http://www.cs.unh.edu/~ruml/cs758
Spanning Trees

- Problems
- Basic Approach

Kruskal's Algorithm

Prim's Algorithm

Spanning Trees
lightest total, lightest max, heaviest, ...

network connectivity
power, water distribution
wiring, VLSI

number of edges?
cycles?
start from \emptyset, grow spanning tree by adding edges
Basic Approach

starting from \emptyset, grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.
Basic Approach

starting from \emptyset, grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.

Proof: if a MST T includes our edge, fine. Otherwise, consider an edge in T that crosses cut. Replace it with ours. Still a spanning tree. Cost can’t go up, so still minimum.
Kruskal’s Algorithm
connect separate components until spanned
connect separate components until spanned

1. $T \leftarrow \emptyset$
2. for each vertex v, MAKE-SET(v)
3. for each edge (u, v) in nondecreasing order of weight
4. if FIND-SET(u) \neq FIND-SET(v)
5. add edge to T
6. UNION(u, v)
7. return T

correctness?
running time?
Break

- asst 8
- asst 9
Prim’s Algorithm
grow tree until connected
The Algorithm

grow tree until connected

1. for each vertex \(v \), \(v.c \leftarrow \infty \) and \(v.\pi \leftarrow \text{nil} \)
2. \(1.c \leftarrow 0 \)
3. \(Q \leftarrow \text{heap of all vertices} \)
4. while \(Q \) is not empty
5. \(u \leftarrow \text{remove vertex with minimum} \ c \)
6. for each neighbor \(v \) of \(u \)
7. if \(v \) is in \(Q \) and \(w(u, v) < v.c \)
8. \(v.c \leftarrow w(u, v) \)
9. \(v.\pi \leftarrow u \)
10. return \(\{(u, u.\pi) : u \in V \setminus \{1\}\} \)

correctness? what is the invariant?
running time?
Let G be an undirected connected graph in which all edge weights are distinct. Which of these are true?

1. Every MST of G contains the edge of minimum weight.
2. No MST contains the edge of maximum weight.
3. If the edge of maximum weight were in an MST, then removing it would disconnect G.
4. G has a unique MST.
EOLQs

For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!