
CS 758/858: Algorithms

Shortest Paths

Floyd-Warshall

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 1 / 15

http://www.cs.unh.edu/~ruml/cs758



Shortest Path Problems

Shortest Paths

■ Problems

Floyd-Warshall

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 2 / 15



Problems

Shortest Paths

■ Problems

Floyd-Warshall

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 3 / 15

single source/destination pair
single source, all destinations
single destination, all sources
all-pairs

non-uniform weights?
negative edges?
negative cycles?



Floyd-Warshall

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 4 / 15



Robert W Floyd

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 5 / 15

1936–2001; Turing Award ’78
BA at 17, prof at CMU at 27,
full prof at Stanford at 32. No
PhD.
invented ‘method of
invariants’, parsing, dithering,
. . .
most cited author in TAoCP
students included Tarjan,
Rivest



All-Pairs

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 6 / 15

Can it be faster than V× single-source?

How to use optimal substructure?



The Idea

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 7 / 15

dkij = shortest path from i to j using intermediate vertices in 1..k

How to construct if we know all-pairs shortest paths using only
intermediate vertices in 1..k − 1?



The Algorithm

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 8 / 15

1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness?



The Algorithm

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 8 / 15

1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on



The Algorithm

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 8 / 15

1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on allowable intermediate vertices
running time?



The Algorithm

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 8 / 15

1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on allowable intermediate vertices
running time? O(V 3)
negative weights?



The Algorithm

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 8 / 15

1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on allowable intermediate vertices
running time? O(V 3)
negative weights? no problem!
solutions?



The Algorithm

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 8 / 15

1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on allowable intermediate vertices
running time? O(V 3)
negative weights? no problem!
solutions? predecessor pointer inherited from dk−1

kj as necessary



Break

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 9 / 15

■ asst 10
■ https://doi.org/10.1117/1.AP.6.5.056011

https://doi.org/10.1117/1.AP.6.5.056011


Random Problems

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 10 / 15

Your startup is booming and there is a lot to do. For each task,
you have a list of the tasks that must be completed before it can
begin. Each task takes one hour. You can assume an infinite
supply of workers, each of whom is qualified to perform any of
the tasks. Give an algorithm to find the minimum time required
to accomplish all of the tasks.

Give an algorithm for finding, from among all the shortest paths
from s to t in a graph, one that has the fewest edges.



Network Flow

Shortest Paths

Floyd-Warshall

Network Flow

■ The Problem

■ The Idea

■ The Algorithm

■ EOLQs

Wheeler Ruml (UNH) Class 17, CS 758 – 11 / 15



The Problem

Shortest Paths

Floyd-Warshall

Network Flow

■ The Problem

■ The Idea

■ The Algorithm

■ EOLQs

Wheeler Ruml (UNH) Class 17, CS 758 – 12 / 15

Given directed graph, source and sink, find flow of maximum
value.

logistics
network design
tasking

flow constraints: edge capacity, conservation at vertices

0 ≤ f(u, v) ≤ c(u, v)

∀v ∈ V − {s, t},
∑

u∈V

f(v, u) =
∑

u∈V

f(u, v)

details: removing ‘anti-parallel’ edges, multiple sources or sinks



Ford-Fulkerson: The Idea

Shortest Paths

Floyd-Warshall

Network Flow

■ The Problem

■ The Idea

■ The Algorithm

■ EOLQs

Wheeler Ruml (UNH) Class 17, CS 758 – 13 / 15

Iteratively augment flow until no augmenting path exists.

Find augmentation via ‘residual network’ Gf with costs

cf (u, v) =







c(u, v)− f(u, v) if(u, v) ∈ E

f(v, u) if(v, u) ∈ E

0 otherwise

residual network has reverse flow edges: not a legal ‘flow
network’

to augment (u, v), add f(u, v) and subtract f(v, u)



Ford-Fulkerson: The Algorithm

Shortest Paths

Floyd-Warshall

Network Flow

■ The Problem

■ The Idea

■ The Algorithm

■ EOLQs

Wheeler Ruml (UNH) Class 17, CS 758 – 14 / 15

1. for each edge, (u, v).f ← 0
2. while there exists an s ❀ t path p in the residual network
3. cf (p)← min capacity of edges along p

4. for each edge (u, v) in p

5. if (u, v) ∈ E

6. (u, v).f ← (u, v).f + cf (p)
7. else
8. (v, u).f ← (v, u).f − cf (p)



EOLQs

Shortest Paths

Floyd-Warshall

Network Flow

■ The Problem

■ The Idea

■ The Algorithm

■ EOLQs

Wheeler Ruml (UNH) Class 17, CS 758 – 15 / 15

For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!


	CS 758/858: Algorithms
	Shortest Path Problems
	Problems

	Floyd-Warshall
	Robert W Floyd
	All-Pairs
	The Idea
	The Algorithm
	Break
	Random Problems

	Network Flow
	The Problem
	Ford-Fulkerson: The Idea
	Ford-Fulkerson: The Algorithm
	EOLQs


