http://www.cs.unh.edu/~ruml/cs758
To prove some problem A is NP-complete:

1. Prove $A \in NP$
2. Prove A is NP-hard.

 (a) Pick a known NP-complete problem B
 (b) Design a reduction that translates instances of B into equivalent instances of A

 i. Show that translated A version is accepted if and only if the original B version should be accepted.
 ii. Prove that the reduction runs in polynomial time.
Reductions to Graph Problems
CIRCUIT-SAT

SAT

3-CNF SAT

CLIQUE

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

TSP
Given graph G and integer $k > 1$, does G have clique of size k?

CLIQUE \in NP: given clique, test connectivity (k^2 time).

CLIQUE is NP-Hard: Reduction from 3-CNF SAT! Formula ϕ with k clauses will be SAT iff graph G has a k clique.

For clause r like $(l^r_1 \lor l^r_2 \lor l^r_3)$, add vertices v^r_1, v^r_2, and v^r_3 to G. Add edge from v^r_i to v^s_j iff $r \neq s$ and $l^r_i \neq \neg l^s_j$.

SAT \Rightarrow clique: If ϕ SAT, at least one literal in each clause is true. These form a clique in G because they cannot conflict.

Clique \Rightarrow SAT: If k clique, make corresponding literals true. Will satisfy all k clauses without conflicts.

Example: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$
Given graph G and integer $k > 0$, does G have a vertex cover of size k?

VERTEX-COVER \in NP: given cover, check size and that each edge is covered.

VERTEX-COVER is NP-Hard: Reduction from CLIQUE. Form graph complement G', which has edge (u, v) for $v \neq u$ iff original does not. Claim: G has k clique iff G' has $|V| - k$ cover.

Cover \Rightarrow clique: All edges in E have at least one endpoint in $Cover$. All pairs (u, v) with both u and $v \notin Cover$ therefore have edge $\in E$. So $V - Cover$ is a clique of size k.

Clique \Rightarrow cover: Any edge $(u, v) \in E$ implies $\not\in E$ implies u or v not in Clique. This implies u or v remains in $V - Clique$ and hence it covers that edge. Size of $V - Clique$ is $|V| - k$.
asst 12

Wildcard vote!
Reduction to a Numeric Problem
Reducions

NPC Proofs
Graph Problems
Number Problem

- Reductions
 - Subset Sum
 - Example Formula
 - Subset Sum
 - Resulting Set
 - EOLQs

CIRCUIT-SAT
 ↓
 SAT
 ↓
 3-CNF SAT
 ↓
 CLIQUE
 ↓
 SUBSET-SUM
 ↓
 VERTEX-COVER
 ↓
 HAM-CYCLE
 ↓
 TSP
Given finite set of positive integers, is there a subset that sums to t?

SUBSET-SUM \in NP: given subset, compute sum.

SUBSET-SUM is NP-Hard: Reduction from 3-CNF SAT. Make numbers and the target sum from the formula. For n variables and k clauses, each number will have $n + k$ digits. We ensure no carrying by using base 10 and at most a sum of 6 in each column.

[see upcoming slide for how to make numbers and target]

Polynomial time to construct and equivalent to satisfiability.
Example Formula

\[C_1 : (x_1 \lor \neg x_2 \lor \neg x_3) \land \]
\[C_2 : (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land \]
\[C_3 : (\neg x_1 \lor \neg x_2 \lor x_3) \land \]
\[C_4 : (x_1 \lor x_2 \lor x_3 \) \]
Two kinds of numbers:

- Two numbers for each variable, representing positive/negative literals. (These are the ‘important’ ones!) 1 in the variable’s column, and 1 for clauses where that literal appears.
- Clause numbers just allow slop for 1, 2 or 3 true literals per clause.

Target is 1 for each variable and 4 for each clause. Therefore, it requires exactly one form of each variable and at least one true literal in each clause (plus one or both ‘slop numbers’).

Sum \Rightarrow SAT: read off assignment. Target ensures consistency and variable numbers ensure satisfiability.

SAT \Rightarrow sum: construct sum, choosing slop variables last.
Resulting Set

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v_1'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v_2'</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>v_3'</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_1'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>s_3'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>s_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s_4'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Resulting Set

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v_1'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v_2'</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>v_3'</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_1'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>s_3'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>s_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s_4'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!