
CS 758/858: Algorithms

Heaps

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 1 / 18

http://www.cs.unh.edu/~ruml/cs758



Heaps

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 2 / 18



Problems

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 3 / 18

1. Finding the min



Problems

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 3 / 18

1. Finding the min
2. Finding the min with insertions



Problems

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 3 / 18

1. Finding the min
2. Finding the min with insertions
3. Finding the min with insertions and deletions



Heaps

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 4 / 18

Invariant: parent comes before (or equal to) children



Implementation

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 5 / 18

parent i = (child i)−1
2

left child of i = 2i+ 1

right child of i = 2i+ 2

automatic balance!



Insertion

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 6 / 18

1. insert at end



Insertion

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 6 / 18

1. insert at end
2. re-establish invariant by



Insertion

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 6 / 18

1. insert at end
2. re-establish invariant by pulling up if necessary



Pull Up

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 7 / 18

assume heap except possibly between i and parent:
A[i] might be too small

so consider pulling A[i] up

pullup(i)
1. if A[i] comes before A[parent ]
2. exchange A[i] with A[parent ]
3. pullup(parent)

invariant: initialization, maintenance, termination



Extract Min

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 8 / 18

1. remove first elt
2. copy last into first



Extract Min

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 8 / 18

1. remove first elt
2. copy last into first
3. re-establish invariant by



Extract Min

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 8 / 18

1. remove first elt
2. copy last into first
3. re-establish invariant by pushing down if necessary



Extract Min

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 8 / 18

1. remove first elt
2. copy last into first
3. re-establish invariant by pushing down if necessary

heapsort



Push Down

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 9 / 18

assume heap except possibly between i and parent:
A[i] might be too large

so consider pushing A[i] down

pushdown(i)
1. smallesti ← index of smallest among i and children
2. if smallesti 6= i then
3. exchange A[i] with A[smallesti ]
4. pushdown(smallesti )

invariant: initialization, maintenance, termination



Analysis

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 10 / 18

Correctness
What’s the space complexity?
What’s the time complexity?



Break

Heaps

■ Problems

■ Heaps

■ Implementation

■ Insertion

■ Pull Up

■ Extract Min

■ Push Down

■ Analysis

■ Break

More Heaps

Wheeler Ruml (UNH) Class 3, CS 758 – 11 / 18

■ asst 1
■ asst 2
■ asst 3



More Heaps

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 12 / 18



Creation

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 13 / 18

Given array, how to form heap?



Creation

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 13 / 18

Given array, how to form heap?

Can we do better than Θ(n2 lg
n
2 ) = Θ(n lg n− n) = Θ(n lgn)?



Creation

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 13 / 18

Given array, how to form heap?

Can we do better than Θ(n2 lg
n
2 ) = Θ(n lg n− n) = Θ(n lgn)?

bottom up:

1. for i from length
2 − 1 to 0

2. pushdown(i)

how long does this take?



Creation Time

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 14 / 18

height of a node is (longest) distance to a leaf

lgn∑

h=0

(O(h)×#-nodes-with-height-h)



Creation Time

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 14 / 18

height of a node is (longest) distance to a leaf

lgn∑

h=0

(O(h)×#-nodes-with-height-h)

We will see n
2h+1 nodes with height h.

lgn∑

h=0

O(h)
n

2h+1
= O(n

lgn∑

h=0

h

2h+1
)



Creation Time

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 14 / 18

height of a node is (longest) distance to a leaf

lgn∑

h=0

(O(h)×#-nodes-with-height-h)

We will see n
2h+1 nodes with height h.

lgn∑

h=0

O(h)
n

2h+1
= O(n

lgn∑

h=0

h

2h+1
)

∑
∞

h=0
h
2h

= 2



Creation Time

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 14 / 18

height of a node is (longest) distance to a leaf

lgn∑

h=0

(O(h)×#-nodes-with-height-h)

We will see n
2h+1 nodes with height h.

lgn∑

h=0

O(h)
n

2h+1
= O(n

lgn∑

h=0

h

2h+1
)

∑
∞

h=0
h
2h

= 2

O(n
lg n∑

h=0

h

2h+1
) = O(n

∞∑

h=0

h

2h
)

= O(n)



Sizing the Array: Amortization 1

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 15 / 18

resize by doubling! how expensive?



Sizing the Array: Amortization 1

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 15 / 18

resize by doubling! how expensive?

‘amortized’ analysis: the ‘accounting method’

1. start half full, with zero credit
2. each insertion costs 3:

(a) insert self now
(b) eventually move self when full
(c) eventually move an existing elt when full

3. when full, have credit for each item
4. now half full, with zero credit



Amortization 2

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 16 / 18

‘amortized’ analysis: the ‘aggregate method’

Let ci = i if i− 1 is a power of 2, 1 otherwise.

n∑

i=1

ci



Amortization 2

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 16 / 18

‘amortized’ analysis: the ‘aggregate method’

Let ci = i if i− 1 is a power of 2, 1 otherwise.

n∑

i=1

ci ≤ n+
lg n∑

j=0

2j

< n+ 2n

< 3n



Problems

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 17 / 18

1. Finding the min
2. Finding the min with insertions
3. Finding the min with insertions and deletions
4. Finding the kth largest



EOLQs

Heaps

More Heaps

■ Creation

■ Creation Time

■ Sizing the Array

■ Amortization 2

■ Problems

■ EOLQs

Wheeler Ruml (UNH) Class 3, CS 758 – 18 / 18

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!


	CS 758/858: Algorithms
	Heaps
	Problems
	Heaps
	Implementation
	Insertion
	Pull Up
	Extract Min
	Push Down
	Analysis
	Break

	More Heaps
	Creation
	Creation Time
	Sizing the Array: Amortization 1
	Amortization 2
	Problems
	EOLQs


