http://www.cs.unh.edu/~ruml/cs758
check your Wildcat Pass before coming to campus
if you have concerns, let me know
What We’ve Covered

<table>
<thead>
<tr>
<th>Week</th>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Book</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Aug 27</td>
<td>big-O, sorting</td>
<td>2, 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Aug 29</td>
<td>more sorting</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Sep 3</td>
<td>heaps</td>
<td>7, 6</td>
<td>asst 1 (radix sort)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Sep 5</td>
<td>hashing</td>
<td>11</td>
<td>asst 2 (quicksort) due Sep 7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Sep 10</td>
<td>binary trees</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Sep 12</td>
<td>red-black trees</td>
<td>13</td>
<td>asst 3 (babbler)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Sep 17</td>
<td>red-black deletion</td>
<td></td>
<td>asst 4 (I/O scheduling)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Sep 19</td>
<td>tries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Sep 24</td>
<td>LPs</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Sep 26</td>
<td>dynamic programming</td>
<td>15</td>
<td>asst 5 (spelling correction)</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Oct 1</td>
<td>knapsack</td>
<td></td>
<td>asst 6 (sequence alignment)</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Oct 3</td>
<td>parsing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Oct 8</td>
<td>greedy</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Oct 10</td>
<td>Midterm Exam (in class)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Nov 5</td>
<td>network flow</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Nov 7</td>
<td>matching</td>
<td>26, 3</td>
<td>asst 10 (route planning)</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Nov 12</td>
<td>NP-completeness</td>
<td>34</td>
<td>asst 11 (flow)</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Nov 14</td>
<td>satisfiability</td>
<td>21</td>
<td>asst 12 (NP proof)</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Nov 19</td>
<td>clique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Nov 21</td>
<td>undecidability</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Nov 26</td>
<td>approximation</td>
<td>35</td>
<td>asst 13 (NP proof)</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Dec 3</td>
<td>backtracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Dec 5</td>
<td>wildcard slot</td>
<td></td>
<td>asst 14 (algorithm design)</td>
</tr>
</tbody>
</table>

Wheeler Ruml (UNH)

Class 26, CS 758 – 4 / 10
How to Choose an Algorithm

- running time
- memory use
- solution quality (for optimization problems)
- guarantees on time, memory, or cost
- implementation complexity
 - correctness of algorithm & implementation
 - ease of testing
 - time to write
 - ease of maintenance
- generality
- popularity
 - ease of maintenance
 - correctness
- input required
- **topics**
 - geometry
 - strings
 - cryptography
 - numerical analysis
 - FFT

- **approaches**
 - randomized algorithms
 - on-line algorithms
 - parallel, distributed
 - cache-oblivious
 - external memory
 - models: quantum, DNA
Artificial Intelligence and Algorithms

■ CS 730/830 Introduction to Artificial Intelligence
 spring, Wheeler Ruml
■ CS 750/850 Introduction to Machine Learning
 spring, Marek Petrik
■ CS 733/833 Introduction to Mobile Robotics
 fall, Momotaz Begum
■ CS 753/853 Introduction to Information Retrieval
 fall, Laura Dietz
■ CS 980 Planning for Robots
 fall, Wheeler Ruml

and the UNH AI Research Group meets weekly all year round

Google “UNH AI Group” for details
Break

- final exam: Wed Dec 15 8-10am, Parsons N116
- no books, notes, gadgets, ...
We do read these (and so does my boss).

A. Class
1. Things you liked
2. Suggestions for improvement

B. Wheeler Ruml
1. Things you liked
2. Suggestions for improvement

C. Sumanta Kashyapi
1. Things you liked
2. Suggestions for improvement

Background assumed?
How to make class appropriate for all students?
Advice for students next year?
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!