## CS 758/858: Algorithms

■ NPC Proofs

Graph Problems

Number Problem

http://www.cs.unh.edu/~ruml/cs758

### Framework for an NP-Completeness Proof

### ■ NPC Proofs

Graph Problems

Number Problem

### To prove some problem A is NP-complete:

- 1. Prove  $A \in NP$
- 2. Prove A is NP-hard.
  - (a) Pick a known NP-complete problem B
  - (b) Design a reduction that translates instances of B into equivalent instances of A
    - i. Show that translated A version is accepted if and only if the original B version should be accepted.
    - ii. Prove that the reduction runs in polynomial time.

### ■ NPC Proofs

### Graph Problems

- Reductions
- Clique
- Vertex Cover
- Break

Number Problem

# **Reductions to Graph Problems**

## Reductions



Wheeler Ruml (UNH)

Class 22, CS 758 - 4 / 14

## Clique

### Graph Problems

- Reductions
- Clique
- Vertex Cover
- Break

Number Problem

Given graph G and integer k > 1, does G have clique of size k? CLIQUE  $\in$  NP: given clique, test connectivity ( $k^2$  time).

CLIQUE is NP-Hard: Reduction from 3-CNF SAT! Formula  $\phi$  with k clauses will be SAT iff graph G has a k clique.

For clause r like  $(l_1^r \vee l_2^r \vee l_3^r)$ , add vertices  $v_1^r$ ,  $v_2^r$ , and  $v_3^r$  to G. Add edge from  $v_i^r$  to  $v_j^s$  iff  $r \neq s$  and  $l_i^r \neq \neg l_j^s$ .

SAT  $\Rightarrow$  clique: If  $\phi$  SAT, at least one literal in each clause is true. These form a clique in G because they cannot conflict. Clique  $\Rightarrow$  SAT: If k clique, make corresponding literals true. Will satisfy all k clauses without conflicts.

Example:  $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$ 

■ NPC Proofs

Graph Problems

Reductions

Clique

Vertex Cover

Break

Number Problem

Given graph G and integer k > 0, does G have a vertex cover of size k?

VERTEX-COVER  $\in$  NP: given cover, check size and that each edge is covered.

VERTEX-COVER is NP-Hard: Reduction from CLIQUE. Form graph complement  $\overline{G}$ , which has edge (u, v) for  $v \neq u$  iff original does not. Claim: G has k clique iff  $\overline{G}$  has |V| - k cover.

Cover  $\Rightarrow$  clique: All edges in  $\overline{E}$  have at least one endpoint in *Cover*. All pairs (u, v) with both u and  $v \notin Cover$  therefore have edge  $\in E$ . So V - Cover is a clique of size k.

Clique  $\Rightarrow$  cover: Any edge  $(u, v) \in \overline{E}$  implies  $\notin E$  implies u or vnot in *Clique*. This implies u or v remains in V - Clique and hence it covers that edge. Size of V - Clique is |V| - k.

Class 22, CS 758 - 6 / 14



### ■ NPC Proofs

Graph Problems

- $\blacksquare \mathsf{Reductions}$
- Clique
- Vertex Cover
- Break

Number Problem

asst 12 Wildcard vote!

### ■ NPC Proofs

Graph Problems

#### Number Problem

- $\blacksquare Reductions$
- Subset Sum
- Example Formula
- Subset Sum
- Resulting Set
- EOLQs

# **Reduction to a Numeric Problem**

## Reductions



Wheeler Ruml (UNH)

Class 22, CS 758 - 9 / 14

## Subset Sum

■ NPC Proofs

Graph Problems

Number Problem

Reductions

Subset Sum

Example Formula

■ Subset Sum

■ Resulting Set

EOLQs

Given finite set of positive integers, is there a subset that sums to t?

SUBSET-SUM  $\in$  NP: given subset, compute sum.

SUBSET-SUM is NP-Hard: Reduction from 3-CNF SAT. Make numbers and the target sum from the formula. For n variables and k clauses, each number will have n + k digits. We ensure no carrying by using base 10 and at most a sum of 6 in each column.

[ see upcoming slide for how to make numbers and target ]

Polynomial time to construct and equivalent to satisfiability.

## **Example Formula**

 $C_1:$ 

 $C_2:$ 

 $C_3$ :

 $C_4$ :

### ■ NPC Proofs

#### Graph Problems

- Number Problem
- Reductions
- Subset Sum
- Example Formula
- Subset Sum
- Resulting Set
- EOLQs

 $(x_1 \lor \neg x_2 \lor \neg x_3) \land$  $(\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$  $(\neg x_1 \lor \neg x_2 \lor x_3) \land$  $(x_1 \lor x_2 \lor x_3)$ 

## Subset Sum

Graph Problems

Number Problem

- Reductions
- Subset Sum
- Example Formula
- Subset Sum
- $\blacksquare Resulting Set$
- EOLQs

Two kinds of numbers:

- Two numbers for each variable, representing positive/negative literals. (These are the 'important' ones!) 1 in the variable's column, and 1 for clauses where that literal appears.
- Clause numbers just allow slop for 1, 2 or 3 true literals per clause.

Target is 1 for each variable and 4 for each clause. Therefore, it requires exactly one form of each variable and at least one true literal in each clause (plus one or both 'slop numbers').

Sum  $\Rightarrow$  SAT: read off assignment. Target ensures consistency and variable numbers ensure satisfiability.

SAT  $\Rightarrow$  sum: construct sum, choosing slop variables last.

## **Resulting Set**

|            | $x_1$ | $x_2$ | $x_3$ | $C_1$ | $C_2$ | $C_3$ | $C_4$ |
|------------|-------|-------|-------|-------|-------|-------|-------|
| $v_1 =$    | 1     | 0     | 0     | 1     | 0     | 0     | 1     |
| $v'_1 =$   | 1     | 0     | 0     | 0     | 1     | 1     | 0     |
| $v_2 =$    | 0     | 1     | 0     | 0     | 0     | 0     | 1     |
| $v'_{2} =$ | 0     | 1     | 0     | 1     | 1     | 1     | 0     |
| $v_3 =$    | 0     | 0     | 1     | 0     | 0     | 1     | 1     |
| $v'_3 =$   | 0     | 0     | 1     | 1     | 1     | 0     | 0     |
| $s_1 =$    | 0     | 0     | 0     | 1     | 0     | 0     | 0     |
| $s'_1 =$   | 0     | 0     | 0     | 2     | 0     | 0     | 0     |
| $s_2 =$    | 0     | 0     | 0     | 0     | 1     | 0     | 0     |
| $s'_2 =$   | 0     | 0     | 0     | 0     | 2     | 0     | 0     |
| $s_3 =$    | 0     | 0     | 0     | 0     | 0     | 1     | 0     |
| $s'_3 =$   | 0     | 0     | 0     | 0     | 0     | 2     | 0     |
| $s_4 =$    | 0     | 0     | 0     | 0     | 0     | 0     | 1     |
| $s'_4 =$   | 0     | 0     | 0     | 0     | 0     | 0     | 2     |
| t =        | 1     | 1     | 1     | 4     | 4     | 4     | 4     |

■ NPC Proofs

Graph Problems

Number Problem

Reductions

Subset Sum

Example Formula

■ Subset Sum

Resulting Set

EOLQs

Wheeler Ruml (UNH)

Class 22, CS 758 – 13 / 14

## **Resulting Set**

|  |            | $x_1$ | $x_2$ | $x_3$ | $C_1$ | $C_2$ | $C_3$ | $C_4$ |
|--|------------|-------|-------|-------|-------|-------|-------|-------|
|  | $v_1 =$    | 1     | 0     | 0     | 1     | 0     | 0     | 1     |
|  | $v'_1 =$   | 1     | 0     | 0     | 0     | 1     | 1     | 0     |
|  | $v_2 =$    | 0     | 1     | 0     | 0     | 0     | 0     | 1     |
|  | $v'_{2} =$ | 0     | 1     | 0     | 1     | 1     | 1     | 0     |
|  | $v_3 =$    | 0     | 0     | 1     | 0     | 0     | 1     | 1     |
|  | $v'_{3} =$ | 0     | 0     | 1     | 1     | 1     | 0     | 0     |
|  | $s_1 =$    | 0     | 0     | 0     | 1     | 0     | 0     | 0     |
|  | $s'_1 =$   | 0     | 0     | 0     | 2     | 0     | 0     | 0     |
|  | $s_2 =$    | 0     | 0     | 0     | 0     | 1     | 0     | 0     |
|  | $s'_2 =$   | 0     | 0     | 0     | 0     | 2     | 0     | 0     |
|  | $s_3 =$    | 0     | 0     | 0     | 0     | 0     | 1     | 0     |
|  | $s'_3 =$   | 0     | 0     | 0     | 0     | 0     | 2     | 0     |
|  | $s_4 =$    | 0     | 0     | 0     | 0     | 0     | 0     | 1     |
|  | $s'_4 =$   | 0     | 0     | 0     | 0     | 0     | 0     | 2     |
|  | t =        | 1     | 1     | 1     | 4     | 4     | 4     | 4     |

### ■ NPC Proofs

Graph Problems

Number Problem

- Reductions
- Subset Sum

Example Formula

■ Subset Sum

Resulting Set

EOLQs

Wheeler Ruml (UNH)

Class 22, CS 758 – 13 / 14

## **EOLQ**s

### ■ NPC Proofs

Graph Problems

- Number Problem
- Reductions
- Subset Sum
- Example Formula
- Subset Sum
- $\blacksquare Resulting Set$
- EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out. *Thanks!*