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single source/destination pair
single source, all destinations
single destination, all sources
all-pairs

non-uniform weights?
negative edges?
negative cycles?
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1936–2001; Turing Award ’78
BA at 17, prof at CMU at 27,
full prof at Stanford at 32. No
PhD.
invented ‘method of
invariants’, parsing, dithering,
. . .
most cited author in TAoCP
students included Tarjan,
Rivest
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Can it be faster than V× single-source?

How to use optimal substructure?
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dkij = shortest path from i to j using intermediate vertices in 1..k

How to construct if we know all-pairs shortest paths using only
intermediate vertices in 1..k − 1?



The Algorithm

Shortest Paths

Floyd-Warshall

■ Bob Floyd

■ All-Pairs

■ The Idea

■ Algorithm

■ Break

■ Random Problems

Network Flow

Wheeler Ruml (UNH) Class 17, CS 758 – 8 / 15

1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness?
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1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on allowable intermediate vertices
running time?
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1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on allowable intermediate vertices
running time? O(V 3)
negative weights?
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1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1
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6. return Dn

correctness? induction on allowable intermediate vertices
running time? O(V 3)
negative weights? no problem!
solutions?
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1. D0 ← the n× n weighted adjacency matrix
2. for k = 1 to n

3. for i = 1 to n

4. for j = 1 to n

5. dkij ← min(dk−1

ij , dk−1

ik + dk−1

kj )

6. return Dn

correctness? induction on allowable intermediate vertices
running time? O(V 3)
negative weights? no problem!
solutions? predecessor pointer inherited from dk−1

kj as necessary
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■ asst 10
■ https://doi.org/10.1117/1.AP.6.5.056011

https://doi.org/10.1117/1.AP.6.5.056011
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Your startup is booming and there is a lot to do. For each task,
you have a list of the tasks that must be completed before it can
begin. Each task takes one hour. You can assume an infinite
supply of workers, each of whom is qualified to perform any of
the tasks. Give an algorithm to find the minimum time required
to accomplish all of the tasks.

Give an algorithm for finding, from among all the shortest paths
from s to t in a graph, one that has the fewest edges.
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Given directed graph, source and sink, find flow of maximum
value.

logistics
network design
tasking

flow constraints: edge capacity, conservation at vertices

0 ≤ f(u, v) ≤ c(u, v)

∀v ∈ V − {s, t},
∑

u∈V

f(v, u) =
∑

u∈V

f(u, v)

details: removing ‘anti-parallel’ edges, multiple sources or sinks
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Iteratively augment flow until no augmenting path exists.

Find augmentation via ‘residual network’ Gf with costs

cf (u, v) =







c(u, v)− f(u, v) if(u, v) ∈ E

f(v, u) if(v, u) ∈ E

0 otherwise

residual network has reverse flow edges: not a legal ‘flow
network’

to augment (u, v), add f(u, v) and subtract f(v, u)
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1. for each edge, (u, v).f ← 0
2. while there exists an s ❀ t path p in the residual network
3. cf (p)← min capacity of edges along p

4. for each edge (u, v) in p

5. if (u, v) ∈ E

6. (u, v).f ← (u, v).f + cf (p)
7. else
8. (v, u).f ← (v, u).f − cf (p)
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For example:

■ What’s still confusing?
■ What question didn’t you get to ask today?
■ What would you like to hear more about?

Please write down your most pressing question about algorithms
and put it in the box on your way out.
Thanks!
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