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Given table of profits pi for each possible integer length i, find
the best way to cut a rod of length n. Cuts are free, but must be
of integer length.

length i 1 2 3 4 5 6 7 8 9 10

profit pi 1 5 8 9 10 17 17 20 24 30

≈ 2n−1 possible solutions! How to solve in O(n2) time?
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Step 1: write down value of optimal solution

best(n) = best profit achievable for length n

best(n) =
n

max
first=1

(pfirst + best(n− first))

best(0) = 0

What is the complexity of the naive recursive algorithm?
How to make this efficient?
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Step 2: compute optimal value (top-down or bottom-up)

1. best[0] ← 0
2. for len from 1 to n

3. best[len] ←
len
max
first=1

(pfirst+best[len − first])

4. best[n]

Will this access uninitialized data?
What is the complexity?
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1. best[0] ← 0
2. cut[0] ← 0
3. for len from 1 to n

4. best[len] ← −∞
5. for first from 1 to len
6. this ← pfirst+best[len − first])
7. if this > best[len]
8. best[len] ← this
9. cut[len] ← first
10. print best[n]
11. while n > 0
12. print cut[n]
13. n← n− cut[n]
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■ optimal substructure: global optimum uses optimal solutions
of subproblems

■ ordering over subproblems: solve ‘smallest’ first, build ‘larger’
from them

■ ‘overlapping’ subproblems: polynomial number of
subproblems, each possibly used multiple times

■ independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another
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shortest path

■ path to any intermediate vertex along optimal path must be
optimal path to that vertex. otherwise, could be shorter.

longest simple path

■ path to an intermediate vertex along optimal path may not
use vertices used elsewhere: subproblems are not
independent.
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■ asst 4
■ asst 5
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Given two strings, x of length m and y of length n, find a
common (non-contiguous) subsequence that is as long as
possible.

x = ABCBDAB

y = BDCABA
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Given two strings, x of length m and y of length n, find a
common (non-contiguous) subsequence that is as long as
possible.

x = ABCBDAB

y = BDCABA

LCS = BCBA or BCAB

x′ = AB-C-BDAB

y′ = -BDCAB-A-

What is the complexity of the naive algorithm?
How to make this efficient?
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LCS(i, j) means length of LCS considering only up to xi and yj
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LCS(i, j) means length of LCS considering only up to xi and yj

LCS(i, j) =















0 if i or j = 0
LCS(i− 1, j − 1) + 1 if xi = yj
max(LCS(i− 1, j),

LCS(i, j − 1)) otherwise



Optimal Substructure

Rod Cutting

2D DP

■ LCS

■ Recursive

■ Substructure

■ DP Summary

■ EOLQs

Wheeler Ruml (UNH) Class 9, CS 758 – 13 / 15

global optimum uses optimal solutions of subproblems

Proof by contradiction: What if subsolution were not optimal?

Let z be an LCS(i, j) of length k.

1. If xi = yj , then zk = xi = yj and
LCS(i− 1, j − 1) = z0..zk−1.
Not including zk makes LCS suboptimal: contradiction!
If z0..zk−1 were not LCS, z could be longer, hence not
optimal: contradiction!

2. If xi 6= yj and zk 6= xi, then z is LCS(i− 1, j).
If longer exists, z would not be an LCS: contradiction!

3. If xi 6= yj and zk 6= yj , then z is LCS(i, j − 1)
Similar to 2.
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1. optimal substructure: global optimum uses optimal solutions
of subproblems

2. ordering over subproblems: solve ‘smallest’ first, build
‘larger’ from them

3. ‘overlapping’ subproblems: polynomial number of
subproblems, each possibly used multiple times

4. independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another

■ top-down: memoization
■ bottom-up: compute table, then recover solution
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For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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