
CS 758/858: Algorithms

Turing Machines

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 1 / 24

http://www.cs.unh.edu/~ruml/cs758



Turing Machines

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 2 / 24



What is ‘information processing’?

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 3 / 24

Take some input, process it, render some output.

Would like an abstract model for this, independent of realization.

No homunculi! ‘Process’ steps must be clear and unambiguous.



Modeling of Computing

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 4 / 24

■ finite-state machine: regular langauges
■ pushdown automaton: context-free languages
■ Turing machine: computable languages



Alan Mathison Turing (1912-1954)

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 5 / 24



The set up

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 6 / 24

A Turing machine has:

■ a processor that can be in one of a finite number of states
■ an infinite tape of symbols (from finite alphabet)
■ a head that reads and writes the tape, one symbol at a time

... ba b a ...

q8 q0

q5
q4

q2

q1

q3

q6

q7



The set up

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 6 / 24

A Turing machine has:

■ a processor that can be in one of a finite number of states
■ an infinite tape of symbols (from finite alphabet)
■ a head that reads and writes the tape, one symbol at a time

... ba b a ...

q8 q0

q5
q4

q2

q1

q3

q6

q7

The processor looks at

1. the symbol under the head
2. its current state

and then

3. writes a symbol (could be same as old)
4. moves the head left, right, or stays still
5. puts itself in a next state (could be same as old)



In summary

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 7 / 24

A Turing machine is:

1. a finite alphabet of possible tape symbols (including ✷)
2. an infinite tape of symbols (initially ✷, except for input)
3. a starting head position
4. a finite set of possible processor states
5. a starting processor state
6. a set of ‘final’ processor states that are ‘accept’ or ‘reject’
7. a set of transition rules for the processor

One of the first (and still most popular) abstract models of
computation.



Extensions

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 8 / 24

■ tape infinite in only one direction
■ multiple tapes at once
■ multiple heads at once
■ 2-D ”tape”

All polytime related!



Church-Turing Thesis

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 9 / 24

Any ‘effective computing procedure’ can be
represented as a Turing machine.



Other models

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 10 / 24

equivalent to Turing machines (compute time may vary):

■ Post rewriting systems (grammars)
■ recursive functions
■ λ calculus
■ parallel computers
■ cellular automata
■ certain artificial neural networks (most are weaker)
■ quantum computers

There must be something substantive about this!



Universal machines

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 11 / 24

Can represent Turing machine as a table

state, symbol → symbol, action, state
state, symbol → symbol, action, state

...

Can write the table on an input tape

Universal machine: input is machine and machine’s input

‘Stored program’ computation



Minsky’s universal machine

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 12 / 24



Undecidability

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 13 / 24



Turing Machine Languages

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 14 / 24

M accepts L = M recognizes L

■ M enters accepting state (as opposed to reject state or not
halting)

■ ⇒ L is Turing-recognizable
■ ‘recursively-enumerable’ languages

M decides L

■ M always eventually halts (either accepting or rejecting)
■ ⇒ L is Turing-decidable
■ ‘recursive’ languages, more restricted



Software Verification: The Halting/Accepting Problem

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 15 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}



Software Verification: The Halting/Accepting Problem

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 15 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever

Any universal machine can accept LH .
But can a machine decide it?



Proof (1/2)

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 16 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
So, MH(〈M,w〉) 7→ accept iff M accepts w, reject otherwise

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever



Proof (1/2)

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 16 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
So, MH(〈M,w〉) 7→ accept iff M accepts w, reject otherwise

Simplification 1: MSH(〈M〉) 7→ accept iff M accepts M ,
reject otherwise

Simplification 2: MISH(〈M〉) 7→ reject iff M accepts M ,
accept otherwise

Can such a machine MISH exist?
It must exist if MH can exist!

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever



Proof (2/2)

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 17 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MISH(〈M〉) 7→ reject iff M accepts M , accept otherwise

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever



Proof (2/2)

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 17 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MISH(〈M〉) 7→ reject iff M accepts M , accept otherwise

run MISH on itself!

MISH(〈MISH〉) 7→ reject iff MISH accepts MISH ,
otherwise accept (MISH rejects MISH)

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever



Proof (2/2)

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 17 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MISH(〈M〉) 7→ reject iff M accepts M , accept otherwise

run MISH on itself!

MISH(〈MISH〉) 7→ reject iff MISH accepts MISH ,
otherwise accept (MISH rejects MISH)

Contradiction! MISH and therefore MH cannot exist.
LH is undecidable.

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever



Summary

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 18 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w



Summary

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 18 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M



Summary

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 18 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M
MISH rejects 〈M〉 iff M accepts M



Summary

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 18 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M
MISH rejects 〈M〉 iff M accepts M
MISH rejects 〈MISH〉 iff MISH accepts MISH — Yikes!



Summary

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 18 / 24

LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M
MISH rejects 〈M〉 iff M accepts M
MISH rejects 〈MISH〉 iff MISH accepts MISH — Yikes!

No Turing machine can tell if another halts.

By Church-Turing, no algorithm for the halting problem exists.

There are problems for which no algorithm can exist.



Break

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 19 / 24

■ asst 12
■ asst 13



Rice’s Theorem

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 20 / 24

The function computed by a Turing machine is the mapping
from its input (string of symbols initially on the tape) to its
output (string of symbols on its tape when it halts)

Theorem: Any non-trivial property of the function computed by
a Turing machine is undecidable.

Therefore, we cannot decide anything ‘non-trivial’ about the
function computed by a Turing machine.

Henry Gordon Rice, Professor of Math at UNH in the 1950s!



Proof Sketch

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 21 / 24

Example: does a given TM compute the add 1 function?

Assume machine isAdd1() can decide whether or not its input is
a Turing machine that computes the add 1 function.

Now, given M and input x, we can decide if M(x) halts:

■ Make a temporary machine T (i) = {M(x); return i+ 1}
■ Now, test if T satisfies the isAdd1 property: isAdd1 (T )

Can now decide the halting problem:

■ If M(x) halted, then isAdd1 (T ) says “Yes” because T (i)
computed i+ 1

■ If M(x) never halts, then T (i) never halts and isAdd1 (T )
must say “No”

So IsAdd1() cannot exist.



Summary

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 22 / 24

Turing machines

■ model what we mean by computation, independent of
hardware

■ are not something you want to program much yourself
■ seem to be able to express any algorithm
■ provide an example of stored-program interpretation
■ illustrate limits on what can be computed
■ provide the foundation for computational complexity



Coping with NP-Completeness

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 23 / 24

■ find tractable special case
■ run only on small inputs
■ heuristic optimal algorithm that’s usually fast
■ heuristic non-optimal algorithm that’s always fast

◆ if bounded suboptimality: ‘approximation algorithm’



EOLQs

Turing Machines

Undecidability

■ TM Languages

■ Halting Problem

■ Proof (1/2)

■ Proof (2/2)

■ Summary

■ Break

■ Rice’s Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

■ EOLQs

Wheeler Ruml (UNH) Class 23, CS 758 – 24 / 24

For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!


	CS 758/858: Algorithms
	Turing Machines
	What is `information processing'?
	Modeling of Computing
	Alan Mathison Turing (1912-1954)
	The set up
	In summary
	Extensions
	Church-Turing Thesis
	Other models
	Universal machines
	Minsky's universal machine

	Undecidability
	Turing Machine Languages
	Software Verification: The Halting/Accepting Problem
	Proof (1/2)
	Proof (2/2)
	Summary
	Break
	Rice's Theorem
	Proof Sketch
	Summary
	Coping with NP-Completeness
	EOLQs


