),
ÿ = uf sin(θ),

z̈ = uz,

θ̈ = uθ

where (x, y, z) is the position, θ the heading, and the con-
trols (uf , uz, uθ) control their rate of change.

Quadrotor
The mesh used for the Quadrotor vehicle is shown in Fig-
ure 3 panel (c). The equations defining the Quadrotor’s mo-
tion and control inputs in OMPL are as follows:

mp̈ = −u0 · n− β · ṗ−m · g,
α = (u1, u2, u3)

T ,

where p is the position, n is the Z-axis of the body frame
in world coordinates, α is the angular acceleration, m is the
mass, and β is a damping coefficient. The system is con-
trolled through u = (u0, u1, u2, u3).

In the Kinematic and Dynamic Car domains the goal ra-
dius was set to 0.1, the remaining domains each used a goal

radius of 1. The goal distance of a state was based only on
the distance in the XY or XYZ dimensions. Other parame-
ters that were used included a propagation step value of 0.05,
min and max control durations of 1 and 100 respectively,
and intermediate states were included during planning. The
workspace was bounded by −30 ≤ x ≤ 30, −30 ≤ y ≤ 30
and −5 ≤ z ≤ 5.

KPIECE and RRT were run using their default parame-
ters. P-PRM was also run using its suggested parameters de-
scribed in the paper. The state radius size for sampling was
shared between P-PRM and BEAST. This value was set to
6, which gave good visible coverage over the abstract re-
gions and the best performance over those state radii tried:
{2,4,6}.

The obstacle mesh used for the experiments is presented
in Figure 3 panel (d). For each vehicle, 5 start and goal pairs
were used, and for each start and goal pair 50 different ran-
dom number generator seed values were used. This provided
250 runs for each of the domains. The start states were bi-
ased toward the center of the workspace while the goal was
biased toward the lower center of the workspace. This set-
up tends to generate problems in which the optimal solu-
tion threads its way carefully between the obstacles, but it is
much easier to take a more costly route around the obstacles.
This wide diversity of planning time/solution cost trade-offs
directly tests the ability of BEAST to estimate planning ef-
fort and adjust its behavior accordingly. A motion planning
that explicitly tries to find plans quickly ought to exhibit su-
perior performance. A planning timeout of 60 seconds was
used.

Results
The results of the experiments are presented in Figure 4.
Each box represents the middle 50% of the data, with a hor-
izontal line at the median. Whiskers extend to the furthest
point within 1.5 times the interquartile range. The remaining
outliers are plotted with circles. The 95% confidence inter-
val around the mean is depicted with a gray rectangle. The
plots in each panel are sorted according to their means. In
order to have enough data points to create plots, algorithm
runs that timed out without providing a valid solution are
still included in the plot. These runs are represented by the
time collected by OMPL after the timeout was issued. Sev-
eral of the plots have been clipped at the top so that the top
two performers remain legible.

In the Blimp domain, BEAST has the lowest mean plan-
ning time as well as the lowest variance in its performance.
In the Quadrotor domain, BEAST again has the lowest mean,
but P-PRM appears to have slightly lower variance.

A video of the sampling and tree growth of each of the al-
gorithms considered in this paper can be found at https:
//www.youtube.com/watch?v=Or8sQBOrVh4. It
is a top down visualization of a Quadrotor planning instance.
It illustrates RRT’s slow coverage of the entire state space,
KPIECE’s rapid coverage of the state space, P-PRM’s focus
on estimated low cost paths and BEAST’s focus on finding
low effort solutions.

The number of runs where each algorithm was unable to
solve an instance is provided in Figure 5. In the Blimp do-

https://www.youtube.com/watch?v=Or8sQBOrVh4
https://www.youtube.com/watch?v=Or8sQBOrVh4


(a) (b) (c) (d)

Figure 3: The car, blimp and quadrotor vehicles used in the experiments, and the forest environment.

Kinematic Car

BEAST P-PRM RRT KPIECE

C
P

U
 T

im
e

0.6

1.2

1.8

Dynamic Car

BEAST P-PRM RRT KPIECE

C
P

U
 T

im
e

6

12

18

Hovercraft

BEAST P-PRM KPIECE RRT

C
P

U
 T

im
e

6

12

18

Blimp

BEAST P-PRM RRT KPIECE

C
P

U
 T

im
e

20

40

60

Quadrotor

BEAST KPIECE P-PRM RRT

C
P

U
 T

im
e

6

12

18

Figure 4: Computation time for 5 start goal pairs and 50 random seeds (250 instances).



RRT KPIECE P-PRM BEAST
Kinematic Car 0 99 0 0
Dynamic Car 108 189 0 0

Hovercraft 116 8 0 0
Blimp 221 238 11 0

Quadrotor 12 2 0 0

Figure 5: Number of unsolved instances for 5 start goal pairs
and 50 seeds (250 instances).

Figure 6: P-PRM sampling and tree growth example in the
Quadrotor domain (top down view).

main, BEAST is the only algorithm that is able to find a solu-
tion to all the instances within the timeout. In the Quadrotor
domain, BEAST and P-PRM are both able to find solutions to
all instances while KPIECE and RRT are not able to within
the timeout.

Discussion
One of the major benefits of BEAST is that it explicitly fo-
cuses on areas of the state space that it believes will be
easy to traverse while heading toward the goal. KPIECE will
eventually explore the same regions of the state space but
does so without focusing on paths toward the goal. P-PRM
does focus on paths leading to the goal, but focuses on paths
associated with low cost. These paths can be arbitrarily dif-
ficult to find given obstacle configurations.

This is shown in Figure 6 where many P-PRM generates
samples (green dots) along abstract paths to the goal, but it is
challenging to grow the motion tree (red lines) toward them.
Eventually from the uniform random sampling and increas-
ing cost estimates for the states it has selected many times,
search begins to spill around and through the obstacles (red
circles).

Another feature of BEAST that helps it construct its tree

more efficiently is that it focuses its tree growth either in-
ternal to the existing tree or directly along the fringe of the
existing tree. This focus on the boundary of the motion tree
is very similar to that of KPIECE, yet the two methods al-
locate their exploration effort very differently. P-PRM does
not focus its sampling near the existing tree and can gener-
ate samples arbitrarily far away, which are less helpful when
growing the tree through tight spaces.

There are other motion planners that leverage heuristic
cost-to-go, but in ways very different from BEAST. Informed
RRT* (Gammell, Srinivasa, and Barfoot 2014) uses ellip-
soidal pruning regions to ignore areas of the state space that
are guaranteed not to include a better solution. BIT* (Gam-
mell, Srinivasa, and Barfoot 2015) uses heuristic cost esti-
mates directly in its search strategy, but for kinodynamic
planning it requires a boundary value problem solver to
rewire trajectories between sampled states, making it inap-
plicable to many problems.

Finding solutions quickly is an important feature in many
applications, but convergence to an optimal solution is also
highly desirable. In future work, we plan to combine our
effort based planner BEAST with heuristic cost estimates,
yielding an anytime planner which quickly finds a solution
and then spends its remaining planning time improving its
incumbent solution cost.

Conclusion
We have presented a new algorithm called Bayesian Effort-
Aided Search Trees. BEAST exploits and updates Bayesian
estimates of propagation effort through the state space to
find solutions quickly. Results on a variety of domains
showed that BEAST on average found solutions the fastest
and was the only algorithm to find solutions to every in-
stance in the benchmark set. We see this work as reinforc-
ing the current trend toward exploiting ideas from AI graph
search in the context of robot motion planning, and provid-
ing further evidence that searching under time pressure is a
distinct activity from searching for low-cost solutions.

Acknowledgments
We gratefully acknowledge support from NSF (grant
1150068).

References
[Choset et al. 2005] Choset, H.; Lynch, K.; Hutchinson, S.;
Kantor, G.; Burgard, W.; Kavraki, L.; and Thrun, S. 2005.
Principles of robot motion: theory, algorithms, and imple-
mentation. MIT Press.

[Gammell, Srinivasa, and Barfoot 2014] Gammell, J. D.;
Srinivasa, S. S.; and Barfoot, T. D. 2014. Informed RRT*:
Optimal incremental path planning focused through an
admissible ellipsoidal heuristic. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

[Gammell, Srinivasa, and Barfoot 2015] Gammell, J. D.;
Srinivasa, S. S.; and Barfoot, T. D. 2015. Batch informed
trees (BIT*): Sampling-based optimal planning via the



heuristically guided search of implicit random geometric
graphs. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on, 3067–3074. IEEE.

[Hart, Nilsson, and Raphael 1968] Hart, P. E.; Nilsson, N. J.;
and Raphael, B. 1968. A formal basis for the heuristic de-
termination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on 4(2):100–107.

[Hsu, Latombe, and Motwani 1999] Hsu, D.; Latombe, J.-
C.; and Motwani, R. 1999. Path planning in expansive con-
figuration spaces. International Journal of Computational
Geometry & Applications 9(04n05):495–512.

[Kavraki et al. 1996] Kavraki, L. E.; Švestka, P.; Latombe,
J.-C.; and Overmars, M. H. 1996. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces.
Robotics and Automation, IEEE Transactions on 12(4):566–
580.

[Koenig and Likhachev 2002] Koenig, S., and Likhachev, M.
2002. D* lite. In AAAI/IAAI, 476–483.

[Ladd and Kavraki 2005] Ladd, A. M., and Kavraki, L. E.
2005. Motion planning in the presence of drift, underac-
tuation and discrete system changes. In Robotics: Science
and Systems, 233–240.

[LaValle and Kuffner 2001] LaValle, S. M., and Kuffner, J. J.
2001. Randomized kinodynamic planning. The Interna-
tional Journal of Robotics Research 20(5):378–400.

[LaValle 2006] LaValle, S. M. 2006. Planning Algorithms.
Cambridge University Press.

[Le and Plaku 2014] Le, D., and Plaku, E. 2014. Guiding
sampling-based tree search for motion planning with dy-
namics via probabilistic roadmap abstractions. In Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ Interna-
tional Conference on, 212–217. IEEE.

[Lynch 1999] Lynch, K. M. 1999. Controllability of a pla-
nar body with unilateral thrusters. Automatic Control, IEEE
Transactions on 44(6):1206–1211.

[Plaku, Kavraki, and Vardi 2010] Plaku, E.; Kavraki, L. E.;
and Vardi, M. Y. 2010. Motion planning with dynamics by
a synergistic combination of layers of planning. Robotics,
IEEE Transactions on 26(3):469–482.

[Şucan and Kavraki 2009] Şucan, I. A., and Kavraki, L. E.
2009. Kinodynamic motion planning by interior-exterior
cell exploration. In Algorithmic Foundation of Robotics VIII.
Springer. 449–464.

[Sucan, Moll, and Kavraki 2012] Sucan, I. A.; Moll, M.; and
Kavraki, L. E. 2012. The open motion planning library.
Robotics & Automation Magazine, IEEE 19(4):72–82.

[Thayer and Ruml 2009] Thayer, J. T., and Ruml, W. 2009.
Using distance estimates in heuristic search. In ICAPS, 382–
385.

[Thayer and Ruml 2011] Thayer, J. T., and Ruml, W. 2011.
Bounded suboptimal search: A direct approach using inad-
missible estimates. In IJCAI, 674–679.

[Wilt and Ruml 2014] Wilt, C. M., and Ruml, W. 2014.
Speedy versus greedy search. In Seventh Annual Symposium
on Combinatorial Search.


	Introduction
	Previous Work
	KPIECE
	P-PRM
	Speedy Search

	Exploiting Effort Estimates
	Overview
	Details

	Experiments
	Kinematic Car
	Dynamic Car
	Hovercraft
	Blimp
	Quadrotor
	Results

	Discussion
	Conclusion

