CS 758{858: Algorithms

http://www.cs.unh.edu/"ruml/cs758

Wheeler Ruml (UNH) Class 9, CS 758 -1 / 15

Rod Cutting

Rod Cutting

Wheeler Ruml (UNH) Class 9, CS 758 — 2 / 15

The Problem

Rod Cutting

B The Problem

B Optimal Value
B An Algorithm
B Solution Recovery

B Properties
B Substructure
Bl Break

2D DP

Given table of profits p; for each possible integer length 7, find
the best way to cut a rod of length n. Cuts are free, but must be
of integer length.

length i | 5 6 7 8 9 10

1 2 3 4
profitp; |1 5 8 9 10 17 17 20 24 30

~ 2"~ 1 possible solutions! How to solve in O(n?) time?

Wheeler Ruml (UNH) Class 9, CS 758 -3 / 15

Optimal Value

Rod Cutting Step 1: write down value of optimal solution
M The Problem

B Optimal Value

B An Algorithm

W Solution Recovery best(n) = best profit achievable for length n
M Properties n

W Substructure best(n) = max best(n — first

B Break () _ﬁ’l“StZl(pﬁTSt + (ﬁ))
22D best(0) = O

What is the complexity of the naive recursive algorithm?
How to make this efficient?

Wheeler Ruml (UNH) Class 9, CS 758 -4 / 15

An Algorithm

Rod Cutting Step 2: compute optimal value (top-down or bottom-up)

B The Problem
B Optimal Value

B Solution Recovery 1 beSt[O] YA O

M Properties

B Substructure 2. for len from 1 to n

3. best[len] < mifx (prrs+best[len — first])
: est|len| <— max : estl{len — Tirst

2D DP firste Pfirst

4. best[n]

Will this access uninitialized data?
What is the complexity?

Wheeler Ruml (UNH) Class 9, CS 758 -5 / 15

Solution Recovery

Rt Cliifs 1. best[0] < 0
M The Problem
B Optimal Value 2. CUt[O] <0

B An Algorithm

3. for len from 1 to n

M Properties best[len] — —00

M Substructure .

i for first from 1 to len

2D DP this < pfirst+best[len — first])

if this > best][len]
best[len] < this

. cut[len] < first

10. print best[n]

11. whilen >0

12. print cut[n]

13. n < n— cut[n]

© NSO

Wheeler Ruml (UNH) Class 9, CS 758 -6 / 15

Properties

Rod Cutting B optimal substructure: global optimum uses optimal solutions
B The Problem of subproblems

B Optimal Value . . ' . ‘ '
B An Algorithm B ordering over subproblems: solve ‘smallest’ first, build ‘larger
B Solution Recovery from them

B Substructure B ‘overlapping’ subproblems: polynomial number of

B Break

subproblems, each possibly used multiple times
B independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another

2D DP

Wheeler Ruml (UNH) Class 9, CS 758 -7 / 15

Optimal Substructure

shortest path

Rod Cutting

B The Problem] . .
B Optimal Value B path to any intermediate vertex along optimal path must be

| 20 iligeriiom optimal path to that vertex. otherwise, could be shorter.

B Solution Recovery

M Properties

longest simple path

B Break . . .
B path to an intermediate vertex along optimal path may not

use vertices used elsewhere: subproblems are not
independent.

2D DP

Wheeler Ruml (UNH) Class 9, CS 758 -8 / 15

Break

B asst 4
M asstbh

B Break

Wheeler Ruml (UNH) Class 9, CS 758 -9 / 15

Two-Dimensional Dynamic Progamming

Wheeler Ruml (UNH) Class 9, CS 758 — 10 / 15

Longest Common Subsequence

Given two strings, x of length m and y of length n, find a

Rod Cutting

2D DP common (non-contiguous) subsequence that is as long as
possible.

B Recursive

B Substructure

B DP Summary x = ABCBDAB

. EOLGs y = BDCABA

Wheeler Ruml (UNH) Class 9, CS 758 — 11 / 15

Longest Common Subsequence

Given two strings, x of length m and y of length n, find a

Rod Cutting

2D DP common (non-contiguous) subsequence that is as long as
possible.

B Recursive

B Substructure

B DP Summary x = ABCBDAB

" FOLQs y = BDCABA

LCS = BCBA or BCAB
2! = AB-C-BDAB
y' = -BDCAB-A-

What is the complexity of the naive algorithm?
How to make this efficient?

Wheeler Ruml (UNH) Class 9, CS 758 — 11 / 15

Recursive Approach

LCS(¢,5) means length of LCS considering only up to z; and y;

B Recursive

Wheeler Ruml (UNH) Class 9, CS 758 — 12 / 15

Recursive Approach

LCS(t,5) means length of LCS considering only up to z; and y;

Rod Cutting

2D DP
W LCS

(0 if ior 7 =0

B Substructure

0P Summary - LOSGi—1,7—1)+1 if 2 =y
B EOLQs LCS(i,7) = < maX((LCS(iJ— | z) Ji
LCS(i,7 —1)) otherwise

Wheeler Ruml (UNH) Class 9, CS 758 — 12 / 15

Optimal Substructure

Rod Cutting global optimum uses optimal solutions of subproblems

2D DP
— Proof by contradiction: What if subsolution were not optimal?

B Recursive

B DP Summary Let 2z be an LCS('L,]) of |ength k.

B EOLQs

1. If z; = yj;, then 2, = z; = y; and
LCS(i—1,7—1)=zp..2k_1.
Not including z; makes LCS suboptimal: contradiction!
If zg..2;,_1 were not LCS, z could be longer, hence not
optimal: contradiction!
2. If x; # y; and 2z # x4, then 2z is LCS(i — 1,).
If longer exists, z would not be an LCS: contradiction!
3. If x; #y; and 2z # y;, then 2z is LCS(i,5 — 1)
Similar to 2.

Wheeler Ruml (UNH) Class 9, CS 758 — 13 / 15

Summary of Dynamic Programming

1. optimal substructure: global optimum uses optimal solutions

Rod Cutting

T B of subproblems

i 2. ordering over subproblems: solve ‘smallest’ first, build
ecursive

B Substructure ‘|arger' from them

B OO 3. ‘overlapping’ subproblems: polynomial number of

subproblems, each possibly used multiple times
4. independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another

B top-down: memoization
B bottom-up: compute table, then recover solution

Wheeler Ruml (UNH) Class 9, CS 758 — 14 / 15

EOLQs

For example:

Rod Cutting
e B What's still confusing?
B Recursive B \What question didn't you get to ask today?
:f)‘;bsstl:‘ﬁ;fy m \What would you like to hear more about?
Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!

Wheeler Ruml (UNH) Class 9, CS 758 — 15 / 15

	CS 758/858: Algorithms
	Rod Cutting
	The Problem
	Optimal Value
	An Algorithm
	Solution Recovery
	Properties
	Optimal Substructure
	Break

	Two-Dimensional Dynamic Progamming
	Longest Common Subsequence
	Recursive Approach
	Optimal Substructure
	Summary of Dynamic Programming
	EOLQs

