CS 758/858: Algorithms

http://www.cs.unh.edu/~ruml/cs758 **NP-Completeness** SAT

■ Terms

■ Interchangability

- Reductions
- NPC Proofs

■ C-SAT is in NP

■ C-SAT is NP-Hard

Break

SAT

NP-Completeness

Wheeler Ruml (UNH)

Class 21, CS 758 – 2 / 15

NP-Completeness
Terms
Interchangability
Reductions
■ NPC Proofs
■ C-SAT is in NP

■ C-SAT is NP-Hard

Break

SAT

optimization vs decision: if opt were easy, decision would be too P: solvable in polynomial time NP: ∃ certificate verifiable in polynomial time NP-Hard: as hard as any problem in NP (via polytime reduction) NP-Complete: NP-Hard and in NP

reduce b to a: $b \rightarrow a$ in polytime + decide a yields answer for b

a hard by reduction from b: if $b \rightarrow a$ in polytime and a were polytime, could solve b. so a must be hard!

NP-Completeness	
■ Terms	
Interchangability	
Reductions	
■ NPC Proofs	
■ C-SAT is in NP	
■ C-SAT is NP-Hard	
Break	
SAT	

Theorem: If $B \leq_P A$ for some $B \in NPC$, then A is NP-Hard.

Proof: Since B is NPC, we have $\forall C \in NP, C \leq_P B$. Since $B \leq_P A$, then $C \leq_P A$ which shows A is NP-Hard.

If also $A \in NP$, then since $A \in NP$, we have $A \in NPC$.

Wheeler Ruml (UNH)

Class 21, CS 758 - 5 / 15

Framework for an NP-Completeness Proof

- Terms
- Interchangability
- Reductions
- NPC Proofs
- C-SAT is in NP
- C-SAT is NP-Hard
- Break
- SAT

To prove some problem A is NP-Complete:

Prove $A \in NP$

1

- 2. Pick a known NP-Complete problem B
- 3. Find a translation of instances of B into instances of A
- 4. Show that translated A version is accepted if and only if the original B version should be accepted.
- 5. Prove that the reduction runs in polynomial time.

NP-Completeness	
Terms	
Interchangability	
Reductions	
■ NPC Proofs	
■ C-SAT is in NP	,
■ C-SAT is NP-Hard	١
Break	
SAT	

Circuit-SAT: is circuit satisfiable? (otherwise, can be removed)

Certificate is value for every wire. Verify that each gate is computed corrrectly and output is true. NP-Completeness

Terms
Interchangability
Reductions
NPC Proofs
C-SAT is in NP
C-SAT is NP-Hard
Break
SAT

Need to construct reduction from any $L \in NP$. Given input $x \in L$, resulting circuit $C \in C$ ircuit-SAT iff $x \in L$. We'll make C so it's SAT iff $\exists y \text{ s.t.}$ verification algorithm A(x, y) for L gives true. Intuition: for input y, run A(x, y). Let n = |x| and $T(n) = O(n^k)$ be bound on A's running time. Let M be a circuit for a stored-program computer (including PC and storage). String T(n) of them together to form C'. C is C' with input hardwired to program for A and input x, and output hardwired to result of A. Input to C is y.

Iff y exists, C is satisfiable, so we have a reduction. A is constant size and uses poly storage. M is poly size and needs poly steps to run A. y is poly sized. So C' and C have size polynomial in n and can be constructed in polynomial time.

NP-Completeness

- Terms
- Interchangability
- Reductions
- NPC Proofs
- \blacksquare C-SAT is in NP
- C-SAT is NP-Hard
- Break

SAT

asst 12 Wildcard Vote! NP-Completeness

SAT

- NPC Proofs
- $\blacksquare Reduction$
- 3-CNF SAT
- Reductions
- EOLQs

SAT

Wheeler Ruml (UNH)

Class 21, CS 758 – 10 / 15

Framework for an NP-Completeness Proof

NP-Completeness

SAT

- NPC ProofsReduction
- 3-CNF SAT
- Reductions
- EOLQs

To prove some problem A is NP-Complete:

- 1. Prove $A \in NP$
- 2. Pick a known NP-Complete problem B
- 3. Find a translation of instances of B into instances of A
- 4. Show that translated A version is accepted if and only if the original B version should be accepted.
- 5. Prove that the reduction runs in polynomial time.

NP-Completeness	(
SAT	
■ NPC Proofs	C
Reduction	
■ 3-CNF SAT	
Reductions	C
EOLQs	
	f
	(
	S

Consider formula with n variables and m connectives.

SAT \in NP: given variables assignments, evaluate formula.

SAT is NP-Hard: Reduction from Circuit-SAT. Basic translation fails on shared subcircuits. Instead, use one variable for each wire and one clause per gate. Combine clauses with \wedge and include $\wedge x_0$ (output). SAT iff wires in circuit have legal values yielding true.

3-CNF SAT

NP-Completeness

SAT

- NPC Proofs
- Reduction
- 3-CNF SAT
- Reductions
- EOLQs

CNF where each clause has exactly 3 literals. Aka 3-SAT.

3-CNF SAT \in NP: given variables assignments, evaluate formula.

3-CNF SAT is NP-Hard: Reduction from SAT. Construct expression tree and convert to binary branching. Assign each node a variable.

Form clause for each internal node's variable, eg: $y_3 \leftrightarrow (y_1 \lor y_2)$ Clauses will have at most 3 literals.

Convert each clause to CNF: form complete truth table, form DNF for false rows, negate and push \neg inward (using DeMorgan) to get CNF

For each binary clause $(l_1 \vee l_2)$, convert to

 $(l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p).$

For each unit clause (l), convert to

 $(l \lor p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor q) \land (l \lor \neg p \lor \neg q).$

Each step preserves satisfiability and is polynomial time.

Wheeler Ruml (UNH)

Class 21, CS 758 – 14 / 15

EOLQs

NP-Completeness

SAT

- NPC Proofs
- Reduction
- 3-CNF SAT
- Reductions

EOLQs

For example:

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out. *Thanks!*