CS 758/858: Algorithms

Rod Cutting	http://www.cs.unh.edu/~ruml/cs758
2D DP	

Rod Cutting

- The Problem
- Optimal Value
- An Algorithm
- Solution Recovery
- Properties
- Substructure
- Break

2D DP

Rod Cutting

The Problem

Rod	Cutting
-----	---------

- The Problem
- Optimal Value
- An Algorithm
- Solution Recovery
- Properties
- Substructure
- Break

2D DP

Given table of profits p_i for each possible integer length i, find the best way to cut a rod of length n. Cuts are free, but must be of integer length.

length
$$i$$
12345678910profit p_i 1589101717202430

 $\approx 2^{n-1}$ possible solutions! How to solve in $O(n^2)$ time?

Rod Cutting	
■ The Problem	
Optimal Value	
An Algorithm	
Solution Recovery	
Properties	
Substructure	
Break	
2D DP	

Step 1: write down value of optimal solution

$$best(n) = best \text{ profit achievable for length } n$$
$$best(n) = \max_{first=1}^{n} (p_{first} + best(n - first))$$
$$best(0) = 0$$

What is the complexity of the naive recursive algorithm? How to make this efficient?

An Algorithm

Rod Cutting
■ The Problem
Optimal Value
An Algorithm
Solution Recovery
Properties
Substructure
Break

2D DP

Step 2: compute optimal value (top-down or bottom-up)

- 1. $\mathsf{best}[\mathbf{0}] \leftarrow 0$
- 2. for len from 1 to n
- 3. $best[len] \leftarrow \max_{\text{first}=1}^{len} (p_{\text{first}} + best[len first])$ 4. best[n]

Will this access uninitialized data? What is the complexity?

Solution Recovery

Rod Cutting

- The Problem
- Optimal Value
- An Algorithm
- Solution Recovery
- Properties
- Substructure
- Break
- 2D DP

```
1. best[0] \leftarrow 0
```

- 2. $cut[0] \leftarrow 0$
- 3. for len from 1 to n
- 4. best[len] $\leftarrow -\infty$
- 5. for first from 1 to len
- 6. this $\leftarrow p_{\text{first}} + \text{best}[\text{len} \text{first}])$
- 7. if this > best[len]
- 8. $best[len] \leftarrow this$
 - $\mathsf{cut}[\mathsf{len}] \leftarrow \mathsf{first}$
- 10. print best[n]

9.

- 11. while n > 0
- 12. print cut[n]
- 13. $n \leftarrow n \operatorname{cut}[n]$

Properties

Rod Cutting
■ The Problem
Optimal Value
An Algorithm
■ Solution Recovery

- Properties
- Substructure
- Break
- 2D DP

- I optimal substructure: global optimum uses optimal solutions of subproblems
- ordering over subproblems: solve 'smallest' first, build 'larger' from them
 - 'overlapping' subproblems: polynomial number of subproblems, each possibly used multiple times
- independent subproblems: optimal solution of one subproblem doesn't affect optimality of another

Rod Cutting

- The Problem
- Optimal Value
- An Algorithm
- Solution Recovery
- Properties
- Substructure
- Break
- 2D DP

- shortest path
 - I path to any intermediate vertex along optimal path must be optimal path to that vertex. otherwise, could be shorter.

longest simple path

path to an intermediate vertex along optimal path may not use vertices used elsewhere: subproblems are not independent.

Break

Rod Cutting

2D DP

- LCS
- Recursive
- Substructure
- DP Summary
- EOLQs

Two-Dimensional Dynamic Progamming

Rod	Cutting	

2D DP

- LCS
 Recursive
- Substructure
- DP Summary
- EOLQs

Given two strings, x of length m and y of length n, find a common (non-contiguous) subsequence that is as long as possible.

- x = ABCBDAB
- $y = \mathtt{BDCABA}$

Rod Cutting	Rod	Cutting
-------------	-----	---------

2D DP

- LCS
 Recursive
- Substructure
- DP Summary
- EOLQs

Given two strings, x of length m and y of length n, find a common (non-contiguous) subsequence that is as long as possible.

x = ABCBDAB

 $y = \mathtt{BDCABA}$

LCS = BCBA or BCAB

x' = AB-C-BDABy' = -BDCAB-A-

What is the complexity of the naive algorithm? How to make this efficient?

Rod	Cutting
-----	---------

2D DP

- LCS
- Recursive
- Substructure
- DP Summary
- EOLQs

LCS(i, j) means length of LCS considering only up to x_i and y_j

Recursive Approach

LCS(i, j) means length of LCS considering only up to x_i and y_j

$$LCS(i,j) = \begin{cases} 0 & \text{if } i \text{ or } j = 0\\ LCS(i-1,j-1)+1 & \text{if } x_i = y_j\\ \max(LCS(i-1,j), & \\ LCS(i,j-1)) & \text{otherwise} \end{cases}$$

Rod	Cutting
-----	---------

```
2D DP
```

- Recursive
- Substructure
- DP Summary
- EOLQs

global optimum uses optimal solutions of subproblems

Proof by contradiction: What if subsolution were not optimal?

Let z be an LCS(i, j) of length k.

- 1. If $x_i = y_j$, then $z_k = x_i = y_j$ and $LCS(i-1, j-1) = z_0..z_{k-1}$. Not including z_k makes LCS suboptimal: contradiction! If $z_0..z_{k-1}$ were not LCS, z could be longer, hence not optimal: contradiction!
- 2. If $x_i \neq y_j$ and $z_k \neq x_i$, then z is LCS(i-1, j). If longer exists, z would not be an LCS: contradiction!
- 3. If $x_i \neq y_j$ and $z_k \neq y_j$, then z is LCS(i, j 1)Similar to 2.

Rod	Cutting

- 2D DP
- LCS
- Recursive
- Substructure
- DP Summary
- EOLQs

- 1. optimal substructure: global optimum uses optimal solutions of subproblems
- 2. ordering over subproblems: solve 'smallest' first, build 'larger' from them
- 3. 'overlapping' subproblems: polynomial number of subproblems, each possibly used multiple times
- 4. independent subproblems: optimal solution of one subproblem doesn't affect optimality of another
- top-down: memoization
- bottom-up: compute table, then recover solution

EOLQs

Rod Cutting

- 2D DP
- LCS
- Recursive
- Substructure
- DP Summary
- EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out. *Thanks!*