http://www.cs.unh.edu/~ruml/cs758

1 handout: slides
Previously On CS 758...
\(O(g(n)) = \{ f(n) : \text{there exist positive constants } c, n_0 \text{ such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \)

ignore constant factors
ignore ‘start-up costs’
upper bound

We can upper-bound \(f \) (except perhaps at start) by scaling \(g \) by a constant.

eg, running time of \(10n^2 - 5n = O(n^2) \)
$10n^2 + 5n = \Theta(n^2)$

$10n \log \frac{n}{e} = O(n \log n)$
Counting Sort

For n numbers in the range 0 to k:

1. for x from 0 to k
2. $\text{count}[x] \leftarrow 0$
3. for each input number x
4. increment $\text{count}[x]$
5. for x from 0 to k
6. do $\text{count}[x]$ times
7. emit x
Counting Sort

For \(n \) numbers in the range 0 to \(k \):

1. for \(x \) from 0 to \(k \) \(\quad O(k) \)
2. \(\text{count} [x] \leftarrow 0 \)
3. for each input number \(x \) \(\quad O(n) \)
4. increment \(\text{count} [x] \)
5. for \(x \) from 0 to \(k \) \(\quad O(k) \) times around loop
6. do \(\text{count} [x] \) times \(\quad O(k) \) times around loop iterates \(O(n) \) times total
7. emit \(x \) \(\quad O(1) \) each time

\[
O(k + n + k + n) = O(2n + 2k) = O(n + k) \neq O(n \lg n)
\]
Radix Sort
Input array contains n records with keys in the range 0 to $k - 1$
Input array contains n records with keys in the range 0 to $k - 1$

1. set count[x] to number of items with key = x
2. set pos[x] to total number of keys < x
3. for each input record r (in order)
4. write r in output array at position pos[key of r]
5. increment pos[key of r]

Complexity?
Invariants?
How to sort one million records?
How to sort one million records?

How to sort one trillion 4-bit integers?
How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?
Radix Sort

Previously On...

Radix Sort

- Stable Counting
- Radix Sort

Analysis

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?
How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

For n numbers with d digits (each digit has k values):
Radix Sort

How to sort one million records?

How to sort one trillion 4-bit integers?

How to sort one billion 16-bit integers?

How to sort one billion 64-bit integers?

For \(n \) numbers with \(d \) digits (each digit has \(k \) values):

1. for \(i \) from 0 to \(d \)
2. stable sort on digit in place \(i \) from right
Analysis
What’s the invariant in radix sort?
What’s the space complexity?
What’s the time complexity?
Limitations

Why not implemented more?
- everyone receiving piazza notifications?
- book access?

 see book for example proofs
- asst 1: agate, valgrind, submit, happy Devin
- no hardcopy submission
- schedule: asst 1, 2
Insertion Sort

for i from 2 to n
move $A[i]$ earlier until in place

worse case?
best case?
‘divide and conquer’: divide, combine and conquer

Mergesort(A, i, j)
1. if $i \geq j$, done
2. $k \leftarrow (i + j)/2$
3. Mergesort(A, i, k)
4. Mergesort($A, k + 1, j$)
5. merge $A[i..k]$ and $A[k + 1..j]$ into $A[i..j]$

how does merge work?
running time?
divide, conquer and combine

Quicksort\((A, i, j)\)
1. choose pivot key \(x\)
2. partition \(A[i..j]\) into \(A[i..p−1]\) and \(A[p+1..j]\)
3. if \(p−1 > i\) then Quicksort\((A, i, p−1)\)
4. if \(j > p + 1\) then Quicksort\((A, p + 1, j)\)
Quicksort

divide, conquer and combine

Quicksort \((A, i, j)\)

1. choose pivot key \(x\)
2. partition \(A[i..j]\) into \(A[i..p - 1]\) and \(A[p + 1..j]\)
3. if \(p - 1 > i\) then Quicksort\((A, i, p - 1)\)
4. if \(j > p + 1\) then Quicksort\((A, p + 1, j)\)

+: entirely in-place, no allocation
 often less copying than merge sort

-: \(expected\) \(O(n \lg n)\)
 needs tricks to avoid worst case
Partition

\[\text{Partition}(A, i, j) \]

1. choose pivot key \(p \) and swap into \(A[j] \)
2. \(x = i \)
3. for \(y = i \) to \(j - 1 \)
4. if \(A[y] \leq p \)
5. swap \(A[x] \) and \(A[y] \)
6. \(x \leftarrow x + 1 \)
7. swap \(A[x] \) and \(A[j] \)

A: (\(i:\) less (\(x:\) greater (\(y:\) unknown (\(j:\) pivot

Wheeler Ruml (UNH)
What is the minimum that a sorting algorithm must do?
What is the minimum that a sorting algorithm must do?
How many possible outputs are there for sorting n items?
What is the minimum that a sorting algorithm must do? How many possible outputs are there for sorting n items? A binary tree with $n!$ leaves.
What is the minimum that a sorting algorithm must do?
How many possible outputs are there for sorting n items?

A binary tree with $n!$ leaves has height at least $\lg(n!)$.

What is the minimum that a sorting algorithm must do?
How many possible outputs are there for sorting n items?

A binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling: $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

A binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling: $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n}))$

So:

$$\lg(n!) = \lg(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n})))$$
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

A binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling: $n! = \sqrt{2\pi n \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n}))}$

So:

$$\lg(n!) = \lg(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n})))$$

$$= \lg \sqrt{2\pi} + \lg \sqrt{n} + \lg \left(\frac{n}{e}\right)^n + \lg(1 + \Theta(\frac{1}{n}))$$
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

binary tree with $n!$ leaves has height at least $\log(n!)$

Stirling: $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n}))$

so:

$$\log(n!) = \log\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta(\frac{1}{n}))\right)$$

$$= \log \sqrt{2\pi} + \log \sqrt{n} + \log \left(\frac{n}{e}\right)^n + \log(1 + \Theta(\frac{1}{n}))$$

$$= \Theta \left(\log \sqrt{n} + n \log \left(\frac{n}{e}\right)\right) + \log(1 + \Theta(\frac{1}{n}))$$
What is the minimum that a sorting algorithm must do?
How many possible outputs are there for sorting n items?

binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling: $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta\left(\frac{1}{n}\right))$

so:

$$\begin{align*}
\lg(n!) &= \lg\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + \Theta\left(\frac{1}{n}\right))\right) \\
&= \lg \sqrt{2\pi} + \lg \sqrt{n} + \lg \left(\frac{n}{e}\right)^n + \lg (1 + \Theta\left(\frac{1}{n}\right)) \\
&= \Theta(\lg \sqrt{n} + n \lg \left(\frac{n}{e}\right)) + \lg (1 + \Theta\left(\frac{1}{n}\right)) \\
&= \Theta(n \lg n)
\end{align*}$$
What is the minimum that a sorting algorithm must do?

How many possible outputs are there for sorting n items?

A binary tree with $n!$ leaves has height at least $\lg(n!)$

Stirling: $n! = \sqrt{2\pi}n\left(\frac{n}{e}\right)^n(1 + \Theta(\frac{1}{n}))$

so:

\[
\lg(n!) = \lg\left(\sqrt{2\pi}n\left(\frac{n}{e}\right)^n(1 + \Theta(\frac{1}{n}))\right)
\]

\[
= \lg\sqrt{2\pi} + \lg\sqrt{n} + \lg\left(\frac{n}{e}\right)^n + \lg(1 + \Theta(\frac{1}{n}))
\]

\[
= \Theta(\lg\sqrt{n} + n\lg\left(\frac{n}{e}\right)) + \lg(1 + \Theta(\frac{1}{n}))
\]

\[
= \Theta(n\lg n)
\]

so comparison-based sorting takes $\Omega(n\lg n)$ time
What’s still confusing?
What question didn’t you get to ask today?
What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!