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Searching

Red-Black Trees Structure Find Insert Delete
-

B Balanced Trees LISt

B Red-Black Trees Hea p

B Rotation

B nsert() Hash table

B Fixing Insertion Binary tree

B Fixup Invariant ]

B Fixcinsert(z) Binary tree (balanced)
B Termination

B Break

Red-Black Trees
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Balanced Trees

Red-Black Trees 1 AVL Trees (1962)

B Searching 2 2_3 Trees

ks 3. red-black trees (1972, popularized 1978)
:ﬁ‘;j:'(‘;”) 4.  AA trees (1992)

W Fixing Insertion 5. left-leaning red-black trees (2008)

B Fixup Invariant
B Fix-insert(z)
B Termination

B Break

Red-Black Trees 1 : trea pS
2. skip lists

probabilistically balanced
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Red-Black Trees

Red-Black Trees node: data, left, right, parent, color

B Searching

M Balanced Trees 1. every node is either red or black

:

e 2. the root is black

W Insert(2) 3. (consider nil to be black)

B Fixing Insertion .

B Fixup Invariant 4. both children of a red node are black

M Fixinsert(z) 5. from any node, all paths to leaves have the same ‘black
B Termination

B Break helght’

Red-Black Trees

search and traversal are unchanged
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Rotation

B rotate-right
B rotate-left

B Rotation

useful subroutines:
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Inserts z)

. z's parent < find-parent(z, root, nil)

Red-Black Trees . if parent is nil

B Searching
B Balanced Trees root <— z
B Red-Black Trees . else

B Rotation
M Insert(z)

B Fixing Insertion

if z should be before parent
parent’s left child + z
else
parent’'s right child < z
. z's children < nil

B Fixup Invariant
B Fix-insert(z)
B Termination

B Break

© 0O ~NO 1 B~ WDN =

Red-Black Trees
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Inserts z)

1. z's parent < find-parent(z, root, nil)

Red-Black Trees 2. if parent is nil
B Searching
B Balanced Trees 3 root < 2
B Red-Black Trees 4 else
B Rotation ) ]
5. if z should be before parent
B Fixing Inserti ) -
i 6 parent’s left child < z

ixup Invariant
B Fix-insert(z) [ else
B Termination ' . .
B 3 parent’s right child < z
Red-Black Trees 9. z's children < nil

10. color z red
11. fix-insert(z)
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Fixing Insertion

Red-Black Trees Reca” propertles:

B Searching . .

B Balanced Trees 1. every node is either red or black

M Red-Black Trees 2. the root is black

B Rotation ] ]

B Insert(z) 3. (consider nil to be black)

:

_Fln 4. both children of a red node are black

W Fix-insert(z) 5. from any node, all paths to leaves have the same ‘black

B Termination

M Break helght’

Red-Black Trees
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Fixing Insertion

Red-Black Trees Reca” propertles:

B Searching . .

B Balanced Trees 1. every node is either red or black

M Red-Black Trees 2. the root is black

B Rotation ] ]

B Insert(z) 3. (consider nil to be black)

'

lFIn 4. both children of a red node are black
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Fixing Insertion

Red-Black Trees Reca” propertles:

B Searching . .

B Balanced Trees 1. every node is either red or black

M Red-Black Trees 2. the root is black

B Rotation ] ]

B Insert(z) 3. (consider nil to be black)

'

lFIn 4. both children of a red node are black

W Fix-insert(z) 5. from any node, all paths to leaves have the same ‘black

B Termination

B Break helght’

Red-Black Trees Cases.

1. red root (property 2)
2. two red in a row (property 4)
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Fixup Invariant

Red-Black Trees Cases:

B Ealanced Trees 1. red root (property 2)

o oo slack rees 2. two red in a row (property 4)
m ) During fixup:

B Fixing Insertion

B Fixup Invariant 1

B Fix-insert(z) < iS red
B Termination 2. if z's parent is the root, it is black

H Break . .
P Black Treoe 3. at most, property 2 xor 4 is violated at z

(a) if 2: because z is root and red
(b) if 4: because z and parent are red
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Fixup Invariant

Red-Black Trees Cases:

B Ealanced Trees 1. red root (property 2)

o oo slack rees 2. two red in a row (property 4)
m ) During fixup:

B Fixing Insertion

B Fixup Invariant 1

B Fix-insert(z) < iS red
B Termination 2. if z's parent is the root, it is black

H Break . .
P Black Treoe 3. at most, property 2 xor 4 is violated at z

(a) if 2: because z is root and red
(b) if 4: because z and parent are red

Initialization:

1. we colored z red
2. we didn't touch z's parent, and roots are black
3. just saw this
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Fix-inserts z)

1. while z's parent is red
Eeg-::zﬁrn:ees 2. if z's parent is a left child
B Balanced Trees 3. y < 2's uncle (a right child)
:E:'jfnc" Trees 4, if y is red
B Insert(2) 5. color z's parent black case 1
:E:iL"f,L"jj;:j: 0. color z's uncle y black
/. color z's grandparent red
:;f;?ﬁnamn 3. Z <— z's grandparent
Red-Black Trees 9. else if z is a right child
10. z < z's parent case 2
11. rotate-left(z)
12. color z's parent black case 3
13. color z's grandparent red
14. rotate-right(z's grandparent)

15.  else, 3 symmetric cases (left<>right)
16. color root black
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First Look: Termination

fed-Black Traes Assuming other properties are maintained, are we red-black now?
B Searching

M Balanced Trees . )

B Red-Black Trees Leverage the Invariant:

B Rotation _

B Insert(z) 1. irrelevant

B Fixing Insertion .

B Fixup Invariant 2 Irrelevant

W Fix-insert(z) 3. only 2 xor 4 can be violated in loop

miErcak (a) if 2: root colored black at end, so 2 not violated
Red-Black T . ! I

seBack Trees (b) if 4: z's parent now black, so 4 not violated
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First Look: Termination

fed-Black Traes Assuming other properties are maintained, are we red-black now?
B Searching

M Balanced Trees . )

B Red-Black Trees Leverage the Invariant:

B Rotation _

B Insert(z) 1. irrelevant

B Fixing Insertion .

B Fixup Invariant 2 Irrelevant

W Fix-insert(z) 3. only 2 xor 4 can be violated in loop

miErcak (a) if 2: root colored black at end, so 2 not violated
Red-Black T . ! I

seBack Trees (b) if 4: z's parent now black, so 4 not violated

How to make progress around loop while maintaining invariant?
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Break

Hm asst4
B Steve office hours survey

B Break
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Red-Black Trees

Red-Black Trees
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Maintenance

T central problem: prop 4 violated: z and parent are red

Red-Black Trees

note z has an uncle because the root is black

H Case 1
Bl Case 2

M Case 3 3 cases (+ 3 more by symmetry of z's parent being left/right):
B Complexity
W EOLQs 1. z's uncle y is also red (we have a red layer)

2. z'suncle y is black and z is right child
3. Zz's uncle y is black and z is left child
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Maintenance

T central problem: prop 4 violated: z and parent are red

Red-Black Trees

note z has an uncle because the root is black

H Case 1
Bl Case 2

M Case 3 3 cases (+ 3 more by symmetry of z's parent being left/right):
B Complexity
W EOLQs 1. z's uncle y is also red (we have a red layer)

2. z'suncle y is black and z is right child
3. Zz's uncle y is black and z is left child

Plan:

1. fix case 1, possibly introducing case 2.
2. reduce case 2 to case 3.
3. fix case 3.
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Case 1

el e case 1: z's uncle y is also red

Red-Black Trees
B Maintenance

Bl Case 2 y
e 1. color z's parent and uncle black

W Complexity 2. color grandparent red and recur
W EOLQs

solution: move redness up

fixup loop invariants:

1. zisred

2. if 2's parent is the root, it is black (unchanged)

3. at most, property 2 xor 4 is violated at new z. Note previous
violations at old z are fixed.

(a) if 2: because z is root and red
(b) if 4: because z and parent are red

if new z is root, will be colored black, increasing all heights

Wheeler Ruml (UNH) Class 6, CS 758 — 15 / 19



Case 2

e (Bl s case 2: z's uncle y is black and z is right child

Red-Black Trees

:'(\:/'aa;;’tf”a"ce reduce to case 3: z's uncle y is black and z is left child

B Case 3
B Complexity
B EOLQs

rotation doesn't affect any properties
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Case 3

e e e case 3: z's uncle y is black and z is left child

Red-Black Trees

M Maintenance fix prop 4 at z: pull blackness down to z's parent and rotate
M Case 1l .
W Case 2 grandparent under it.
B Complexity
W EOLQs fixup loop invariants:
1. =z isred

2. if z's parent is the root, it is black
3. at most, property 2 xor 4 is violated at z.

(a) can't be prop 2 (root black)
(b) if 4: fixed because z's parent is now black
(c) note black-height is preserved!

We are done and loop will exit
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Complexity

finding place is

B Complexity
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Complexity

Red-Black Trees flndlng place iS O(lg n)

Red-Black Trees

:?aas'ztf"ance one fixup iteration is constant time

Bl Case 2

B Case 3 . _ .
fixup loops only when moving up, so is

MW EOLQs
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Complexity

Red-Black Trees flndlng place iS O(lg n)

Red-Black Trees
B Maintenance
MW Case l
Bl Case 2
Ml Case 3 . . .
fixup loops only when moving up, so is O(lgn)

B EOLQs

one fixup iteration is constant time

how many rotations are performed?
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EOLQs

Red-Black Trees For €Xam P|ei

Lo ace e m What's still confusing?

W Case 1 B \What question didn't you get to ask today?

e m What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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