What We’ve Covered

Summary

- **Topics**
 - Week 1: Aug 28
 - big-O, sorting
 - more sorting
 - Week 2: Sep 6
 - heaps
 - Week 3: Sep 11
 - hashing
 - binary trees
 - Week 4: Sep 18
 - red-black trees
 - red-black deletion
 - Week 5: Sep 25
 - tries
 - Week 6: Oct 2
 - knapsack
 - more DP
 - Week 7: Oct 11
 - parsing
 - Week 8: Oct 16
 - greedy
 - Week 9: Oct 18
 - graph traversal
 - Week 10: Oct 23
 - Midterm Exam (in class)
 - Week 11: Oct 30
 - spanning trees
 - shortest paths
 - Week 12: Nov 6
 - all pairs paths
 - Week 13: Nov 13
 - matching, LPs
 - Week 14: Nov 15
 - NP-completeness
 - Week 15: Nov 20
 - satisfiability
 - Week 16: Nov 24
 - clique
 - Week 17: Dec 4
 - approximation
 - Week 18: Dec 6
 - backtracking
 - Week 19: Dec 11
 - wildcard slot
 - Week 20: Dec 14
 - Final Exam, 10:30am-12:30pm? (finalized by registrar in Nov)

- **Criteria**
- **Everything Else**
- **Break**
- **Feedback**
- **Wildcard**

Topics

<table>
<thead>
<tr>
<th>Week</th>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Book</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Aug 28</td>
<td>big-O, sorting</td>
<td>2, 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Sep 4</td>
<td>Labor Day</td>
<td>asst 1</td>
<td>(radix sort)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Sep 6</td>
<td>heaps</td>
<td>7, 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Sep 11</td>
<td>hashing</td>
<td>11, 16</td>
<td>asst 2 (quicksort)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Sep 13</td>
<td>binary trees</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Sep 18</td>
<td>red-black trees</td>
<td>13</td>
<td>asst 3 (babbler)</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>Sep 20</td>
<td>red-black deletion</td>
<td>asst 4</td>
<td>(I/O scheduling)</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Oct 2</td>
<td>knapsack</td>
<td>asst 5</td>
<td>(spelling correction)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Oct 4</td>
<td>more DP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Oct 9</td>
<td>Midsemester</td>
<td>asst 6</td>
<td>(sequence alignment)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Oct 16</td>
<td>greedy</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>Oct 18</td>
<td>graph traversal</td>
<td>20</td>
<td>asst 7 (parsing)</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Oct 23</td>
<td>Midterm Exam (in class)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>Oct 30</td>
<td>spanning trees</td>
<td>21</td>
<td>asst 8 (algorithm design)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Nov 1</td>
<td>shortest paths</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>Nov 6</td>
<td>all pairs paths</td>
<td>23</td>
<td>asst 9 (MST halftoning)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Nov 8</td>
<td>network flow</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Nov 10</td>
<td>Veterans Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>Nov 13</td>
<td>matching, LPs</td>
<td>24, 29</td>
<td>asst 10 (route planning)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Nov 15</td>
<td>NP-completeness</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>Nov 20</td>
<td>satisfiability</td>
<td>asst 11</td>
<td>(flow)</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Nov 24</td>
<td>Thanksgiving</td>
<td>asst 12</td>
<td>(NP proof)</td>
</tr>
<tr>
<td>23</td>
<td>13</td>
<td>Nov 27</td>
<td>clique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Nov 29</td>
<td>undecidability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>Dec 4</td>
<td>approximation</td>
<td>35</td>
<td>asst 13 (NP proof)</td>
</tr>
<tr>
<td>26</td>
<td>15</td>
<td>Dec 6</td>
<td>backtracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Dec 11</td>
<td>wildcard slot</td>
<td>asst 14</td>
<td>(algorithm design)</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
<td>Dec 14</td>
<td>Final Exam, 10:30am-12:30pm? (finalized by registrar in Nov)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to Choose an Algorithm

- running time
- memory use
- solution quality (for optimization problems)
- guarantees on time, memory, or cost
- implementation complexity
 - correctness of algorithm & implementation
 - ease of testing
 - time to write
 - ease of maintenance
- generality
- popularity
 - ease of maintenance
 - correctness
- input required
- **topics**
 - geometry
 - strings
 - cryptography
 - numerical analysis
 - FFT

- **approaches**
 - randomized algorithms
 - on-line algorithms
 - parallel, distributed
 - cache-oblivious
 - external memory
 - models: quantum, DNA
Break

- final exam: Thu Dec 14 10:30am-12:30pm, Kingsbury N121
- no books, notes, gadgets, ...
- covers entire class with emphasis since midterm
We do read these.
They are anonymous and public.

There should be one for me and one for the TA — please fill out both!

Assignment most in need of revision?
Time for the wildcard topic!