CS 758/858: Algorithms

Turing Machines

Undecidability

http://www.cs.unh.edu/~ruml/cs758

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- \blacksquare The set up
- In summary
- Extensions
- \blacksquare The thesis
- Other models
- Universality
- Minsky's machine

Undecidability

Turing Machines

Wheeler Ruml (UNH)

Class 23, CS 758 – 2 / 24

Turing Machines
'Computing'
■ Models
■ A.M. Turing

- The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability

Take some input, process it, render some output.

Would like an abstract model for this, independent of realization.

No homunculi! 'Process' steps must be clear and unambiguous.

Modeling of Computing

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability

finite-state machine: regular langauges pushdown automaton: context-free languages

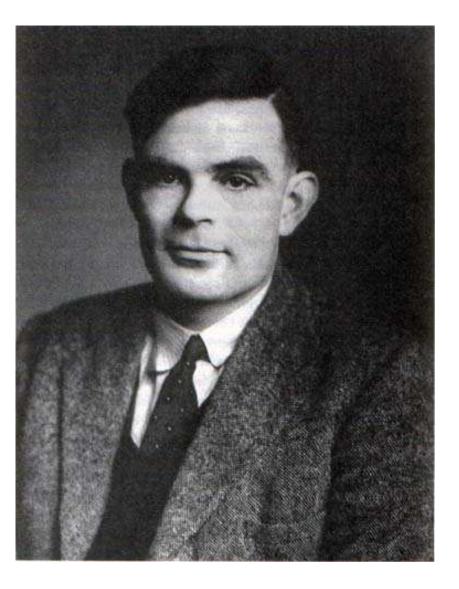
Turing machine: computable languages

Alan Mathison Turing (1912-1954)

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- \blacksquare The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine

Undecidability



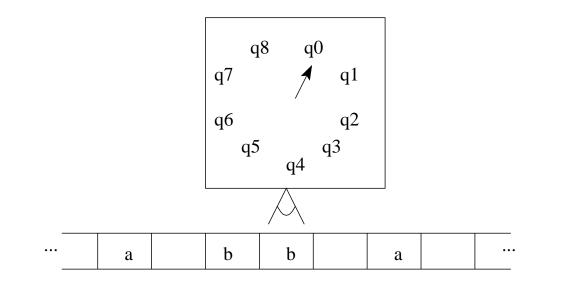
The set up

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability

A Turing machine has:

- a processor that can be in one of a finite number of states
 an infinite tape of symbols (from finite alphabet)
 - a head that reads and writes the tape, one symbol at a time



Class 23, CS 758 - 6 / 24

The set up

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability

A *Turing machine* has:

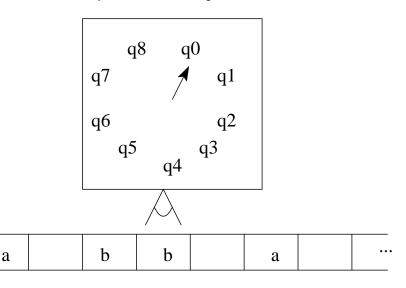
- a processor that can be in one of a finite number of states
 an infinite tape of symbols (from finite alphabet)
 - a head that reads and writes the tape, one symbol at a time

The processor looks at

- 1. the symbol under the head
- 2. its current state

and then

- 3. writes a symbol (could be same as old)
- 4. moves the head left, right, or stays still
- 5. puts itself in a next state (could be same as old)



In summary

Turing Machines

'Computing'

- Models
- A.M. Turing
- The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability

A Turing machine is:

- 1. a finite alphabet of possible tape symbols (including \Box)
- 2. an infinite tape of symbols (initially \Box , except for input)
- 3. a starting head position
- 4. a finite set of possible processor states
- 5. a starting processor state
- 6. a set of 'final' processor states that are 'accept' or 'reject'
- 7. a set of transition rules for the processor

One of the first (and still most popular) abstract models of computation.

Extensions

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- The set up
- In summary

Extensions

- The thesis
- Other models
- Universality
- Minsky's machine

Undecidability

- tape infinite in only one direction
- multiple tapes at once
- multiple heads at once
- 2-D "tape"

All polytime related!

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- The set up
- In summary
- Extensions

The thesis

- Other models
- Universality
- Minsky's machine

Undecidability

Any 'effective computing procedure' can be represented as a Turing machine.

Class 23, CS 758 - 9 / 24

Other models

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- \blacksquare The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability

equivalent to Turing machines (compute time may vary):

- I Post rewriting systems (grammars)
- recursive functions
- λ calculus
- parallel computers
- cellular automata
- certain artificial neural networks (most are weaker)
 - quantum computers

There must be something substantive about this!

Turing Machines

- 'Computing'
- Models
- A.M. Turing
- The set up
- In summary
- Extensions
- The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability

Can represent Turing machine as a table

state, symbol \rightarrow symbol, action, state state, symbol \rightarrow symbol, action, state

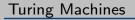
Can write the table on an input tape

Universal machine: input is machine and machine's input

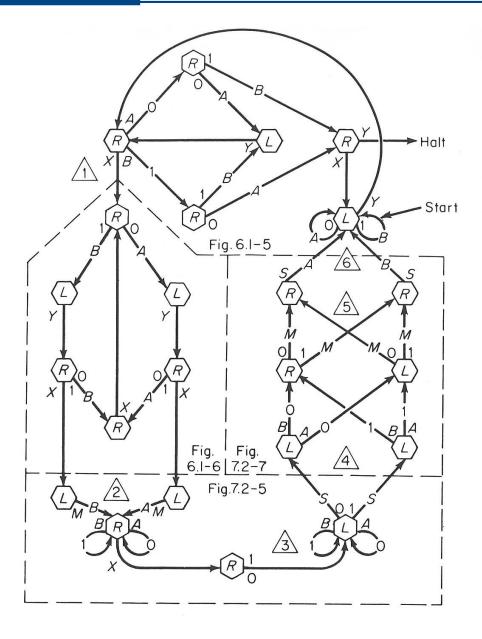
'Stored program' computation

Class 23, CS 758 – 11 / 24

Minsky's universal machine



- 'Computing'
- Models
- A.M. Turing
- \blacksquare The set up
- In summary
- Extensions
- \blacksquare The thesis
- Other models
- Universality
- Minsky's machine
- Undecidability



Wheeler Ruml (UNH)

Class 23, CS 758 – 12 / 24

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

Undecidability

Turing Machines	
-----------------	--

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- \blacksquare Coping with NPC
- EOLQs

M accepts L = M recognizes L

- M enters accepting state (as opposed to reject state or not halting)
- $\blacksquare \quad \Rightarrow L \text{ is Turing-recognizable}$
- 'recursively-enumerable' languages

M decides L

- M always eventually halts (either accepting or rejecting)
- $\blacksquare \quad \Rightarrow L \text{ is Turing-decidable}$
- 'recursive' languages, more restricted

Software Verification: The Halting/Accepting Problem

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

Software Verification: The Halting/Accepting Problem

Turing Machines

Undecidability

■ TM Languages

Halting Problem

■ Proof (1/2)

Proof (2/2)Summary

Break

■ Rice's Theorem

■ Proof Sketch

■ Summary

■ Coping with NPC

EOLQs

 $L_H = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$

deciding L_H : halt with Y or N **accepting** L_H : halt with Y or either halt with N or run forever

Any universal machine can accept L_H . But can a machine decide it?

Proof (1/2)

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- \blacksquare Coping with NPC
- EOLQs

 $L_H = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$

Assume $\exists M_H$ that decides L_H . So, $M_H(\langle M, w \rangle) \mapsto$ accept iff M accepts w, reject otherwise

Reminder:

Proof (1/2)

Turing Machines

```
Undecidability
```

■ TM Languages

Halting Problem

■ Proof (1/2)

Proof (2/2)Summary

Break

■ Rice's Theorem

Proof Sketch

■ Summary

■ Coping with NPC

EOLQs

```
\begin{split} L_H &= \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \} \\ \textbf{Assume } \exists M_H \text{ that decides } L_H. \\ \text{So, } M_H(\langle M, w \rangle) \mapsto \text{ accept iff } M \text{ accepts } w, \text{ reject otherwise} \\ \text{Simplification 1: } M_{SH}(\langle M \rangle) \mapsto \text{ accept iff } M \text{ accepts } M, \\ & \text{ reject otherwise} \\ \text{Simplification 2: } M_{ISH}(\langle M \rangle) \mapsto \text{ reject iff } M \text{ accepts } M, \\ & \text{ accept otherwise} \\ \text{Can such a machine } M_{ISH} \text{ exist?} \end{split}
```

It must exist if M_H can exist!

Reminder:

Proof (2/2)

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

 $L_H = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$

Assume $\exists M_H$ that decides L_H . $M_{ISH}(\langle M \rangle) \mapsto$ reject iff M accepts M, accept otherwise

Reminder:

Proof (2/2)

Turing Machines

```
Undecidability
```

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break

```
Rice's Theorem
```

- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

 $L_H = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$

Assume $\exists M_H$ that decides L_H . $M_{ISH}(\langle M \rangle) \mapsto$ reject iff M accepts M, accept otherwise

run M_{ISH} on itself!

 $M_{ISH}(\langle M_{ISH} \rangle) \mapsto \text{reject iff } M_{ISH} \text{ accepts } M_{ISH},$ otherwise accept $(M_{ISH} \text{ rejects } M_{ISH})$

Reminder:

Proof (2/2)

Turing Machines

```
Undecidability
```

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break

```
Rice's Theorem
```

- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

```
L_H = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}
```

```
Assume \exists M_H that decides L_H.
M_{ISH}(\langle M \rangle) \mapsto reject iff M accepts M, accept otherwise
```

run M_{ISH} on itself!

 $M_{ISH}(\langle M_{ISH} \rangle) \mapsto \text{reject iff } M_{ISH} \text{ accepts } M_{ISH},$ otherwise accept $(M_{ISH} \text{ rejects } M_{ISH})$

```
Contradiction! M_{ISH} and therefore M_H cannot exist. L_H is undecidable.
```

Reminder:

```
deciding L_H: halt with Y or N
accepting L_H: halt with Y or either halt with N or run forever
```

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)

■ Proof (2/2)

Summary

- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

```
Assume \exists M_H that decides L_H.
M_H accepts \langle M, w \rangle iff M accepts w
```

Turing Machines

Undecidability

■ TM Languages

Halting Problem

■ Proof (1/2)

■ Proof (2/2)

Summary

Break

■ Rice's Theorem

Proof Sketch

■ Summary

 \blacksquare Coping with NPC

■ EOLQs

```
Assume \exists M_H that decides L_H.
M_H accepts \langle M, w \rangle iff M accepts w
M_{SH} accepts \langle M \rangle iff M accepts M
```

Turing Machines

```
Undecidability
```

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)

Summary

- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

```
Assume \exists M_H that decides L_H.

M_H accepts \langle M, w \rangle iff M accepts w

M_{SH} accepts \langle M \rangle iff M accepts M

M_{ISH} rejects \langle M \rangle iff M accepts M
```

Turing Machines

```
Undecidability
```

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

```
Assume \exists M_H that decides L_H.

M_H accepts \langle M, w \rangle iff M accepts w

M_{SH} accepts \langle M \rangle iff M accepts M

M_{ISH} rejects \langle M \rangle iff M accepts M

M_{ISH} rejects \langle M_{ISH} \rangle iff M_{ISH} accepts M_{ISH} — Yikes!
```

Turing Machines

```
Undecidability
```

■ TM Languages

Halting Problem

■ Proof (1/2)

■ Proof (2/2)

Summary

Break

Rice's Theorem

Proof Sketch

■ Summary

Coping with NPC

EOLQs

 $L_H = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$

```
Assume \exists M_H that decides L_H.

M_H accepts \langle M, w \rangle iff M accepts w

M_{SH} accepts \langle M \rangle iff M accepts M

M_{ISH} rejects \langle M \rangle iff M accepts M

M_{ISH} rejects \langle M_{ISH} \rangle iff M_{ISH} accepts M_{ISH} — Yikes!
```

No Turing machine can tell if another halts.

By Church-Turing, no algorithm for the halting problem exists.

There are problems for which no algorithm can exist.

Break

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary

Break

- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

asst 12asst 13

Rice's Theorem

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

The function computed by a Turing machine is the mapping from its input (string of symbols initially on the tape) to its output (string of symbols on its tape when it halts)

Theorem: Any non-trivial property of the function computed by a Turing machine is undecidable.

Therefore, we cannot decide anything 'non-trivial' about the function computed by a Turing machine.

Henry Gordon Rice, Professor of Math at UNH in the 1950s!

Class 23, CS 758 - 20 / 24

Proof Sketch

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)Summary
- Break
- Rice's Theorem
 Proof Sketch
- Summary
- Coping with NPC
- EOLQs

Example: does a given TM compute the add 1 function?

Assume machine *isAdd1()* can decide whether or not its input is a Turing machine that computes the add 1 function.

Now, given M and input x, we can decide if M(x) halts:

- Make a temporary machine $T(i) = \{M(x); \text{return } i+1\}$
- Now, test if T satisfies the isAdd1 property: isAdd1(T)

Can now decide the halting problem:

- If M(x) halted, then isAdd1(T) says "Yes" because T(i) computed i + 1
- If M(x) never halts, then T(i) never halts and isAdd1(T) must say "No"

So *IsAdd1()* cannot exist.

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

Turing machines

- I model what we mean by computation, independent of hardware
- are not something you want to program much yourselfseem to be able to express any algorithm
- provide an example of stored-program interpretation
- illustrate limits on what can be computed
 - provide the foundation for computational complexity

Coping with NP-Completeness

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

- find tractable special case
 - run only on small inputs
- heuristic optimal algorithm that's usually fast
 - heuristic non-optimal algorithm that's always fast
 - if bounded suboptimality: 'approximation algorithm'

EOLQs

Turing Machines

Undecidability

- TM Languages
- Halting Problem
- Proof (1/2)
- Proof (2/2)
- Summary
- Break
- Rice's Theorem
- Proof Sketch
- Summary
- Coping with NPC
- EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
 - What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out. *Thanks!*