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Abstract

In Goal Recognition Design (GRD), the objective
is to modify a domain to facilitate early detec-
tion of the goal of a subject agent. Most previ-
ous work studies this problem in the offline set-
ting, in which the observing agent performs its in-
terventions before the subject begins acting. In this
paper, we generalize GRD to the online setting in
which time passes and the observer’s actions are
interleaved with those of the subject. We illus-
trate weaknesses of existing metrics for GRD and
propose an alternative better suited to online set-
tings. We provide a formal definition of this Ac-
tive GRD (AGRD) problem and study an algorithm
for solving it. AGRD occupies an interesting mid-
dle ground between passive goal recognition and
strategic two-player game settings.

1 Introduction

Goal recognition is the problem of identifying the goal of
an agent from observations of its actions [Sukthankar et al.,
2014]. Applications range from educational games [Ha ef al.,
2011] to adversarial settings [Ang et al., 2017]. In this pa-
per, we study Goal Recognition Design (GRD) [Keren et al.,
2014], where the objective is to modify a domain to facilitate
early detection of the goal of a subject agent acting to achieve
one of a known finite set of goals. While most previous work
studies this problem in the offline setting, we propose a vari-
ant in which the observing agent performs its interventions
online while the subject is acting.

For example, consider a playground with an area that in-
cludes a sand pit for toddlers and an area with tall slides that
are dangerous for younger children. Now consider an arriving
toddler very excited to play and not listening to her caregiver.
She might run toward both the sand pit and the tall slide, since
they are in the same direction. As those with small children
know, toddlers can have a strong independent streak. Her
caregiver would want to know which was her goal as soon as
possible so that they could intervene before she gets to the
slide, but take no other action if she is going to the sand pit
so as to avoid a tantrum. Conventional offline GRD would
require the designers of the playground to plan in advance a
wall separating the two areas. In this case, the toddler must

decide which direction she is going in plenty of time for the
caregiver to see and react. In the absence of such specific
foresight by the designer, the caregiver must step in the mid-
dle of the path, forcing the child to go left or right and thus
revealing her goal. Clearly, real-world environments do not
always have the luxury of offline design efforts to optimize
the recognition of agents’ goals.

In this paper, we 1) illustrate limitations of the conventional
approaches to GRD, 2) define a formal problem setting for the
Active Goal Recognition Design (AGRD) problem, and 3)
design and experimentally characterize an optimal algorithm
for solving AGRD problems. We find that AGRD captures a
useful range of multiagent interactions lying between passive
goal recognition and strategic two-player games.

2 Previous Work

Goal Recognition Design (GRD) was first proposed by Keren
et al. [2014], then extended for sub-optimal agents, partial ob-
servability, and partially-informed agents [Keren er al., 2015;
Keren et al., 2016a; Keren et al., 2016b; Keren et al., 2020].
The objective of a GRD problem is to minimize worst-case
distinctiveness (wcd), the length of the longest (or more gen-
erally, the cost of the most expensive) possible plan prefix be-
fore the subject’s true goal is the only possible goal given the
prefix. Possible plan prefixes depend on the setting, but in the
simplest case are limited to prefixes of optimal plans. A non-
distinct plan prefix is a prefix compatible with multiple goals
the agent could be pursuing. Solutions to GRD problems are
sequences of interventions in the domain that change the set
of plans available to agents and minimize wcd.

Wayllace et al. [2017] modify GRD to handle stochastic
domains (S-GRD), where the subject agent’s actions’ out-
comes are not deterministic. They propose a new objective,
expected case distinctiveness (ecd), to deal with stochastic-
ity. ecd is the expected time that an agent’s path will be non-
distinct given that the agent is following an optimal policy to
its goal. By using an expectation, their algorithm can select an
intervention that is expected to reduce the non-distinctiveness
of the agent’s path, even if the intervention does not necessar-
ily reduce wcd.

There is a growing body of work on observers who use
agency in the domain to help reveal the subject agent’s goal
more quickly. Kabanza et al. [2010] and Bisson et al. [2011]
explore ‘provoking actions’ to force opponents to reveal their



intentions through their reactions. These works depend on
direct cause-effect relationships between provoking actions
and opponent reactions. By contrast, our work allows ob-
servers to plan longer-term sequences of interventions with-
out immediate effect. Mirsky et al. [2018] model plans as
context-free grammars with nonterminals that can be refined
via productions into primitive actions. They query the subject
online about whether a coarse plan can be refined to the cor-
rect hypothesis and can thus prune significant portions of the
observer’s hypothesis set. However, their observer does not
have agency to act in the world. Masters and Sardina [2019]
consider adversarial goal recognition, in which the subject
attempts to defeat recognition. Their setting is offline and
limited to path planning domains. We will discuss the work
of Shvo and Mcllraith [2020] and Amos-Binks and Cardona-
Rivera [2020] in detail in Section 7.

3 GRD for Online Settings

Existing work on GRD optimizes distinctiveness in the form
of wed or ecd. As our first contribution, we analyze these
metrics and identify problematic cases. We then discuss an
alternative that has advantages in online settings. We also
emphasize the importance of modeling the passage of time.

3.1 Objective Functions

One underlying problem with wcd is that its focus on the
worst case can cause useful interventions to be overlooked.
Consider Figure 1-left, which represents a deterministic do-
main where the wcd equals the optimal cost to goal A. There
are two plan prefixes whose length equals wcd: one that leads
to both B and C and becomes distinct at time step wed + 1,
and one that leads to goal B and passes through goal A at
time step wcd, also becoming distinct at wed + 1. The red
circle indicates an intervention that eliminates the plan to B
that passes through A. However, the standard GRD objec-
tive would ignore this intervention since it does not affect
wed. Clearly if the agent’s goal is A, it is preferable to dis-
tinguish it even if the distinctiveness of B and C cannot be
reduced. To address this issue, we look to expected case
distinctiveness (ecd) [Wayllace ef al., 2017]. The ecd of an
MDP state s is the expected length of the agent’s non-distinct
plan prefix. ecd(s) is defined recursively for all successors
of s, weighted on the transition probabilities of the actions
leading to the successor and the actions’ likelihood w.r.t. a
set of given prior probabilities over possible goals. The base
case of ecd is a state for which the goal is uniquely identifi-
able. Though ecd was designed for stochastic domains, de-
terminism is merely a special case. Let us weight each goal
in Figure 1-left egually Before executing the intervention,
ecd(Start) = *5 “’Cd + wed — qycd since all goals be-
come distinct at wed + 1. It is clear that by executing the
intervention, ecd(Start) = 0 + %% 4 b — Zycd since
goal A becomes distinct after taking a single step, thus iden-
tifying that the intervention is worth executing.

However, ecd still has key flaw: as a measure based on
distinctiveness, it is insensitive to the time remaining after the
goal is identified. Consider Figure 1-middle, in which there
are three possible goals with a priori equal probability: A,

B, and C. All arrows describe deterministic actions of cost 1.
There are two possible interventions: removing a; or as. Itis
possible that an agent pursuing goal A will not reveal its goal
until the final action by taking the path (r, sq, s4, A). The
only way to guarantee that all goals will be identified before
the subject’s final action is to remove action a;. However,
removing either a; or as will have identical effects on ecd
since their removal is symmetrical. A plan to goal A via sy
is distinct after 3 steps, which is the same as a plan to C via
s5, despite the fact that A is achieved in 3 steps where C is
not. Therefore, a; will not be identified as the more urgent
intervention despite our intuition that a; is better. For offline
GRD, this may be acceptable if both can be executed before
an agent enters the system. If intervening online, we need
to know which intervention to pursue first since we may not
have time to execute both prior to the subject transitioning
beyond it.

In their work on Active Goal Recognition, Shvo and Mcll-
raith [2020] compute a different objective: the fraction of the
subject’s plan that is completed prior to the goal being recog-
nized. Their approach does not directly minimize this metric,
but its use is indicative of the properties of a useful online
detection system, e.g. one that considers the amount of time
the observer will have to utilize the information once the goal
is identified. Pursuing this idea, let us define a function v
that takes a state and a goal and returns the fraction of the
plan that has been executed to achieve that goal relative to a
start state. Let ecty) be a function that behaves exactly as ecd
except, instead of returning the expected distinctiveness of a
state, it returns the expectation of 1) for the first state where
we can identify the subject’s true goal. As with ecd, lower
numbers are better.

Returning to Figure 1-middle, if we replace ecd with ect),
it becomes clear that removing a; is the best intervention. We
can decompose ecy) = pa X ectha+pp X ectYp+po X eco
where px is the probability of Goal X, and ect x is the expec-
tation of ¢ for instances where the subject’s goal is actually
revealed to be Goal X. Observe that for a subject pursuing B,
the effect of removing a; or as is identical. Since all goals
are equally likely, we must simply prove that removing a;
reduces eci)4 more than removing as reduces eciyc. A sub-
ject pursuing A could transition to s; in which case their plan
is distinct after 1 step, so ecip(s1) = . Prior to any in-
terventions, the subject could also transition to s in which
case the only remaining plan to A is not distinct from a plan
to B until the subject executes the action that achieves A, i.e.
ectha(s2) = 1. Assuming that each action that leads to the
subject’s goal is equally likely, ect (r) = 2 x s +4x1 =2
If we remove a;, then the plan that is distinct after one step
is the only one remaining, so ect)4(r) = 3, a reduction of £.
Repeating this for a subject pursuing C, prior to any 1nterven-
tions we have ecwc( ) =1ixi+1x3 =1 Afterremoving
as, ectpo(r) = 4, a reduction of y Slnce the reduction from
removing a; (3) is greater than the reduction from removing
az (3), minimizing ect) would prioritize a; for removal.

ect) effectively normalizes both distinctiveness and reac-
tion time across all goals so that the urgency of distinguish-
ing a goal is inversely proportional to the length of the opti-



()
wed
Intervention _, |

wed

@| |11 1-2/0

Figure 1: left: wed misses the intervention; middle: ecd provides no guidance; right: temporal reasoning in AGRD.

mal plan to achieve it. In other words, close goals are priori-
tized over distant goals. The normalizing effect of 1) provides
guidance when interventions have effects of similar magni-
tude. More weight is given to those that affect close goals
because a reduction in time to identify the goal accounts for
a larger fraction of the plan to a close goal than a distant one.
This guidance is important in online settings with time pres-
sure where we may not have time to execute all meaningful
interventions and so must prioritize them.

Ultimately, the choice of objective is domain-specific. For
example, if a wildlife photographer wants to know which
stream their subject is going to drink from, they may wish
to maximize reaction time directly so they have enough time
to set up their equipment before the animal gets there. Dis-
tinguishing close goals may not be a priority in this case be-
cause, if they miss their chance with one animal, there will
likely be another possible subject soon. We will define the
objective function of our problem setting generically to ac-
commodate varying requirements appropriate to different do-
mains.

3.2 Temporal Reasoning

Our focus on reaction time illustrates a gap in the conven-
tional Active Goal Recognition setting: a formal treatment of
the passage of time. If we wish to minimize a metric based on
1), we need to be able to execute interventions that are still rel-
evant by the time they are carried out. For example, consider
Figure 1-right. In this simple Grid-World with 4-way move-
ment, the subject agent (blue) has one of two goals (orange).
The observer agent (red) may block any green cell it is adja-
cent to. The observer follows the same movement rules as the
subject, and they can occupy the same cell. We assume the
subject follows optimal plans, the observer must not change
the optimal cost to any goal, and all actions are immediately
observable. By any of the discussed objectives, it is clear that
blocking I-1 would force the subject to reveal its goal more
quickly than /-2, since the subject must turn left or right after
one step. However, under a realistic online model where the
subject’s and observer’s actions are interleaved, the observer
agent does not have enough time to reach and block /-1 be-
fore the subject enters that cell. An observer reasoning with
temporal awareness will identify that /-2 is actually the opti-
mal intervention since the subject would then turn away from
the corridor at the latest after they reach cell /-1.

4 Active Goal Recognition Design

As our second contribution, we propose a new problem set-
ting that combines elements of prior models and applies them

to the online setting to explicitly model the passage of time
and enable the consideration of sequences of interventions.

4.1 Preliminaries

We assume action outcomes are deterministic and that the
subject and observer take turns executing actions. Both
agents immediately observe the effects of the other’s action
prior to selecting their next action. We assume the subject
agent acts optimally with respect to the domain costs C* (de-
fined formally in Section 4.2) and that it is unaware of or
agnostic to the observer. This means the subject is not antag-
onistic to the observer by attempting to disrupt or hinder the
goal recognition process through purposeful choice of maxi-
mally non-distinct plan prefixes. It also means that the sub-
ject’s planning is not strategic, i.e. it is not affected by inter-
ventions the observer has not yet taken.

We assume that the observer is neither assisting nor imped-
ing the subject, and thus it must not change the optimal cost to
achieve any goal. The observer’s interventions can, however,
remove optimal plans available to the subject as long as there
exists at least one plan with the original optimal cost available
for each goal that the subject may be pursuing. Accordingly,
we assume that if the plan the subject was executing is inval-
idated by an intervention, it is able to select a new optimal
plan to its goal.

4.2 Problem Formulation

Definition 1. An AGRD domain is a tuple D =
(S, Asubj, Aops) where S is a set of system states represent-
ing the subject, observer, and their environment and Agyy;
and A,y are functions that, given state s, return the actions
available in s to the subject and observer, respectively. An ac-
tion a € A(s) is a function that maps a state to its successor
and the cost c(a(s)) of that transition.

An action that maps a state to itself is called an identity action
and can be used by the observer when it does not have a more
useful action to execute. We refer to actions returned by A ,ps,
i.e. observer actions, as interventions.

Definition 2. An AGRD Problem Instance is a tuple I =
(D, $root, G, Pg, p) where D is an AGRD domain, S$root IS
the start state, G = {g1, ga...gn } is the set of possible goals
the subject could be pursuing, where a goal g € G is a set of
states, Pg = {p1,pa, ...pn } where p; is the prior probability
for g; € G, and p is a value function mapping a state to a real
number.

Definition 3. An action sequence  «s, =
1 1 n n H ;
(Qobss Usupjs -+ Apss Usupj) IS @ sequence of alternating
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Figure 2: Example state space tree induced by e, (Sroot ).

interventions and actions starting from state sq such that
Sg - aobs(si—l)’ Si = aéubj(sg)’ az)bs € A(’bs(si—l)’ and
sub] € ASUb]( )

« describes the interleaved action execution of both the ob-
server and subject as the system evolves. In a slight abuse
of notation, we will refer to the accumulated cost incurred by
subject actions along an action sequence from S,,,; to s as
Csubs ($) and the number of subject actions in the sequence
as length,,;(s). Action sequences are different from the
plans entertained by the subject, which do not include inter-
ventions.

Definition 4. A subject plan ¢s,, = (a',a?, ...a") is a

sequence of actions starting from state sy such that s; =
a'(si—1), a* € Agupj(Si—1), and sy, € g.

We will use this concept to define the behavior of an optimal
subject which, according to our assumptions, is ignorant of
the observer.

Definition 5. For a problem instance I with start state S,oot,
C*(g) is the minimum cost among all subject plans ¢s,,,, 4
and we notate a plan of this cost as ¢,

Sroot, 9"

Because we assume the observer cannot change the optimal
cost to any goal, C*(g) always refers to the original optimal
cost of g. The optimal cost to g from an intermediate state s
along an optimal path to g is C*(g) — csup;j ().

Definition 6. H is the set of goals g such that there exists at
least one subject plan ¢4 4 of cost C*(g) — Coup; ().

We refer to sets H as goal hypotheses. They represent the
remaining goals that an optimal subject could be pursuing.

Definition 7. A solution to an AGRD instance I is a policy
w: S — Agps that maps a state s to an intervention a.ps.

For any intervention a.,s(s) = s’, any subject plans from
s may be invalidated as long as H, = H_.. In other words,
the observer cannot remove goals from the hypothesis, only
available plans to those goals.

4.3 Defining Optimal Solutions

We define optimal solutions in terms of a generic objective
function p : S — R, a scoring function that maps a state to
a real number. We minimize the expected value of p over a
state space tree formed by simulating interventions and sub-
ject actions; see Figure 2 for an example. At any state, there

exists some number of optimal subject plans to each possi-
ble goal. Each intervention may change the available optimal
plans by invalidating or enabling subject plans. However, an
intervention may not change the optimal cost required for the
subject to reach any goal it might be pursuing. Each subject
action may reduce the number of optimal plans if the subject
transitions beyond non-distinct plan prefixes. In the figure,
the number of subject plans available to goal G1 in s3 is 0,
meaning G1 can be pruned from the goal hypothesis for ss.
Since |Hs,| = 1, s3 is a leaf node of the tree whose value
will be defined as p(s3). The value of non-leaf nodes is com-
puted by backing up the value of child nodes to their parents.
We take the minimum over possible interventions since we
are looking for interventions that minimize our objective, but
we must take the expectation over possible subject actions
(weighted, as we explain below, by conditional goal proba-
bility) because we assume a non-strategic subject. This is an
expectimin tree (expectation nodes depicted as circles, min as
triangles) rather than a two-player game minimax tree.

Definition 8. Let P; be a probability distribution over all ac-
tions the subject could take in state s, representing the prob-
ability the subject will select the corresponding action.

We will formally derive P and our method for pruning goals
from H in Section 4.4.

Definition 9. e, : S — R is a function that computes the
expectation of the best achievable p of a given state for a
given scoring function p:

ep(s) = {p“im

Qobs € Aops(S)

iflHs| <1
score (aobs (s)) otherwise (D

score = [
asuijPs

[eo (@ ()] @

The mutual recursion among equations 1 and 2 yields the al-
ternating layers of the state space tree.
Given a problem instance I, an optimal policy 7* returns
the intervention a’, . that will lead to the lowest score:
a*

"vs = argmin score(a(s)) . 3)

a€ Aops (5)

4.4 Goal Probabilities

The probability distribution P over subject actions in a state
s depends on the probability distribution over the goals it
might be pursuing from that state. At s,,.¢, these are Pg.
As the subject acts to achieve its goal, some goals may be-
come inconsistent with the subject’s executed plan, requiring
us to compute a goal posterior describing the updated proba-
bilities over the remaining goals given our observations. We
denote these posteriors as Py, referring to the probability of
each goal in the goal hypothesis H for the state s. We com-
pute P, via a sequence of Bayesian updates where the goal
posterior of each update is used as the prior for the next.
Let Pp,(g;) be the prior probability of g; before subject
action a and let Plans;(s) return all optimal subject plans
%.g;- We assume that all optimal plans to a given goal are
equally likely, so the likelihood P;(alg;), the probability of



action a given g;, is the fraction of optimal plans to g; for
which a is the next action:

Ps(algi) = | Plans;(s)] ”

Then the marginal likelihood P;(a), the probability of a, is
Poa)= S Pu.(9:)Pu(algs) )

gi€H;

and Bayes’ rule tell us the posterior Py, (g;), the probability
of the goal g; given an action a such that a(s) = ¢/, is

Py, (9:) = Pu,(gila) = P(a)

(6)
In other words, Py, (9:) o Pg,(9:)Ps(alg;). The normal-
ization factor is the sum of the action likelihood times goal
prior over all possible goals (Eq. 5).

Eq. 6 is computed over all goals to get the full posterior
Py _,. When we receive our next observation, Py, will be
used as the prior. If the subject transitions to a successor that
is not on any optimal plan to some goal g;, the posterior p),
becomes 0 and g; is pruned from the hypothesis H.

We note that the marginal likelihood (5) can be used as
transition probabilities to define our problem as an MDP. In
this MDP, the actions represent observer interventions and the
transitions represent subject actions. The algorithm presented
in Section 5 can then be viewed as a bottom-up dynamic pro-
gramming solution to this MDP.

4.5 Objectives p

The metrics we discussed earlier can be defined as alternative
functions p.

Definition 10. p¥ : S — [0, 1] returns the fraction of the
subject’s plan that has been executed.:

length g, (s) . B B
(s) = A Tt Grery FH=Hall =1 o)
undefined otherwise

Minimizing this function prioritizes distinguishing goals that
will be achieved more quickly, thus preventing goals from
being achieved before they are distinguished.

To see how wed and ecd relate to our approach, we can
re-frame distinctiveness:

Definition 11. p? : S — R=C returns the length of the action
sequence the subject has executed:

S(s) = {lengthsubj(s) -1

if [Hs| =1
undefined ’

otherwise

®)

Using e,s approximately minimizes ecd, not wed, since we
are using an expectation instead of a global value. e,. and
ecd are not exactly equivalent because of differences in how
the action probability is computed, namely that e« considers
the number of possible plans the subject could be pursuing
whereas ecd considers only the relative size of goal hypothe-
ses between actions. Nevertheless, using p¢, our formulation

can optimize distinctiveness if an application requires it.

Algorithm 1: Optimal AGRD

1 Init H, Py, s from G, Pg, Sroot
2 while |H| > 1do

3 COMPUTEOPTIMALPLANS (s, H)
4 Gops < IDENTITY
5 foreach a € A ;5(s) do
6 if DFS-TRIAL (s,a) is best trial then
7 | Gops @
S ops(9)
9 s’ «~ OBSERVESUBJECTTRANSITION ()
10 H, Py < UppATEHYPOTHESIS (H, Py, s,s')
11 s+ 8

12 return p(s)

S Optimal AGRD

As our third contribution, we present a straightforward op-
timal algorithm for AGRD. Algorithm 1 computes and ex-
ecutes the optimal intervention, then observes the subject
and repeats. When the subject transitions to a state s where
|H;| < 1, it outputs p(s). Note that when |H| = 1, we have
uniquely identified the subject’s goal, and that under our as-
sumption of an optimal subject, it will never transition to a
state where |H| = 0.

The goal hypothesis initially includes all possible goals. A
goal is pruned when the subject takes an action that leads to
a state from which there are no optimal plans to that goal. To
determine this, we begin each loop iteration by finding all op-
timal plans to every goal in the current goal hypothesis from
the current state [Line 3]. COMPUTEOPTIMALPLANS stores
with every successor of the current state the number of those
plans to each goal the subject could follow from that state.
Once the subject transitions to a state where the number of
plans to some goal g is 0, g is pruned from the hypothesis. To
find the optimal intervention, we explore the tree in Figure 2
depth-first. DFS-TRIAL [Line 6] searches the tree described
by e, by simulating observer interventions and subject ac-
tions in sequence.

Once the full tree has been explored, we take the interven-
tion that led to the best expected outcome and apply it to the
domain [Line 8]. If all interventions from the current state
produce the same score, the IDENTITY intervention will be
selected by default. After observing the subject’s next ac-
tion, we update the goal hypothesis and compute its posterior
probabilities according to Eq. 6 [Line 10].

6 Evaluation

To characterize the behavior of this optimal AGRD algo-
rithm, we implemented it in C++ and ran experiments on Intel
E8500 3.16 GHz CPUs. Our primary concern is how our im-
plementation scales, i.e., which domain characteristics affect
runtime the most.

We use grid pathfinding with 4-way movement as a testbed
for our experiments. We used two patterns of obstacles.
In uniform grids, each cell had a 0.2 probability of being
blocked. Room grids contain walls with randomly placed
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Figure 3: Avg runtime as a function of search tree depth.

openings, scaled down from those in the Moving Al repos-
itory [Sturtevant, 2012]. From among unblocked cells, the
subject and observer’s start locations, possible goals, and
cells the observer could block were chosen randomly. The
observer follows the same movement rules as the subject and
both can occupy the same cell. To block a cell, the observer
must be adjacent to it. This is nearly identical to the ter-
rorist domain used in previous work [Pozanco et al., 2018;
Shvo and Mcllraith, 2020]. Instances were generated with 2,
3, or 4 goals, and we only report on instances where observer
interventions can affect e, (S0t ), i.€. there exist meaningful
interventions, which filtered out many instances.

Some factors clearly will not affect the running time of the
algorithm: 1) The length of the plan to the subject’s actual
goal, as we will have achieved goal recognition once the sub-
ject diverges from all plans to other goals, and 2) the prior dis-
tribution over goals, as the algorithm must examine all pos-
sibilities to ensure optimality. The size of the state space is
a less precise parameter than the lengths of optimal plans to
goals since the explored states are limited to those required
to find plans to goals, therefore we examine the latter instead
of the former. We did examine runtime as a function of the
number of goals, which affects branching factor because there
will be more subject actions. This did appear to play a minor
role. We did not examine runtime as a function of the num-
ber of interventions, as this should have a similar effect as the
number of goals, namely an increased branching factor.

The dominating factor in runtime was the length of the op-
timal plan to the second-furthest goal. Note that the search
tree depth can be upper bounded by this length, as the ob-
server is guaranteed to have achieved recognition at that
depth. Figure 3 plots the geometric mean of the runtime with
95% confidence intervals as a function of this upper bound.
(No room maps with an upper bound of 2 survived filtering.)
The plot shows that, as one might expect, the runtime of opti-
mal AGRD scales exponentially in the depth of the tree. The
grids used in our experiments had varying numbers of cells,
but the overwhelming factor was the depth of the search tree.

7 Discussion

Active Goal Recognition Design is just one way to formalize
an observer with agency to aid goal recognition online. For
example, Active Goal Recognition (AGR) [Shvo and McIl-
raith, 2020] focuses on partially observable domains. The

observer’s plans are limited to facilitating observations that
do not alter any of the subject’s possible plans. They choose
interventions to maximally reduce the size of their goal hy-
pothesis prior to the next observation of the subject. How-
ever, this planning procedure does not consider how the sys-
tem may evolve in two key ways. Firstly, if there is a choice
between an intervention that distinguishes goal A and another
that distinguishes goals B and C, AGR will always select the
one that distinguishes 2 goals, even if the first intervention is
the observer’s only opportunity to distinguish goal A before
it is achieved. Secondly, as we discussed in Section 3.2, the
assumption that the observer will have time to execute their
plan without modeling the evolving system is problematic in
domains with time pressure.

Goal Elicitation Planning [Amos-Binks and Cardona-
Rivera, 2020] defines a setting where the observer’s interven-
tions are interleaved with the subject’s actions as the observer
seeks to minimize wcd online. From the start configuration,
they generate a set of possible plans for the observer, then se-
lect from this set as the subject begins executing its own plan.
However, once committed to a plan, their formulation does
not permit an observer to react to actions the subject takes,
even if the subject transitions to a part of the state space un-
affected by the observer’s plan. Moreover, once an observer
plan finishes executing, it has no means of generating a new
plan to further reduce wed.

In contrast to these approaches, we have presented a prob-
lem formulation closer to online planning. By continuously
minimizing the expectation of the objective, we allow our ob-
server to react to an evolving world. Our assumptions that the
observer cannot change the cost to any goal and that the sub-
ject acts optimally place us closer to the original Goal Recog-
nition Design setting, but relaxing these assumptions provides
a promising direction for future work.

Our approach is not without drawbacks. As our evaluation
demonstrates, our simple optimal algorithm is impractical for
large domains since simulating every possible branch of the
search tree is exponential in the depth of the tree. Adapting
approximate MDP methods, such as MCTS, or tree pruning
algorithms, similar to -3 pruning [Knuth and Moore, 1975],
may be avenues for future work. For additional detail on the
work presented in this paper, see Gall [2021].

8 Conclusions

As Al-driven systems become widespread, it is crucial to ex-
tend models of multiagent interaction. We formally defined
AGRD, which extends GRD to handle problems that require
reasoning online about other actors amid the passage of time.
We showed that wed and ecd can behave poorly in domains
with goals whose plan lengths vary significantly. We also pre-
sented an algorithm that finds optimal interventions and ana-
lyzed its performance characteristics in benchmark domains.
To the extent that a domain puts time pressure on the observer,
the AGRD formulation will be a useful advance over previous
work in Active Goal Recognition, and our observer’s ability
to select interventions in reaction to subject actions is an ad-
vantage over the selection of precomputed plans in Goal Elic-
itation Planning.
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