
CS 758/858: Algorithms

Turing Machines

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 1 / 24

http://www.cs.unh.edu/~ruml/cs758



Turing Machines

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 2 / 24



What is ‘information processing’?

Turing Machines

■ ‘Computing’

■ Models

■ A.M. Turing

■ The set up

■ In summary

■ Extensions

■ The thesis

■ Other models

■ Universality

■ Minsky’s machine

Undecidability

Wheeler Ruml (UNH) Class 23, CS 758 – 3 / 24

Take some input, process it, render some output.

Would like an abstract model for this, independent of realization.

No homunculi! ‘Process’ steps must be clear and unambiguous.
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■ finite-state machine: regular langauges
■ pushdown automaton: context-free languages
■ Turing machine: computable languages



Alan Mathison Turing (1912-1954)
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A Turing machine has:

■ a processor that can be in one of a finite number of states
■ an infinite tape of symbols (from finite alphabet)
■ a head that reads and writes the tape, one symbol at a time
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A Turing machine has:

■ a processor that can be in one of a finite number of states
■ an infinite tape of symbols (from finite alphabet)
■ a head that reads and writes the tape, one symbol at a time
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The processor looks at

1. the symbol under the head
2. its current state

and then

3. writes a symbol (could be same as old)
4. moves the head left, right, or stays still
5. puts itself in a next state (could be same as old)
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A Turing machine is:

1. a finite alphabet of possible tape symbols (including ✷)
2. an infinite tape of symbols (initially ✷, except for input)
3. a starting head position
4. a finite set of possible processor states
5. a starting processor state
6. a set of ‘final’ processor states that are ‘accept’ or ‘reject’
7. a set of transition rules for the processor

One of the first (and still most popular) abstract models of
computation.
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■ tape infinite in only one direction
■ multiple tapes at once
■ multiple heads at once
■ 2-D ”tape”

All polytime related!
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Any ‘effective computing procedure’ can be
represented as a Turing machine.
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equivalent to Turing machines (compute time may vary):

■ Post rewriting systems (grammars)
■ recursive functions
■ λ calculus
■ parallel computers
■ cellular automata
■ certain artificial neural networks (most are weaker)
■ quantum computers

There must be something substantive about this!
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Can represent Turing machine as a table

state, symbol → symbol, action, state
state, symbol → symbol, action, state

...

Can write the table on an input tape

Universal machine: input is machine and machine’s input

‘Stored program’ computation
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M accepts L = M recognizes L

■ M enters accepting state (as opposed to reject state or not
halting)

■ ⇒ L is Turing-recognizable
■ ‘recursively-enumerable’ languages

M decides L

■ M always eventually halts (either accepting or rejecting)
■ ⇒ L is Turing-decidable
■ ‘recursive’ languages, more restricted
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LH = {〈M,w〉 : M is a TM and M accepts w}
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LH = {〈M,w〉 : M is a TM and M accepts w}

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever

Any universal machine can accept LH .
But can a machine decide it?
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
So, MH(〈M,w〉) 7→ accept iff M accepts w, reject otherwise

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
So, MH(〈M,w〉) 7→ accept iff M accepts w, reject otherwise

Simplification 1: MSH(〈M〉) 7→ accept iff M accepts M ,
reject otherwise

Simplification 2: MISH(〈M〉) 7→ reject iff M accepts M ,
accept otherwise

Can such a machine MISH exist?
It must exist if MH can exist!

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MISH(〈M〉) 7→ reject iff M accepts M , accept otherwise

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MISH(〈M〉) 7→ reject iff M accepts M , accept otherwise

run MISH on itself!

MISH(〈MISH〉) 7→ reject iff MISH accepts MISH ,
otherwise accept (MISH rejects MISH)

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MISH(〈M〉) 7→ reject iff M accepts M , accept otherwise

run MISH on itself!

MISH(〈MISH〉) 7→ reject iff MISH accepts MISH ,
otherwise accept (MISH rejects MISH)

Contradiction! MISH and therefore MH cannot exist.
LH is undecidable.

Reminder:

deciding LH : halt with Y or N
accepting LH : halt with Y or either halt with N or run forever
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M
MISH rejects 〈M〉 iff M accepts M
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M
MISH rejects 〈M〉 iff M accepts M
MISH rejects 〈MISH〉 iff MISH accepts MISH — Yikes!
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LH = {〈M,w〉 : M is a TM and M accepts w}

Assume ∃MH that decides LH .
MH accepts 〈M,w〉 iff M accepts w
MSH accepts 〈M〉 iff M accepts M
MISH rejects 〈M〉 iff M accepts M
MISH rejects 〈MISH〉 iff MISH accepts MISH — Yikes!

No Turing machine can tell if another halts.

By Church-Turing, no algorithm for the halting problem exists.

There are problems for which no algorithm can exist.
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■ asst 12
■ asst 13
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The function computed by a Turing machine is the mapping
from its input (string of symbols initially on the tape) to its
output (string of symbols on its tape when it halts)

Theorem: Any non-trivial property of the function computed by
a Turing machine is undecidable.

Therefore, we cannot decide anything ‘non-trivial’ about the
function computed by a Turing machine.

Henry Gordon Rice, Professor of Math at UNH in the 1950s!
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Example: does a given TM compute the add 1 function?

Assume machine isAdd1() can decide whether or not its input is
a Turing machine that computes the add 1 function.

Now, given M and input x, we can decide if M(x) halts:

■ Make a temporary machine T (i) = {M(x); return i+ 1}
■ Now, test if T satisfies the isAdd1 property: isAdd1 (T )

Can now decide the halting problem:

■ If M(x) halted, then isAdd1 (T ) says “Yes” because T (i)
computed i+ 1

■ If M(x) never halts, then T (i) never halts and isAdd1 (T )
must say “No”

So IsAdd1() cannot exist.
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Turing machines

■ model what we mean by computation, independent of
hardware

■ are not something you want to program much yourself
■ seem to be able to express any algorithm
■ provide an example of stored-program interpretation
■ illustrate limits on what can be computed
■ provide the foundation for computational complexity
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■ find tractable special case
■ run only on small inputs
■ heuristic optimal algorithm that’s usually fast
■ heuristic non-optimal algorithm that’s always fast

◆ if bounded suboptimality: ‘approximation algorithm’
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For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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