CS 758{858: Algorithms

http://www.cs.unh.edu/"ruml/cs758

Wheeler Ruml (UNH) Class 5, CS 758 -1 / 13

Searching

Structure Find Insert Delete
Binary Search Trees I_ISt (Unsorted)

List (sorted)

Array (unsorted)

Array (sorted)

Heap

Hash table

Binary tree (unbalanced)

Binary tree (balanced)
set operations: U, N, —

Wheeler Ruml (UNH)

Class 5, CS 758 — 2 / 13

Binary Search Trees

Binary Search Trees

Wheeler Ruml (UNH) Class 5, CS 758 - 3 / 13

Binary Search Trees

B Searching

Binary Search Trees
B Next

M Insert

B Break

M Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior
B EOLQs

node: data, left, right, parent

What's the invariant?

Wheeler Ruml (UNH)

Class 5, CS 758 — 4 / 13

Next

B Searching

Binary Search Trees
M BSTs

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

M Deletion Behavior
B EOLQs

if no right child, want lowest ancester ‘on the right’

succ(z)

1. if right child exists

2. return min under right child

3

4.

u
5

4. if p doesn't exist or x is p's left child
5.
0.
2

. else
return up(x)

p(z)

. p < x's parent

return p
else
return up(p)

Wheeler Ruml (UNH)

Class 5, CS 758 -5 / 13

Insert

B Searching

Binary Search Trees
M BSTs

B Next

W nsert
M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior
B EOLQs

insert (n)

1. n's parent < find-parent(n, root, nil)

2. if parent is nil

3. root < n

4. else

if n should be before parent
parent’s left child «+ n

else
parent’s right child < n

© NSO

find-parent(n, curr, parent)
0. if curr doesn’t exist

10. return parent

11. if n should be before curr

12. return find-parent(n, curr's left child, curr)

13. else

14. return find-parent(n, curr's right child, curr)

Wheeler Ruml (UNH)

Class 5, CS 758 - 6 / 13

Break

WM asst?2
M asst3
B Steve's office hours survey

Wheeler Ruml (UNH) Class 5, CS 758 -7 / 13

Deletion QOutline

B Searching

Binary Search Trees

M BSTs
B Next

M Insert
M Break

B Deletion Outline

M Deletion Outline 2
B Moving Subtrees
M Deletion

M Deletion Behavior
Bl EOLQs

3 cases of delete(n):

1. no kids: pointer from parent < nil
2. 1 kid: substitute child for n at parent
3. 2 kids: let successor be s.

note s is in n's right subtree and has no left child.

(a) s takes n's place at parent
(b) n's left subtree becomes s's

(c) somehow, rest of n's right subtree becomes s's. ..

will split 3(c) into 2 cases. ..

Wheeler Ruml (UNH)

Class 5, CS 758 - 8 / 13

Deletion Outline, Again

B Searching

Binary Search Trees

M BSTs
B Next
M Insert
M Break
B Deletion Outline

B Deletion Outline 2

B Moving Subtrees
M Deletion
M Deletion Behavior
B EOLQs

4 cases of delete(n):

1. no kids or no left child: substitute right subtree at parent
2. no right child: substitute left subtree at parent

now we have the hard 2-kids cases:

3. successor s is n's right child:

(a)
(b)

substitute s for n
add n's left subtree as s's left subtree

4. successor s is deeper:

(a)
(b)
(c)
(d)

substitute s's right subtree for s

add n's right subtree as s's right subtree

as above, substitute s for n

as above, add n's left subtree as s's left subtree

Wheeler Ruml (UNH)

Class 5, CS 758 -9 / 13

Moving Subtrees

B Searching

Binary Search Trees

M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2

B Moving Subtrees

B Deletion
Bl Deletion Behavior
B EOLQs

put new where old was:

substitute(old, new)
if old’s parent is nil
root < new
else
if old is parent’s left child
parent’s left child < new
else, parent’s right child < new
if new # nil
new's parent < old’s parent

ONS O WD

Wheeler Ruml (UNH)

Class 5, CS 758 — 10 / 13

Deletion

B Searching

Binary Search Trees
M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion Behavior
B EOLQs

delete(n)

1. if n has no left child

2. substitute(n, n's right subtree) case 1
3. else if n has no right child

4. substitute(n, n's left subtree) case 2
5. else

6. s < min in n's right subtree

14 If n is not s's parent case 4
8 substitute(s,s's right subtree)

9. s's right subtree <— n's right subtree

10. s's right child’s parent < s

11. substitute(n,s) cases 3 and 4

12. s's left subtree < n's left subtree
13. s's left child's parent < s

Wheeler Ruml (UNH) Class 5, CS 758 — 11 / 13

Random Deletion { Insertion Behavior

Jeff Eppinger: don't try this at home!

B Searching

Binary Search Trees
M BSTs

B Next

M Insert

B Break

M Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior

W EOLQs

Wheeler Ruml (UNH)

Class 5, CS 758 — 12 / 13

Random Deletion Z Insertion Behavior

B Searching

Binary Search Trees

M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior

B EOLQs

Jeff Eppinger: don't try this at home! Delete should alternate

between successor and predecessor.

ACM'’s 1983 George E. Forsythe Award for best undergraduate

student paper

Real solution: balanced trees!

Wheeler Ruml (UNH)

Class 5, CS 758 — 12 / 13

EOLQs

B Searching

Binary Search Trees
M BSTs

B Next

M Insert

M Break

B Deletion Outline
M Deletion Outline 2
B Moving Subtrees
M Deletion

B Deletion Behavior

B EOLQs

B What's still confusing?

B What question didn't you get to ask today?
B What would you like to hear more about?

Please write down your most pressing question about algorithms

and put it in the box on your way out.
Thanks!

Wheeler Ruml (UNH)

Class 5, CS 758 — 13 / 13

	CS 758/858: Algorithms
	Searching
	Binary Search Trees
	Binary Search Trees
	Next
	Insert
	Break
	Deletion Outline
	Deletion Outline, Again
	Moving Subtrees
	Deletion
	Random Deletion/Insertion Behavior
	EOLQs

