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Rod Cutting

Rod Cutting
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The Problem

Rod Cutting

B The Problem

B Optimal Value
B An Algorithm
B Solution Recovery

B Properties
B Substructure
Bl Break

2D DP

Given table of profits p; for each possible integer length 7, find
the best way to cut a rod of length n. Cuts are free, but must be
of integer length.

length i | 5 6 7 8 9 10

1 2 3 4
profitp; |1 5 8 9 10 17 17 20 24 30

~ 2"~ 1 possible solutions! How to solve in O(n?) time?
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Optimal Value

Rod Cutting Step 1: write down value of optimal solution
M The Problem

B Optimal Value

B An Algorithm

W Solution Recovery best(n) = best profit achievable for length n
M Properties n

W Substructure best(n) = max best(n — first

B Break ( ) _ﬁ’l“StZl(pﬁTSt + ( ﬁ ))
22D best(0) = O

What is the complexity of the naive recursive algorithm?
How to make this efficient?
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An Algorithm

Rod Cutting Step 2: compute optimal value (top-down or bottom-up)

B The Problem
B Optimal Value

B Solution Recovery 1 beSt[O] YA O

M Properties

B Substructure 2. for len from 1 to n

3. best[len] < mifx (prrs+best[len — first])
: est|len| <— max : estl{len — Tirst

2D DP firste Pfirst

4. best[n]

Will this access uninitialized data?
What is the complexity?
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Solution Recovery

Rt Cliifs 1. best[0] < 0
M The Problem
B Optimal Value 2. CUt[O] <0

B An Algorithm

3. for len from 1 to n

M Properties best[len] — —00

M Substructure .

i for first from 1 to len

2D DP this < pfirst+best[len — first])

if this > best][len]
best[len] < this

. cut[len] < first

10. print best[n]

11. whilen >0

12.  print cut[n]

13.  n < n— cut[n]

© NSO
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Properties

Rod Cutting B optimal substructure: global optimum uses optimal solutions
B The Problem of subproblems

B Optimal Value . . ' . ‘ '
B An Algorithm B ordering over subproblems: solve ‘smallest’ first, build ‘larger
B Solution Recovery from them

B Substructure B ‘overlapping’ subproblems: polynomial number of

B Break

subproblems, each possibly used multiple times
B independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another

2D DP
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Optimal Substructure

shortest path

Rod Cutting

B The Problem ] . .
B Optimal Value B path to any intermediate vertex along optimal path must be

| 20 iligeriiom optimal path to that vertex. otherwise, could be shorter.

B Solution Recovery

M Properties

longest simple path

B Break . . .
B path to an intermediate vertex along optimal path may not

use vertices used elsewhere: subproblems are not
independent.

2D DP
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Break

B asst 4
M asstbh

B Break
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Two-Dimensional Dynamic Progamming
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Longest Common Subsequence

Given two strings, x of length m and y of length n, find a

Rod Cutting

2D DP common (non-contiguous) subsequence that is as long as
possible.

B Recursive

B Substructure

B DP Summary x = ABCBDAB

. EOLGs y = BDCABA
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Longest Common Subsequence

Given two strings, x of length m and y of length n, find a

Rod Cutting

2D DP common (non-contiguous) subsequence that is as long as
possible.

B Recursive

B Substructure

B DP Summary x = ABCBDAB

" FOLQs y = BDCABA

LCS = BCBA or BCAB
2! = AB-C-BDAB
y' = -BDCAB-A-

What is the complexity of the naive algorithm?
How to make this efficient?
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Recursive Approach

LCS(¢,5) means length of LCS considering only up to z; and y;

B Recursive
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Recursive Approach

LCS(t,5) means length of LCS considering only up to z; and y;

Rod Cutting

2D DP
W LCS

(0 if ior 7 =0

B Substructure

0P Summary - LOSGi—1,7—1)+1 if 2 =y
B EOLQs LCS(i,7) = < maX((LCS(iJ— | z) Ji
LCS(i,7 —1))  otherwise
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Optimal Substructure

Rod Cutting global optimum uses optimal solutions of subproblems

2D DP
— Proof by contradiction: What if subsolution were not optimal?

B Recursive

B DP Summary Let 2z be an LCS('L,]) of |ength k.

B EOLQs

1. If z; = yj;, then 2, = z; = y; and
LCS(i—1,7—1)=zp..2k_1.
Not including z; makes LCS suboptimal: contradiction!
If zg..2;,_1 were not LCS, z could be longer, hence not
optimal: contradiction!
2. If x; # y; and 2z # x4, then 2z is LCS(i — 1, ).
If longer exists, z would not be an LCS: contradiction!
3. If x; #y; and 2z # y;, then 2z is LCS(i,5 — 1)
Similar to 2.
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Summary of Dynamic Programming

1. optimal substructure: global optimum uses optimal solutions

Rod Cutting

T B of subproblems

i 2. ordering over subproblems: solve ‘smallest’ first, build
ecursive

B Substructure ‘|arger' from them

B OO 3. ‘overlapping’ subproblems: polynomial number of

subproblems, each possibly used multiple times
4. independent subproblems: optimal solution of one
subproblem doesn’t affect optimality of another

B top-down: memoization
B bottom-up: compute table, then recover solution
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EOLQs

For example:

Rod Cutting
e B What's still confusing?
B Recursive B \What question didn't you get to ask today?
:f)‘;bsstl:‘ﬁ;fy m \What would you like to hear more about?
Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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