
CS 758/858: Algorithms

Red-Black Trees

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 1 / 19

http://www.cs.unh.edu/~ruml/cs758



Red-Black Trees

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 2 / 19



Searching

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 3 / 19

Structure Find Insert Delete

List
Heap
Hash table
Binary tree
Binary tree (balanced)



Balanced Trees

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 4 / 19

1. AVL Trees (1962)
2. 2-3 Trees
3. red-black trees (1972, popularized 1978)
4. AA trees (1992)
5. left-leaning red-black trees (2008)

probabilistically balanced

1. treaps
2. skip lists



Red-Black Trees

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 5 / 19

node: data, left, right, parent, color

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’

search and traversal are unchanged



Rotation

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 6 / 19

useful subroutines:

■ rotate-right
■ rotate-left



Insert(z)

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 7 / 19

1. z’s parent ← find-parent(z, root, nil)
2. if parent is nil
3. root ← z

4. else
5. if z should be before parent
6. parent’s left child ← z

7. else
8. parent’s right child ← z

9. z’s children ← nil



Insert(z)

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 7 / 19

1. z’s parent ← find-parent(z, root, nil)
2. if parent is nil
3. root ← z

4. else
5. if z should be before parent
6. parent’s left child ← z

7. else
8. parent’s right child ← z

9. z’s children ← nil
10. color z red
11. fix-insert(z)



Fixing Insertion

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 8 / 19

Recall properties:

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’



Fixing Insertion

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 8 / 19

Recall properties:

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’



Fixing Insertion

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 8 / 19

Recall properties:

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’



Fixing Insertion

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 8 / 19

Recall properties:

1. every node is either red or black
2. the root is black
3. (consider nil to be black)
4. both children of a red node are black
5. from any node, all paths to leaves have the same ‘black

height’

Cases:

1. red root (property 2)
2. two red in a row (property 4)



Fixup Invariant

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 9 / 19

Cases:

1. red root (property 2)
2. two red in a row (property 4)

During fixup:

1. z is red
2. if z’s parent is the root, it is black
3. at most, property 2 xor 4 is violated at z

(a) if 2: because z is root and red
(b) if 4: because z and parent are red



Fixup Invariant

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 9 / 19

Cases:

1. red root (property 2)
2. two red in a row (property 4)

During fixup:

1. z is red
2. if z’s parent is the root, it is black
3. at most, property 2 xor 4 is violated at z

(a) if 2: because z is root and red
(b) if 4: because z and parent are red

Initialization:

1. we colored z red
2. we didn’t touch z’s parent, and roots are black
3. just saw this



Fix-insert(z)

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 10 / 19

1. while z’s parent is red
2. if z’s parent is a left child
3. y ← z’s uncle (a right child)
4. if y is red
5. color z’s parent black case 1

6. color z’s uncle y black
7. color z’s grandparent red
8. z ← z’s grandparent
9. else if z is a right child
10. z ← z’s parent case 2

11. rotate-left(z)
12. color z’s parent black case 3

13. color z’s grandparent red
14. rotate-right(z’s grandparent)
15. else, 3 symmetric cases (left↔right)
16. color root black



First Look: Termination

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 11 / 19

Assuming other properties are maintained, are we red-black now?

Leverage the invariant:

1. irrelevant
2. irrelevant
3. only 2 xor 4 can be violated in loop

(a) if 2: root colored black at end, so 2 not violated
(b) if 4: z’s parent now black, so 4 not violated



First Look: Termination

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 11 / 19

Assuming other properties are maintained, are we red-black now?

Leverage the invariant:

1. irrelevant
2. irrelevant
3. only 2 xor 4 can be violated in loop

(a) if 2: root colored black at end, so 2 not violated
(b) if 4: z’s parent now black, so 4 not violated

How to make progress around loop while maintaining invariant?



Break

Red-Black Trees

■ Searching

■ Balanced Trees

■ Red-Black Trees

■ Rotation

■ Insert(z)

■ Fixing Insertion

■ Fixup Invariant

■ Fix-insert(z)

■ Termination

■ Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 – 12 / 19

■ asst 4
■ Steve office hours survey



Red-Black Trees

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 13 / 19



Maintenance

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 14 / 19

central problem: prop 4 violated: z and parent are red

note z has an uncle because the root is black

3 cases (+ 3 more by symmetry of z’s parent being left/right):

1. z’s uncle y is also red (we have a red layer)
2. z’s uncle y is black and z is right child
3. z’s uncle y is black and z is left child



Maintenance

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 14 / 19

central problem: prop 4 violated: z and parent are red

note z has an uncle because the root is black

3 cases (+ 3 more by symmetry of z’s parent being left/right):

1. z’s uncle y is also red (we have a red layer)
2. z’s uncle y is black and z is right child
3. z’s uncle y is black and z is left child

Plan:

1. fix case 1, possibly introducing case 2.
2. reduce case 2 to case 3.
3. fix case 3.



Case 1

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 15 / 19

case 1: z’s uncle y is also red

solution: move redness up

1. color z’s parent and uncle black
2. color grandparent red and recur

fixup loop invariants:

1. z is red
2. if z’s parent is the root, it is black (unchanged)
3. at most, property 2 xor 4 is violated at new z. Note previous

violations at old z are fixed.

(a) if 2: because z is root and red
(b) if 4: because z and parent are red

if new z is root, will be colored black, increasing all heights



Case 2

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 16 / 19

case 2: z’s uncle y is black and z is right child

reduce to case 3: z’s uncle y is black and z is left child

rotation doesn’t affect any properties



Case 3

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 17 / 19

case 3: z’s uncle y is black and z is left child

fix prop 4 at z: pull blackness down to z’s parent and rotate
grandparent under it.

fixup loop invariants:

1. z is red
2. if z’s parent is the root, it is black
3. at most, property 2 xor 4 is violated at z.

(a) can’t be prop 2 (root black)
(b) if 4: fixed because z’s parent is now black
(c) note black-height is preserved!

We are done and loop will exit



Complexity

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 18 / 19

finding place is



Complexity

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 18 / 19

finding place is O(lgn)

one fixup iteration is constant time

fixup loops only when moving up, so is



Complexity

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 18 / 19

finding place is O(lgn)

one fixup iteration is constant time

fixup loops only when moving up, so is O(lgn)

how many rotations are performed?



EOLQs

Red-Black Trees

Red-Black Trees

■ Maintenance

■ Case 1

■ Case 2

■ Case 3

■ Complexity

■ EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 – 19 / 19

For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!


	CS 758/858: Algorithms
	Red-Black Trees
	Searching
	Balanced Trees
	Red-Black Trees
	Rotation
	Insert(z)
	Fixing Insertion
	Fixup Invariant
	Fix-insert(z)
	First Look: Termination
	Break

	Red-Black Trees
	Maintenance
	Case 1
	Case 2
	Case 3
	Complexity
	EOLQs


