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Searching

Structure Find Insert Delete
Binary Search Trees I_ISt (Unsorted)

List (sorted)

Array (unsorted)

Array (sorted)

Heap

Hash table

Binary tree (unbalanced)

Binary tree (balanced)
set operations: U, N, —
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Binary Search Trees

Binary Search Trees
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Binary Search Trees

B Searching

Binary Search Trees
B Next

M Insert

B Break

M Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior
B EOLQs

node: data, left, right, parent

What's the invariant?
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Next

B Searching

Binary Search Trees
M BSTs

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

M Deletion Behavior
B EOLQs

if no right child, want lowest ancester ‘on the right’

succ(z)

1. if right child exists

2. return min under right child

3

4.

u
5

4. if p doesn't exist or x is p's left child
5.
0.
2

. else
return up(x)

p(z)

. p < x's parent

return p
else
return up(p)
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Insert

B Searching

Binary Search Trees
M BSTs

B Next

W nsert
M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior
B EOLQs

insert (n)

1. n's parent < find-parent(n, root, nil)

2. if parent is nil

3. root < n

4. else

if n should be before parent
parent’s left child «+ n

else
parent’s right child < n

© NSO

find-parent(n, curr, parent)
0. if curr doesn’t exist

10. return parent

11. if n should be before curr

12. return find-parent(n, curr's left child, curr)

13. else

14. return find-parent(n, curr's right child, curr)
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Break

WM asst?2
M asst3
B Steve's office hours survey
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Deletion QOutline

B Searching

Binary Search Trees

M BSTs
B Next

M Insert
M Break

B Deletion Outline

M Deletion Outline 2
B Moving Subtrees
M Deletion

M Deletion Behavior
Bl EOLQs

3 cases of delete(n):

1. no kids: pointer from parent < nil
2. 1 kid: substitute child for n at parent
3. 2 kids: let successor be s.

note s is in n's right subtree and has no left child.

(a) s takes n's place at parent
(b) n's left subtree becomes s's

(c) somehow, rest of n's right subtree becomes s's. ..

will split 3(c) into 2 cases. ..
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Deletion Outline, Again

B Searching

Binary Search Trees

M BSTs
B Next
M Insert
M Break
B Deletion Outline

B Deletion Outline 2

B Moving Subtrees
M Deletion
M Deletion Behavior
B EOLQs

4 cases of delete(n):

1. no kids or no left child: substitute right subtree at parent
2. no right child: substitute left subtree at parent

now we have the hard 2-kids cases:

3. successor s is n's right child:

(a)
(b)

substitute s for n
add n's left subtree as s's left subtree

4. successor s is deeper:

(a)
(b)
(c)
(d)

substitute s's right subtree for s

add n's right subtree as s's right subtree

as above, substitute s for n

as above, add n's left subtree as s's left subtree
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Moving Subtrees

B Searching

Binary Search Trees

M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2

B Moving Subtrees

B Deletion
Bl Deletion Behavior
B EOLQs

put new where old was:

substitute(old, new)
if old’s parent is nil
root < new
else
if old is parent’s left child
parent’s left child < new
else, parent’s right child < new
if new # nil
new's parent < old’s parent

ONS O WD
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Deletion

B Searching

Binary Search Trees
M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion Behavior
B EOLQs

delete(n)

1. if n has no left child

2. substitute(n, n's right subtree) case 1
3. else if n has no right child

4.  substitute(n, n's left subtree) case 2
5. else

6. s < min in n's right subtree

14 If n is not s's parent case 4
8 substitute(s,s's right subtree)

9. s's right subtree <— n's right subtree

10. s's right child’s parent < s

11. substitute(n,s) cases 3 and 4

12. s's left subtree < n's left subtree
13. s's left child's parent < s
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Random Deletion { Insertion Behavior

Jeff Eppinger: don't try this at home!

B Searching

Binary Search Trees
M BSTs

B Next

M Insert

B Break

M Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior

W EOLQs
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Random Deletion Z Insertion Behavior

B Searching

Binary Search Trees

M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior

B EOLQs

Jeff Eppinger: don't try this at home! Delete should alternate

between successor and predecessor.

ACM'’s 1983 George E. Forsythe Award for best undergraduate

student paper

Real solution: balanced trees!
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EOLQs

B Searching

Binary Search Trees
M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior

B EOLQs

B What's still confusing?

B What question didn't you get to ask today?
B What would you like to hear more about?

Please write down your most pressing question about algorithms

and put it in the box on your way out.
Thanks!
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