http://www.cs.unh.edu/~ruml/cs758
Searching
Dictionaries

Dictionaries

`associative array`, `map`, `look-up table`, `set`
n items, key length k

<table>
<thead>
<tr>
<th>Structure</th>
<th>Find</th>
<th>Insert</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>List (unsorted)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List (sorted)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Array (unsorted)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Array (sorted)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hash table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary tree (unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary tree (balanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hash Tables
applications:

1. dictionaries
2. object method tables
3. string matching
4. set operations: $\cup, \cap, -$

first methods:

1. direct-address tables: small key range. eg, bit vectors.
2. chaining: deletion?
Time Complexity

n items in m buckets

\[
time \text{ complexity of search} =
\]
Time Complexity

n items in m buckets

time complexity of search $=$ number of items per bucket

assume nice hash: $P(h(i) = x) = 1/m$
n items in m buckets

time complexity of search = number of items per bucket

assume nice hash: $P(h(i) = x) = 1/m$

let X_i be 1 iff $h(i) = x$, 0 otherwise

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

$$= \sum_{i=1}^{n} 1/m$$

$$= n/m$$

let $\alpha = \frac{n}{m}$ ‘load factor’

expected number of items per bucket is α

expected time is $\Theta(1 + \alpha)$
probability that k of n elements land in same of m bins:

let $\alpha = \frac{n}{m}$ ‘load factor’

\[
\binom{n}{k} \left(\frac{1}{m} \right)^k \left(1 - \frac{1}{m} \right)^{n-k} \approx \frac{\alpha^k}{e^{\alpha k}}
\]

<table>
<thead>
<tr>
<th>k</th>
<th>probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.37</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
</tr>
<tr>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>0.015</td>
</tr>
<tr>
<td>5</td>
<td>0.003</td>
</tr>
<tr>
<td>>5</td>
<td>0.002 total</td>
</tr>
</tbody>
</table>

if $n = m$, $\approx \frac{1}{e^k}$:
1. linear probing: \(h(k, i) = (h_1(k) + i) \mod m \) for increasing \(i \)
 - the runs

2. double hashing: \(h(k, i) = (h_1(k) + ih_2(k)) \mod m \) for increasing \(i \)
 - requires: \(h_2 \neq 0, h_2(k) \) and \(m \) relatively prime
 - eg, \(m \) prime and \(h_2(k) < m \)
 - or, \(m = 2^x \) and \(h_2(k) \) odd

3. cuckoo hashing: lookups \(O(1) \), insertions amortized expected \(O(1) \)
 - moral: low load factor

deletion?
Break

Searching
Hash Tables
- Hash Tables
- Time Complexity
- More Collisions
- Open Addressing

Break
Hash Functions
Related

- asst 2
- asst 3
Hash Functions
$h : key \rightarrow 0..m - 1$

1. mediocre is easy, good takes effort
2. want time (at most) linear in key size
3. perfect hashing is possible (and efficient) if keys known
 - linear time to construct, linear space to store
4. minimal perfect hashing is possible!
Hash Functions

\[h : key \rightarrow 0..m - 1 \]

1. mediocre is easy, good takes effort
2. want time (at most) linear in key size
3. perfect hashing is possible (and efficient) if keys known
 - linear time to construct, linear space to store
4. minimal perfect hashing is possible!

bad news:
- if \(|keys| \geq m \), there must be collisions
- if \(|keys| \geq n \cdot m \), then \(\exists \) set of \(n \) that map to same bin
Desiderata:

- make collisions unlikely
 - spread keys across all hashes
 - for each key, each hash equally likely

- similar keys get different hashes
 - all bits of key affect the hash
 - every bit of key affects every bit of hash

- no input always gives worst-case behavior
- fast to compute
- low memory requirement
- easy to implement
1. $hash \leftarrow 0$
2. for each byte of key
3. $hash \leftarrow (hash \times multiplier) + \text{byte}$
5. return $hash \mod m$

want $multiplier$ to smear bits, not shift them (to avoid interaction with table size)

$multiplier = 31$ or 127
assume we have an array of 256 random integers

1. $hash \leftarrow 0$
2. for each byte of key
3. rotate the bits in $hash$ by 1
4. $hash \leftarrow hash \ xor \ array[byte]$
5. return $hash \mod m$

each byte affects all bits
rotate makes order matter

universal class of hash functions: for randomly chosen keys, randomly chosen function from class has $P(\text{collision}) = 1/m$

good on average case (over inputs) \neq good average case on any input
Related Data Structures
set of \(n \) items using \(m \) bits with false positives
set addition: hash element to bit index, set to true
(actually, do this with \(k \) hash functions)
no removal
for false positive rate \(\epsilon \):
\[
m/n = -\frac{\lg \epsilon}{\ln 2} \approx -1.44 \lg \epsilon \quad \text{and} \quad k = -\lg \epsilon
\]
\(= 9.6 \) bits per elt for 1\% false positive rate (independent of \(n \) or \(m \))
\(= 7 \) hash functions
Merkle Trees

a leaf node represents a data block, contains its hash
internal nodes contain hash of hashes of children
to verify that node’s data is part of \(n \) block tree, \(\log n \) hashes are required
block contains hash of previous block, timestamp, transaction data
linked list version of Merkle tree
What’s still confusing?
What question didn’t you get to ask today?
What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!