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1. Finding the min
2. Finding the min with insertions
3. Finding the min with insertions and deletions
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Invariant: parent comes before (or equal to) children
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parent i = (child i)−1
2

left child of i = 2i+ 1

right child of i = 2i+ 2

automatic balance!
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1. insert at end
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1. insert at end
2. re-establish invariant by pulling up if necessary
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assume heap except possibly between i and parent:
A[i] might be too small

so consider pulling A[i] up

pullup(i)
1. if A[i] comes before A[parent ]
2. exchange A[i] with A[parent ]
3. pullup(parent)

invariant: initialization, maintenance, termination
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1. remove first elt
2. copy last into first
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1. remove first elt
2. copy last into first
3. re-establish invariant by pushing down if necessary

heapsort
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assume heap except possibly between i and parent:
A[i] might be too large

so consider pushing A[i] down

pushdown(i)
1. smallesti ← index of smallest among i and children
2. if smallesti 6= i then
3. exchange A[i] with A[smallesti ]
4. pushdown(smallesti )

invariant: initialization, maintenance, termination
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Correctness
What’s the space complexity?
What’s the time complexity?
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■ asst 1
■ asst 2
■ asst 3
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Can we do better than Θ(n2 lg
n
2 ) = Θ(n lg n− n) = Θ(n lgn)?
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Given array, how to form heap?

Can we do better than Θ(n2 lg
n
2 ) = Θ(n lg n− n) = Θ(n lgn)?

bottom up:

1. for i from length
2 − 1 to 0

2. pushdown(i)

how long does this take?
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height of a node is (longest) distance to a leaf

lgn∑

h=0

(O(h)×#-nodes-with-height-h)
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resize by doubling! how expensive?
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resize by doubling! how expensive?

‘amortized’ analysis: the ‘accounting method’

1. start half full, with zero credit
2. each insertion costs 3:

(a) insert self now
(b) eventually move self when full
(c) eventually move an existing elt when full

3. when full, have credit for each item
4. now half full, with zero credit
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‘amortized’ analysis: the ‘aggregate method’

Let ci = i if i− 1 is a power of 2, 1 otherwise.

n∑

i=1

ci
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‘amortized’ analysis: the ‘aggregate method’

Let ci = i if i− 1 is a power of 2, 1 otherwise.

n∑

i=1

ci ≤ n+
lg n∑

j=0

2j

< n+ 2n

< 3n
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1. Finding the min
2. Finding the min with insertions
3. Finding the min with insertions and deletions
4. Finding the kth largest
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■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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