CS 758{858: Algorithms

http://www.cs.unh.edu/"ruml/cs758

Wheeler Ruml (UNH) Class 6, CS 758 =1 / 19

Red-Black Trees

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 — 2 / 19

Searching

Red-Black Trees Structure Find Insert Delete
-

B Balanced Trees LISt

B Red-Black Trees Hea p

B Rotation

B nsert() Hash table

B Fixing Insertion Binary tree

B Fixup Invariant]

B Fixcinsert(z) Binary tree (balanced)
B Termination

B Break

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 -3 / 19

Balanced Trees

Red-Black Trees 1 AVL Trees (1962)

B Searching 2 2_3 Trees

ks 3. red-black trees (1972, popularized 1978)
:ﬁ‘;j:'(‘;”) 4. AA trees (1992)

W Fixing Insertion 5. left-leaning red-black trees (2008)

B Fixup Invariant
B Fix-insert(z)
B Termination

B Break

Red-Black Trees 1 : trea pS
2. skip lists

probabilistically balanced

Wheeler Ruml (UNH) Class 6, CS 758 — 4 / 19

Red-Black Trees

Red-Black Trees node: data, left, right, parent, color

B Searching

M Balanced Trees 1. every node is either red or black

:

e 2. the root is black

W Insert(2) 3. (consider nil to be black)

B Fixing Insertion .

B Fixup Invariant 4. both children of a red node are black

M Fixinsert(z) 5. from any node, all paths to leaves have the same ‘black
B Termination

B Break helght’

Red-Black Trees

search and traversal are unchanged

Wheeler Ruml (UNH) Class 6, CS 758 -5 / 19

Rotation

B rotate-right
B rotate-left

B Rotation

useful subroutines:

Wheeler Ruml (UNH)

Class 6, CS 758 -6 / 19

Inserts z)

. z's parent < find-parent(z, root, nil)

Red-Black Trees . if parent is nil

B Searching
B Balanced Trees root <— z
B Red-Black Trees . else

B Rotation
M Insert(z)

B Fixing Insertion

if z should be before parent
parent’s left child + z
else
parent’'s right child < z
. z's children < nil

B Fixup Invariant
B Fix-insert(z)
B Termination

B Break

© 0O ~NO 1 B~ WDN =

Red-Black Trees

Wheeler Ruml (UNH)

Class 6, CS 758 -7 / 19

Inserts z)

1. z's parent < find-parent(z, root, nil)

Red-Black Trees 2. if parent is nil
B Searching
B Balanced Trees 3 root < 2
B Red-Black Trees 4 else
B Rotation)]
5. if z should be before parent
B Fixing Inserti) -
i 6 parent’s left child < z

ixup Invariant
B Fix-insert(z) [else
B Termination ' . .
B 3 parent’s right child < z
Red-Black Trees 9. z's children < nil

10. color z red
11. fix-insert(z)

Wheeler Ruml (UNH) Class 6, CS 758 -7 / 19

Fixing Insertion

Red-Black Trees Reca” propertles:

B Searching . .

B Balanced Trees 1. every node is either red or black

M Red-Black Trees 2. the root is black

B Rotation]]

B Insert(z) 3. (consider nil to be black)

:

_Fln 4. both children of a red node are black

W Fix-insert(z) 5. from any node, all paths to leaves have the same ‘black

B Termination

M Break helght’

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 -8 / 19

Fixing Insertion

Red-Black Trees Reca” propertles:

B Searching . .

B Balanced Trees 1. every node is either red or black

M Red-Black Trees 2. the root is black

B Rotation]]

B Insert(z) 3. (consider nil to be black)

:

_Fln 4. both children of a red node are black

W Fix-insert(z) 5. from any node, all paths to leaves have the same ‘black

B Termination

M Break helght’

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 -8 / 19

Fixing Insertion

Red-Black Trees Reca” propertles:

B Searching . .

B Balanced Trees 1. every node is either red or black

M Red-Black Trees 2. the root is black

B Rotation]]

B Insert(z) 3. (consider nil to be black)

'

lFIn 4. both children of a red node are black

W Fix-insert(z) 5. from any node, all paths to leaves have the same ‘black

B Termination

B Break helght’

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 -8 / 19

Fixing Insertion

Red-Black Trees Reca” propertles:

B Searching . .

B Balanced Trees 1. every node is either red or black

M Red-Black Trees 2. the root is black

B Rotation]]

B Insert(z) 3. (consider nil to be black)

'

lFIn 4. both children of a red node are black

W Fix-insert(z) 5. from any node, all paths to leaves have the same ‘black

B Termination

B Break helght’

Red-Black Trees Cases.

1. red root (property 2)
2. two red in a row (property 4)

Wheeler Ruml (UNH) Class 6, CS 758 -8 / 19

Fixup Invariant

Red-Black Trees Cases:

B Ealanced Trees 1. red root (property 2)

o oo slack rees 2. two red in a row (property 4)
m) During fixup:

B Fixing Insertion

B Fixup Invariant 1

B Fix-insert(z) < iS red
B Termination 2. if z's parent is the root, it is black

H Break . .
P Black Treoe 3. at most, property 2 xor 4 is violated at z

(a) if 2: because z is root and red
(b) if 4: because z and parent are red

Wheeler Ruml (UNH) Class 6, CS 758 -9 / 19

Fixup Invariant

Red-Black Trees Cases:

B Ealanced Trees 1. red root (property 2)

o oo slack rees 2. two red in a row (property 4)
m) During fixup:

B Fixing Insertion

B Fixup Invariant 1

B Fix-insert(z) < iS red
B Termination 2. if z's parent is the root, it is black

H Break . .
P Black Treoe 3. at most, property 2 xor 4 is violated at z

(a) if 2: because z is root and red
(b) if 4: because z and parent are red

Initialization:

1. we colored z red
2. we didn't touch z's parent, and roots are black
3. just saw this

Wheeler Ruml (UNH) Class 6, CS 758 -9 / 19

Fix-inserts z)

1. while z's parent is red
Eeg-::zﬁrn:ees 2. if z's parent is a left child
B Balanced Trees 3. y < 2's uncle (a right child)
:E:'jfnc" Trees 4, if y is red
B Insert(2) 5. color z's parent black case 1
:E:iL"f,L"jj;:j: 0. color z's uncle y black
/. color z's grandparent red
:;f;?ﬁnamn 3. Z <— z's grandparent
Red-Black Trees 9. else if z is a right child
10. z < z's parent case 2
11. rotate-left(z)
12. color z's parent black case 3
13. color z's grandparent red
14. rotate-right(z's grandparent)

15. else, 3 symmetric cases (left<>right)
16. color root black

Wheeler Ruml (UNH) Class 6, CS 758 — 10 / 19

First Look: Termination

fed-Black Traes Assuming other properties are maintained, are we red-black now?
B Searching

M Balanced Trees .)

B Red-Black Trees Leverage the Invariant:

B Rotation _

B Insert(z) 1. irrelevant

B Fixing Insertion .

B Fixup Invariant 2 Irrelevant

W Fix-insert(z) 3. only 2 xor 4 can be violated in loop

miErcak (a) if 2: root colored black at end, so 2 not violated
Red-Black T . ! I

seBack Trees (b) if 4: z's parent now black, so 4 not violated

Wheeler Ruml (UNH) Class 6, CS 758 — 11 / 19

First Look: Termination

fed-Black Traes Assuming other properties are maintained, are we red-black now?
B Searching

M Balanced Trees .)

B Red-Black Trees Leverage the Invariant:

B Rotation _

B Insert(z) 1. irrelevant

B Fixing Insertion .

B Fixup Invariant 2 Irrelevant

W Fix-insert(z) 3. only 2 xor 4 can be violated in loop

miErcak (a) if 2: root colored black at end, so 2 not violated
Red-Black T . ! I

seBack Trees (b) if 4: z's parent now black, so 4 not violated

How to make progress around loop while maintaining invariant?

Wheeler Ruml (UNH) Class 6, CS 758 — 11 / 19

Break

Hm asst4
B Steve office hours survey

B Break

Wheeler Ruml (UNH) Class 6, CS 758 — 12 / 19

Red-Black Trees

Red-Black Trees

Wheeler Ruml (UNH) Class 6, CS 758 — 13 / 19

Maintenance

T central problem: prop 4 violated: z and parent are red

Red-Black Trees

note z has an uncle because the root is black

H Case 1
Bl Case 2

M Case 3 3 cases (+ 3 more by symmetry of z's parent being left/right):
B Complexity
W EOLQs 1. z's uncle y is also red (we have a red layer)

2. z'suncle y is black and z is right child
3. Zz's uncle y is black and z is left child

Wheeler Ruml (UNH) Class 6, CS 758 — 14 / 19

Maintenance

T central problem: prop 4 violated: z and parent are red

Red-Black Trees

note z has an uncle because the root is black

H Case 1
Bl Case 2

M Case 3 3 cases (+ 3 more by symmetry of z's parent being left/right):
B Complexity
W EOLQs 1. z's uncle y is also red (we have a red layer)

2. z'suncle y is black and z is right child
3. Zz's uncle y is black and z is left child

Plan:

1. fix case 1, possibly introducing case 2.
2. reduce case 2 to case 3.
3. fix case 3.

Wheeler Ruml (UNH) Class 6, CS 758 — 14 / 19

Case 1

el e case 1: z's uncle y is also red

Red-Black Trees
B Maintenance

Bl Case 2 y
e 1. color z's parent and uncle black

W Complexity 2. color grandparent red and recur
W EOLQs

solution: move redness up

fixup loop invariants:

1. zisred

2. if 2's parent is the root, it is black (unchanged)

3. at most, property 2 xor 4 is violated at new z. Note previous
violations at old z are fixed.

(a) if 2: because z is root and red
(b) if 4: because z and parent are red

if new z is root, will be colored black, increasing all heights

Wheeler Ruml (UNH) Class 6, CS 758 — 15 / 19

Case 2

e (Bl s case 2: z's uncle y is black and z is right child

Red-Black Trees

:'(\:/'aa;;’tf”a"ce reduce to case 3: z's uncle y is black and z is left child

B Case 3
B Complexity
B EOLQs

rotation doesn't affect any properties

Wheeler Ruml (UNH) Class 6, CS 758 — 16 / 19

Case 3

e e e case 3: z's uncle y is black and z is left child

Red-Black Trees

M Maintenance fix prop 4 at z: pull blackness down to z's parent and rotate
M Case 1l .
W Case 2 grandparent under it.
B Complexity
W EOLQs fixup loop invariants:
1. =z isred

2. if z's parent is the root, it is black
3. at most, property 2 xor 4 is violated at z.

(a) can't be prop 2 (root black)
(b) if 4: fixed because z's parent is now black
(c) note black-height is preserved!

We are done and loop will exit

Wheeler Ruml (UNH) Class 6, CS 758 — 17 / 19

Complexity

finding place is

B Complexity

Wheeler Ruml (UNH) Class 6, CS 758 — 18 / 19

Complexity

Red-Black Trees flndlng place iS O(lg n)

Red-Black Trees

:?aas'ztf"ance one fixup iteration is constant time

Bl Case 2

B Case 3 . _ .
fixup loops only when moving up, so is

MW EOLQs

Wheeler Ruml (UNH) Class 6, CS 758 — 18 / 19

Complexity

Red-Black Trees flndlng place iS O(lg n)

Red-Black Trees
B Maintenance
MW Case l
Bl Case 2
Ml Case 3 . . .
fixup loops only when moving up, so is O(lgn)

B EOLQs

one fixup iteration is constant time

how many rotations are performed?

Wheeler Ruml (UNH) Class 6, CS 758 — 18 / 19

EOLQs

Red-Black Trees For €Xam P|ei

Lo ace e m What's still confusing?

W Case 1 B \What question didn't you get to ask today?

e m What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!

Wheeler Ruml (UNH) Class 6, CS 758 — 19 / 19

	CS 758/858: Algorithms
	Red-Black Trees
	Searching
	Balanced Trees
	Red-Black Trees
	Rotation
	Insert(z)
	Fixing Insertion
	Fixup Invariant
	Fix-insert(z)
	First Look: Termination
	Break

	Red-Black Trees
	Maintenance
	Case 1
	Case 2
	Case 3
	Complexity
	EOLQs

