http://www.cs.unh.edu/~ruml/cs758
Spanning Trees

- Problems
- Basic Approach
- Kruskal’s Algorithm
- Prim’s Algorithm

Spanning Trees
Problems

- lightest total, lightest max, heaviest, ...

- network connectivity
- power, water distribution
- wiring, VLSI

- number of edges?
- cycles?
starting from \emptyset, grow spanning tree by adding edges
starting from \emptyset, grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.
Basic Approach

starting from \emptyset, grow spanning tree by adding edges

Theorem: take any cut that respects the nascent tree. A lightest edge crossing the cut can be added to the tree.

Proof: if a MST T includes our edge, fine. Otherwise, consider an edge in T that crosses cut. Replace it with ours. Still a spanning tree. Cost can't go up, so still minimum.
Kruskal’s Algorithm
connect separate components until spanned
connect separate components until spanned

1. \(T \leftarrow \emptyset \)
2. for each vertex \(v \), MAKE-SET\((v)\)
3. for each edge \((u, v)\) in nondecreasing order of weight
4. if FIND-SET\((u) \neq FIND-SET(v)\)
5. add edge to \(T \)
6. UNION\((u, v)\)
7. return \(T \)

correctness?
running time?
asst 9
Prim’s Algorithm
The Algorithm

Spanning Trees
Kruskal's Algorithm
Prim's Algorithm

grow tree until connected
grow tree until connected

1. for each vertex \(v \), \(v.c \leftarrow \infty \) and \(v.\pi \leftarrow \text{nil} \)
2. \(1.c \leftarrow 0 \)
3. \(Q \leftarrow \text{heap of all vertices} \)
4. while \(Q \) is not empty
5. \(u \leftarrow \text{remove vertex with minimum } c \)
6. for each neighbor \(v \) of \(u \)
7. if \(v \) is in \(Q \) and \(w(u, v) < v.c \)
8. \(v.c \leftarrow w(u, v) \)
9. \(v.\pi \leftarrow u \)
10. return \(\{(u, u.\pi) : u \in V - \{1\}\} \)

correctness? what is the invariant?
running time?
Let G be an undirected connected graph in which all edge weights are distinct. Which of these are true?

1. Every MST of G contains the edge of minimum weight.
2. If the edge of maximum weight is in a MST, then removing it would disconnect G.
3. No MST contains the edge of maximum weight.
4. G has a unique MST.
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!